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are also included.

ABSTRACT

This paper presents the modification of the one-parameter Taylor method for
the discrete source application instead of the conventional one-parameter Taylor
method which can be applied only for the continuous source. The weighting parameier
is determined to eliminate the degradation of the nearest minor lobe level. The pattern
characteristics of the modified and the conventional one-parameter Taylor methods

are compared. The discussion on the use of continuous and discrete sources models

1. INTRODUCTION

In many applications such as point to point
communication, it is desirable for the
antenna to be highly directive in a particular
direction, narrow beamwidth, maximum gain
and low side lobe level to meet the demand
of the long distance communication. An
array antenna is one typical antenna that
can fulfill this requirement. It is formed by

assembling antenna elements with appropriate

electrical and geometrical configurations.
The discrete array [1-10] is a type of the
array which each of the elements are placed
separately. For the large discrete array and
very closed spacing of the elements, the
continuous source can be approximated to keep
away from the tedious calculation. However,
in the case of the large spacing of each elements,
that approximation is not accurate.

One-parameter Taylor method is a



method to synthesize the array pattern which
was initially introduced by Taylor and is
widely investigated by many authors [11-14].
The advantage of this method is the minor
lobes decreases monotonically. For some
applications such as radar and low noise
system, this method is preferable because
interfering or spurious signals would be reduced
when they enter through the decaying minor
lobes. Unfortunately, one-parameter Taylor
method can be applied only to the continuous
source distribution. However, Balanis [14]
described the application of the one-parameter
Taylor method to the discrete array by means
of the source distribution expression. In that
fashion, it is obvious that for a specified side
lobe level, the array pattern possesses
degradation of that specified side lobe level.
In this paper, the authors propose a new
expression for the weighting parameter
calculation to achieve the array pattern with
the specified side lobe level using the least
square polynomial regression curve fitting of
the third order method. The modified and the
conventional one-parameter Taylor methods
are compared in this paper. The discussion on
the use of continuous and discrete arrays

models are also included.

2. ARRAY AND SPACE FACTORS
CONSIDERATION

2.1 Array factor of the discrete source

To synthesize the broadside linear

array pattern, at first, the array factor will be

considered. Let us assume that there is a linear
array of isotropic elements. The elements
are aligned along the z-axis, symmetry with
the center of the array and have equidistance.
When the number of the elements is even, an

array factor (AF) can be written as [14]
N nd

AF,(0) = X [ cos[(2n-1) 7(:059]. (la)
n=1

An array factor of the odd number of the elements

can be expressed as
N+1 7td

AFM”(G) =X ‘,,‘COS[Z(H'”TCOSG]_ (1b)
n=1

where / is the amplitude current excitation
coefficient, 2N, 2N+1 is the number of even
and odd elements, respectively, d is the spacing
between each elements, A is the wavelength of
the operating frequency and @ is the angle

between the field direction of the z-axis.

Then the summation of the cosine term
for the case of even and odd elements will be
expanded. The order of harmonic cosine term
is equal to the total number of the element minus
one and the argument of the cosine term is the
positive integer times the fundamental
frequency. It can be written in the form
m=k;
cos(mu) = cos'(u) - {%}cosk'z(u)sr'n:(u)ﬂ%)

k-4, sdro. K 2
cos*(u) sin*(u)-.. (k_z)cos (1)

sin*(u) +sin*(u), (2)
where (Tkl—) = ﬂ—"-(kfi-_ﬂ)"and sinz(u)=.-’-cos*’(u).

2.2 Space factor of the continuous source
For the large array with closed spacing

between each elements, the discrete source



can be approximated as the continuous source.
In the analysis of the continuous source, the
total field is equal to the product of the element
factor and the space factor by means of the
pattern multiplication. The element factor is the
individual pattern of each element and the space
factor means the pattern which can be obtained
from the integration of the current source
distribution times the far field phase kernel
throughout the entire elements configuration.
To consider the continuous source in the one
dimension case or the line source distribution,
assume that there is a linear discrete array
placed along the z-axis. When the number of
the elements are increased whereas the length
of the array is fixed, the discrete source can
be assumed as the continuous source. The
summation in the array factor becomes the
integration in the space factor. For a line
source distribution of the length [ placed
symmetry along the z-axis, the space factor
(SF) for the uniform phase distribution is

given by using a finite Fourier transform as [14]
7 2x
SF (0) = | I(z)e 1350z 3)

3. ONE-PARAMETER TAYLORMETHOD

3.1 Conventional one-parameter Taylor

method for the continuous source

For the continuous source distribution,
to improve the ideal space factor which is
derived from Dolph-Tschebyscheff discrete
source distribution, Taylor suggested the
one-parameter Taylor method. The advantage

of this method is that it provides tapered

minor lobe distribution whereas the Dolph-
Tschebyscheff ideal space factor for the
continuous source yields a pattern with equal

ripple minor lobes.

After some mathematical manipulations
by using Gegenbauer’s finite integral and
Gegenbauer polynomial, the space factor of the
one-parameter Taylor line source can be written

as [11-14]

sinh[/(ﬂB)"-(—%CoSQ)J]

j{nB)z-{—}% cosB)’

SF (8) =| sin [J(%Je:mﬁ)2 -(nB)] (4)

J(%cosﬂ)z -(nB)?

The upper and the lower equations are used,
respectively, when (%10056')2 less and greater
than (mB)’. B is the constant which can be
determined from the side lobe level. The B
parameter is also called weighting parameter
or one-parameter. For the specified side lobe
level, the formulation for the relation between
that side lobe level, R (dB) and the weighting
parameter is given as [11-14]

sinhnB,

R(dB) = 13.26 + 20log,( =),

(5)

where the cardinal number /3.26 means the
side lobe level of the uniform distribution
which occurs when the value of the weighting

(=]

parameter vanishes.

Generally, in the design of the radiation

pattern, we would start with the required



side lobe level, then determine the weighting
parameter and the space factor, subsequently.
From this reason, (5) is not appropriate for
computing the weighting parameter because it
is an inverse problem. Blanton [13] presented
the alternative expression for solving the
weighting parameter as the straightforward

problem from the hyperbola equation as

B =b

LBeer (6)

a
where a and b represent the hyperbola’s
semi-transverse and semi-conjugate axes,
respectively. ¢ is the displacement (in dB) of
the hyperbola’s center from the origin. In the
case of the line source distribution the values
of a, b and c are, respectively, 22.96, 0.9067
and 9.7.

3.2 Modified one-parameter Taylor method

for the discrete source

The normalized amplitude current
excitation coefficient must be known to
modify the one-parameter Taylor method for
the discrete array application. By substituting
(4) in (3) and using the inverse transform pairs
of (4), the amplitude current excitation can be
written after some intricate mathematical
manipulations in a relatively simple form as

[11-14]
I =1 (nB [I-&), (7

where I denotes the amplitude current
excitation coefficient, / (x) is the modified

Bessel function of the first kind of order zero

which is related to the ordinary Bessel function

of the first kind of order zero (J,(x)) as
Ifx) = J(jx), (8)

and & is the normalized distance along the

overall source which is defined as

E= ——, 9)

where z' is the dimension along the array, with
the origin at the array’s midpoint, and [ is the
array’s total length. The constrained value of

& is between -/ and .

The complete expression of the array
factor can be determined by substituting (7) into
(1a) or (1b) according to the number of the
elements. Unfortunately, from the array
pattern, it is found that for a certain specified
side lobe level, the error of that side lobe level
occurs. The array pattern always keep the side
lobe level less than the specified value by 2.00
dB By this way, the authors propose a new
expression for the weighting parameter term
calculation to achieve the array pattern with
the specified side lobe level. This parameter
is determined by using the least square
polynomial regression of the third order curve
fitting from the data after the array pattern was
estimated for that specified side lobe level.
The relation between the weighting parameter
and the side lobe level after calculation as

discribed can be written as

B = 0.0000769287R’ - 0.00575009R’
+ 0.1834R -1.33104 (10)
where B is the weighting parameter to be

determined, R is the specified side lobe



level (dB) in the design and the accuracy of
the calculation is quite sensitive to the value
of the constant coefficient of the polynomial,
s0 it should neither be rounded nor truncated.
The amplitude current excitation coefficients

can be calculated from this new expression.

4. DEMONSTRATION OF THE CONVEN-
TIONAL AND THE MODIFIED
ONE-PARAMETER TAYLOR
METHODS

The pattern characteristics of the
conventional and the modified one-parameter
Taylor methods are demonstrated to compare
the side lobe level. The side lobe level of the
conventional one-parameter Taylor method
is obtained by substituting R in (5) or (6)
and then solved for the B parameter. When
the current distribution is substituted in (la)
or (Ib), the array factor can be plotted in fig.1.
Alternatively, for the case of the modified
one-parameter Taylor method, (10) is used
instead of (5) or (6) and the array factor is
also illustrated in fig. 1. From this graph, it is
obvious that the modified one-parameter
Taylor method is realized to achieve the side
lobe level at 20.00 dB whereas the conventional
one-parameter Taylor method possesses 22.00
dB side lobe level. Fig. 2 shows the radiation
pattern of the fixed length discrete array at
the spacing 0.54, 0.4A4, 0.3A and continuous
array at 20.00 dB side lobe level. Fig. 3 shows
the normalized amplitude current excitation
coefficient of the one-parameter Taylor

method.

5. DISCUSSION ON THE DISCRETE
AND CONTINUOUS SOURCES

In this section, the guidelines to apply
to the continuous and discrete sources models
will be discussed. Normally, the study of the
source distribution would be started with the
discrete source. The isotropic radiator is used
as the array elements to simplify the calculation.
For the non-isotropic antenna, that individual
pattern would be multiplied by the array factor
by means of the multiplication of the radiation
pattern. When the number of the element
increases as the large array, the tedious
calculation which is a significant problem
would occur. To avoid this problem, when the
spacing is very close compared with the array
dimension, the discrete source will be
approximated as the continuous source. The
summation becomes the integration which
implies that the array factor becomes the
space factor. The directivity of the continuous
source and various discrete sources at
different spacings for the fixed length (4.51)
are illustrated in fig.4. The plot of the
discrete source was started with the 0.51
spacing and followed by 0.45A4, 0.4,A 0.35A,
0.3A spacings and the continuous source,
respectively. From this graph, it is found that
the characteristics such as directivity and
beamwidth of the discrete source, with close
spacing approaches the continuous source.
It is noticed that for the spacing less than
1715 of the dimension length, the discrete

source can be approximated as the continuous



source accurately. Directivity in the case of
large spacing discrete array is higher than the
close spacing discrete and continuous sources

because of their narrower beamwidth property.

6. CONCLUSION

One-parameter Taylor method is
modified for applying to the discrete source
application with the desired side lobe level.
From the characteristics comparison between
the conventional one-parameter Taylor method
for the continuous source and the modified
one-parameter Taylor method for the discrete
source applications, it is obvious that the
discrete source could be approximated as the
continuous source when the spacing of each
elements less than 1//5 of the dimension length.
The approximation should be used when the
array dimension is large with close spacing

between each elements to keep away from

tedious calculation problem.
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Fig. 3 Normalized amplitude current excitation coefficient of the one-parameter Taylor
method
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