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ABSTRACT

A relatively simple, yet efficient and accurate finite difference method is developed
for the solution of the unsteady boundary layer equations, namely, zero and one-equation
models. The formulation of the problems involves the governing horizontal momentum,
turbulent kinetic energy equations and the closure assumptions which using an eddy
viscosity formulation to model the Reynolds stress terms. The results are then compared
with the exact analytical solutions and experimental data.
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Fig. 11 Energy profiles for co-directional flow (1:0°,2:45°,3:90°,4:135°,5:180°,6:225°,7:270°,8:315°)



