

TRANSPERSION COOLING SYSTEM IN NI-CR OPEN-CELLED FOAM HAVING PPI OF 8.5

The Engineering Institute of Thailand under H.M. The King's Patronage

ระบบระบายความร้อนแบบทรายสู่ไประชันในวัสดุพูนฟองเซลล์เปิดชนิด Ni-Cr ที่มีค่า PPI เท่ากับ 8.5
TRANSPERSION COOLING SYSTEM IN Ni-Cr OPEN-CELLED FOAM HAVING PPI OF 8.5

รติภัทร แสงโชคิ^{1*} บันทิต กฤตาคม² มงคล คงพันธ์¹ พิพัฒน์ ออมตจaya² และคมเพ็ชร อินลา¹

¹วิทยาลัยเทคโนโลยีพนมวันทันครราชสีมา คณะวิศวกรรมศาสตร์ สาขาวิศวกรรมยานยนต์

²มหาวิทยาลัยเทคโนโลยีราชมงคลล้านนา คณะวิศวกรรมศาสตร์และสถาปัตยกรรมศาสตร์
สาขาวิศวกรรมเครื่องกล ห้องปฏิบัติการวิจัยการพัฒนาในเทคโนโลยีของวัสดุพูนฟอง

บทคัดย่อ

ระบบระบายความร้อนชนิดทรายสู่ไประชันในฟองเซลล์เปิดชนิดนี้มีตีอุกต์ดำเนินการพัชต์ด้วยการทดลองและการวิเคราะห์เชิงตัวเลข เพื่อศึกษาหาคุณลักษณะการถ่ายเทความร้อนร่วมระหว่างการพาและ การแพร่รังสีวัสดุพูนฟองที่เลือกใช้ในการทดลอง คือ นิกเกิล-โครม (Nickel-Chrome) ที่มีค่าความพูนและจำนวนรูต่อหนึ่งหน่วยนิ้ว (PPI) เท่ากับ 0.92 และ 8.5 ตามลำดับ ฟลักซ์การแพร่รังสีความร้อน ($q_{Rx,f}$) ที่ແຜไปยังผิวด้านบนของวัสดุพูนฟองอยู่ในช่วง 0.97 ถึง 16.59 kW/m² และสำหรับอากาศป้อนมาจากด้านล่าง มีค่าความเร็ว (u_f) ในช่วง 0.364 ถึง 1.274 m/s ซึ่งจัดให้อยู่ในรูปด้วยเรขาโนล็อก (Re) ในการแสดงผลการศึกษาจะอิบายด้วย 2 ประสิทธิภาพ นั้นคือ ประสิทธิภาพเชิงอุณหภูมิ (η_t) และการเปลี่ยนพลังงาน (η_c) จากการศึกษาพบว่าในช่วงแรก η_t เพิ่มขึ้นอย่างรวดเร็วเมื่อความเร็วของอากาศ (Re) ที่จ่ายให้กับระบบเพิ่มขึ้น หลังจากนั้นจะถูกลดลงค่าคงที่เมื่อค่า Re มากกว่า 30 สำหรับ η_c จะมีค่าลดลงเล็กน้อยตามการเพิ่มขึ้นของ $q_{Rx,f}$ และ u_f (Re) ที่ป้อนให้กับระบบ ผลการเปรียบเทียบระหว่างการคำนวณจากแบบจำลองทางคณิตศาสตร์กับการทดลองจะสอดคล้องกันเป็นอย่างดี

คำสำคัญ: ระบบระบายความร้อนแบบทรายสู่ไประชัน, วัสดุพูนชนิดเซลล์ลูาร์เปิด, ฟลักซ์การแพร่รังสีความร้อน

ABSTRACT

One-dimensional transpiration cooling system in open-celled foam has been conducted experimentally and numerically to investigate the heat transfer characteristics of combined convection and radiation. The Nickel-Chrome (Ni-Cr) open-cell foam having porosity of 0.92 and pores per inch (PPI) of 8.5 was employed. The upper surface of porous plate was heated by the heat flux of incoming radiation ($q_{Rx,f}$) varying from 0.97 – 16.59 kW/m² whereas air injection velocity (u_f) fed into the lower surface was varied from 0.364 – 1.274 m/s, and was then rearranged as Reynolds number (Re). For the report of the results in the present study, two efficiencies including of temperature (η_t) and conversion efficiency (η_c) were presented. The η_t , increased rapidly with the air injection velocity (Re). It was then saturated and had a constant value at Re higher than 30. For the result of η_c , it was decreased slightly with increasing of $q_{Rx,f}$ and u_f (Re). The numerical predictions also agreed with experimental data very well.

KEYWORDS: Transpiration cooling system, Open-cellular porous materials, Radiative heat flux.

Ratipat Sangchot^{1*} Bundit Krittacom² Mongkol Kathapant¹ Pipatana Amatachaya² and Kompet Inla¹

¹Phanomwa College of Technology Nakhonratchasima, Faculty of Engineering, Automotive Engineering

²Rajamangala University of Technology Isan Nakhonratchasima, Faculty of Engineering, Mechanical Engineering, Development in Technology of Porous Materials Research Laboratory (DITO-Lab)

E-mail: sangchot@gmail.com^{1*} and bundit.kr@rmuti.ac.th²

1. บทนำ

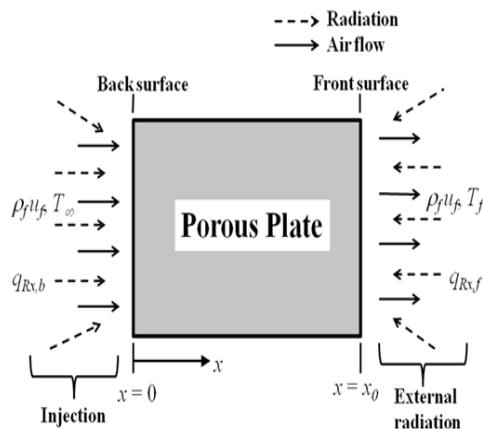
ระบบขนส่งหรืองานบางงานในภาคอุตสาหกรรม จะมีโครงสร้างของเครื่องจักรหรืออุปกรณ์ที่ต้องทำงานในสภาวะที่มีอุณหภูมิสูง ๆ เช่น เครื่องจักรที่อยู่ใกล้เตาหอโลหะร้อน ท่อส่งอากาศจากเครื่องดักอากาศไปยังอุปกรณ์ใช้ลมที่อยู่ใกล้แหล่งความร้อนสูง ใบพัดของแก๊สเทอร์ไบนีปีกเครื่องบินบริเวณใกล้เตียงกับเครื่องยนต์ การเผาไหม้อุ่นอย่างรุนแรงของเชื้อเพลิงไฮโดรคาร์บอนที่หัวฉีดเชื้อเพลิงในยานอวกาศ [1-5] เป็นต้น โครงสร้างและอุปกรณ์เหล่านี้จำเป็นต้องมีกำบังความร้อน (Thermal shield) หรือระบบระบายความร้อน (Cooling system) ที่เพียงพอและเหมาะสม เพื่อป้องกันความเสียหายเนื่องจากอุณหภูมิที่สูง โดยทั่วไปการระบายความร้อนจากแหล่งความร้อนสูง จะนิยมใช้อากาศหรือของเหลวเป็นสารตัวกลางในการหล่อเย็น [1] ระบบระบายความร้อนแบบทรายสู่อากาศในวัสดุพูรุน ทำให้สามารถระบายความร้อนได้โดยตรง ขณะเดียวกันเครื่องจักรที่เป็นวัสดุพูรุนก็ยังทำหน้าที่เป็นเสมือนกำบังความร้อนไปในตัว

ระบบการระบายความร้อนแบบทรายสู่อากาศ เป็นเทคนิคที่รู้จักกันแพร่หลายและมีการศึกษาอย่างต่อเนื่อง Duwez และ Wheeler [2] เสนอวิธีการส่งเสริมการระบายเรหารตัวกลาง ในกรณีที่อยู่ในสภาวะที่มีการถ่ายเทความร้อนสูง ดังพับเห็นในเครื่องยนต์เจ็ท (Jet engine) เป็นการใช้วัสดุพูรุนร่วมกับของเหลวที่ถูกบังคับให้ไหลผ่านวัสดุพูรุนในทิศทางตรงข้ามกับการไหลของความร้อน โดยเรียกวิธีระบายความร้อนดังกล่าวว่า Sweat cooling (หรือ Transpiration cooling) Grootenhuis [3] ศึกษาการระบายความร้อนจากผิวที่มีอุณหภูมิสูง เช่น ใบกัน汗และผนังของกังหันไอน้ำหรือฉนวนหุ้มห้องเผาไหม้ โดยการใช้อากาศความดันสูงเป่าผ่านวัสดุพูรุนที่ดูดซับความร้อนไว้ และทำให้เกิดชั้นของฉนวนกันความร้อนให้ผิวที่ปะทะความร้อนโดยตรง เป็นเสมือนกำบังความร้อน Kubota [4] ได้วิเคราะห์ทางคณิตศาสตร์ของระบบการระบายความร้อนแบบทรายสู่อากาศในวัสดุพูรุนในทิศทางตรงข้ามกับการไหลของความร้อน โดยเรียกวิธีระบายความร้อนดังกล่าวว่า Sweating cooling ซึ่งเป็นการวิเคราะห์มิติเดียวภายใต้สภาวะไม่คงตัว (Unsteady state) Maruyama และคณะ [5] ทำการวิเคราะห์ทางทฤษฎีเกี่ยวกับระบบฉนวนความร้อนที่มีลักษณะเป็นเสมือนกำบังความร้อน ในการศึกษาของพากษาพบว่าเมื่อมีการให้ความร้อน ความลึกที่ความร้อนสามารถเดล่อนที่ไปในวัสดุได้นั้นจะไม่เปลี่ยนแปลงจากการพ่นก๊าซเข้าไป และมีค่ามากกว่าในกรณีที่มีการถ่ายเทความร้อนเป็นแบบการนำความร้อนเพียงอย่างเดียว Wang และคณะ [6] ทดลองใช้เทคนิคการสร้างภาพโดยอินฟราเรด (Infrared thermal imaging technique; IRTIT) ในการบอกร่องรอยการระบายความร้อนแบบทรายสู่อากาศในวัสดุพูรุน Kamiuto และคณะ [7] ได้ศึกษาทั้งด้านทฤษฎีและการทดลองของการถ่ายเทความร้อนร่วมระหว่างการพาและการแผรังสีความร้อนของระบบการระบายความร้อนแบบทรายสู่อากาศ โดยการใช้วัสดุพูรุนชนิดโพมเซลล์เปิดหรือเซลลูลาร์เปิด (Open-cell foam or open-cellular materials) จากการศึกษาพบว่า ประสิทธิภาพอุณหภูมิจะเพิ่มขึ้นอย่างรวดเร็วเมื่อความเร็วของอากาศเพิ่มขึ้นจนถึงอัมตัว ส่วนค่าประสิทธิภาพอุณหภูมิจะมีค่าคงที่ และจะมีค่าสูงกว่า 90% วัสดุพูรุนโพมเซลล์เปิดสามารถใช้เป็นกำบังความร้อนได้ดี ถ้าความหนาเชิงแสง (Optical thickness) ของวัสดุพูรุน มีค่ามากกว่า 5 แต่พากษาอินฟราเรด ให้ความหนาเชิงแสงเป็นอย่างดี

เมื่อเร็ว ๆ นี้คณะผู้วิจัย [8] ได้เลือกใช้วัสดุพูรุนเซลลูลาร์เปิดชนิด Ni-Cr ที่มีค่าความพูรุนและ PPI เท่ากับ 0.93 และ 21.5 ตามลำดับ มาศึกษาทั้งทางด้านทฤษฎีและการทดลองระบบระบายความร้อนแบบทรายสู่อากาศ ผลการศึกษาของพากษา พบว่า ประสิทธิภาพทั้งสอง คือ เชิงอุณหภูมิและการเปลี่ยนแปลงพังงานเพิ่มขึ้นตามค่า Re และอุ่นเข้าสู่ค่าคงที่เมื่อ $Re > 10$ และยังนำเสนอเกี่ยวกับโครงสร้างทางอุณหภูมิภายในวัสดุพูรุนทั้งสถานะแก๊สและของแข็ง นอกจากนี้ผลการเปรียบเทียบระหว่างค่าคงที่ ค่าความหนาเชิงแสง และค่าความพูรุน ของวัสดุพูรุนโพมเซลล์เปิด พบว่ามีความสอดคล้องกันเป็นอย่างดี

จากการศึกษาที่กล่าวมา พบว่ามีทั้งด้านทฤษฎีและการทดลองของระบบระบายความร้อนแบบทรายสู่อากาศ แต่การศึกษาส่วนใหญ่สนใจเพียงการถ่ายเทความร้อนโดยการพาความร้อน (Convection heat transfer) เป็นหลัก ส่วนอิทธิพลการแผรังสีความร้อน ศึกษาเพียงเล็กน้อย ทำให้สมรรถนะที่ได้ยังมีค่าต่ำและไม่มีความสอดคล้องกับสภาพการใช้งานจริงนอกจากนี้ แม้ว่าจะมีงานวิจัยของคณะผู้วิจัยนบทความ [8] ได้เคยนำเสนอมาบางแล้วเกี่ยวกับการถ่ายเทความร้อนร่วมระหว่างการพาและการแผรังสีความร้อน แต่ก็เป็นเพียงวัสดุพูรุนที่มีค่าความพูรุนและ PPI เดียว ดังนั้นบทความวิจัยนี้จึงได้นำเสนอผลการศึกษาคุณลักษณะการถ่ายเทความร้อน โดยการพาร์ว์มกับการแผรังสีความร้อนในระบบการระบายความร้อนที่ใช้วัสดุพูรุนแบบเซลลูลาร์เปิด ชนิดนิกเกิล-โครม (Nickel-Chrome) เพิ่มเติม โดยศึกษาวัสดุพูรุนที่มีค่าความพูรุนและ PPI เท่ากับ 0.92 และ 8.5 ตามลำดับ เพื่อให้ได้ข้อมูลใน

การเลือกวัสดุพรุนชนิดนี้มากยิ่งขึ้น ในการใช้เป็นอุปกรณ์ระบายความร้อนของทรายสีไปเรชั่นหรือกำบังความร้อนต่อไป


2. รายการสัญลักษณ์

c_f	ความจุความร้อนจำเพาะของอากาศ (J/kg K)	สัญลักษณ์กรีก
G	รังสีที่แผ่ในวัสดุพรุน (W/m ²)	β สัมประสิทธิ์การสึนสูญ (m ⁻¹)
h_v	สัมประสิทธิ์การถ่ายเทความร้อนเชิงปริมาตร (W/m ³ K)	ϕ ค่าความพรุน
k_f	ค่าคงที่การนำความร้อนสถานะแก๊ส (W/m ² K)	η_T ประสิทธิภาพเชิงอุณหภูมิ
k_s	ค่าคงที่การนำความร้อนสถานะของแข็ง (W/m ² K)	η_C ประสิทธิภาพการเปลี่ยนแปลงพลังงาน
PPI	จำนวนรูพรุนต่อหนึ่งหน่วยนิ้ว (in ⁻¹)	ρ_f ความหนาแน่นของอากาศ (kg/m ³)
$q_{Rx,f}$	ค่าพลังการแผ่รังสีความร้อน (W/m ²)	ρ_s ความหนาแน่นของแข็ง (kg/m ³)
Re	เลอเรย์โนลต์	σ ค่าคงที่ของสเตฟาน-โอลท์มานน์ (W/m ² K ⁴)
T_f	อุณหภูมิของอากาศ (K)	τ ความหนาเชิงแสง
T_o	อุณหภูมิของอากาศที่ทางเข้า (K)	ω อัลเบโด (Albedo)
T_R	อุณหภูมิการแผ่รังสี (K)	
T_s	อุณหภูมิของวัสดุพรุน (K)	
T_{SB}	อุณหภูมิผิวด้านหลังของวัสดุพรุน (K)	
T_{SF}	อุณหภูมิผิวด้านหน้าของวัสดุพรุน (K)	
u_f	ความเร็วของอากาศ (m/s)	
x_0	ความหนาของชั้นงาน (m)	

3. การวิเคราะห์ทางคณิตศาสตร์

3.1 แบบจำลองทางกายภาพและสมการควบคุม

รูปที่ 1 จะแสดงรูปแบบกายภาพของแบบจำลองทางคณิตศาสตร์ของระบบระบายความร้อนแบบทรายสีไปเรชั่นและในการคำนวณจำเป็นต้องมีสมมุติฐานที่สำคัญดังต่อไปนี้ 1) วัสดุพรุนเป็นแบบเซลลูลาร์เปิดซึ่งพิจารณาการถ่ายเทความร้อนในหนึ่งมิติเท่านั้น 2) ที่ผิวน้ำและผิวหลังของวัสดุพรุนได้รับการแผ่รังสีจากภายนอกแบบบัดดูดำ (Black body) ที่มีอุณหภูมิการแผ่รังสีเป็น T_R และ T_o ตามลำดับ 3) อากาศอุณหภูมิต่ำหรืออากาศเย็น (T_o) ให้เข้ากับวัสดุพรุนที่ผิวหลังด้วยความเร็ว u_f และไม่คิดการแผ่รังสีของอากาศ 4) วัสดุพรุนสามารถดูดซับ, กระจาย และละท้อนรังสีความร้อนได้ แต่คุณสมบัติการแผ่รังสีไม่ขึ้นอยู่กับความยาวคลื่น และอุณหภูมิ 5) คุณสมบัติทางกายภาพของระบบไม่ขึ้นอยู่กับอุณหภูมิ 6) กระบวนการคำนวณของสถานะของแข็ง (วัสดุพรุน) และของสถานะแก๊ส (อากาศ) เป็นสภาวะที่ต่อเนื่อง และ 7) การถ่ายเทความร้อนในวัสดุพรุนอยู่ในสภาวะคงตัว (Steady state)

รูปที่ 1 จากสมมติฐานทั้ง 7 ข้อ สมการควบคุมหลัก (Governing equations) ประกอบไปด้วย

จากสมมติฐานทั้ง 7 ข้อ สมการควบคุมหลัก (Governing equations) ประกอบไปด้วย

$$\rho_f u_f c_f \frac{\partial T_f}{\partial x} + \phi \frac{\partial}{\partial x} \left(k_f \frac{\partial T_f}{\partial x} \right) + h_v (T_f - T_s) = 0 \quad (1)$$

$$\frac{1}{3} (1 - \phi) \frac{\partial}{\partial x} \left(k_f \frac{\partial T_f}{\partial x} \right) + h_v (T_f - T_s) - \frac{dq_{Rx,f}}{dx} = 0 \quad (2)$$

$$\frac{\partial q_R}{\partial x} = 4\beta(1 - \omega)(\sigma T_s^4 - \frac{G}{4}) \quad (3)$$

$$\frac{\partial(\rho_f u_f)}{\partial x} = 0 \quad (4)$$

เมื่อสมการที่ (1), (2), (3) และ (4) คือสมการอนุรักษ์พลังงานของสถานะแก๊สและของแข็ง (Gas and solid phase energy equation) สมการการแผ่รังสีความร้อน (Radiative heat transfer equation, RTE) และสมการความต่อเนื่อง (Continuity equation) ตามลำดับ

เพื่อให้สามารถคำนวณสมการอนุรักษ์พลังงานของสถานะของแข็ง (สมการที่ (2)) ได้ สมการการแผ่รังสีความร้อน (สมการที่ (3)) จำเป็นต้องทราบค่าต่อบน ดังนั้นในการหาผลลัพธ์ของสมการที่ (3) วิธีโดยประมาณ P_1 (The P_1 approximation) จึงได้ถูกนำมาแก้ปัญหานี้ สมการโดยประมาณแบบ P_1 สามารถแสดงได้ดังนี้

$$\frac{dq_R}{dx} + (1 - \omega)\beta(G - 4\sigma T_s^4) = 0 \quad (5)$$

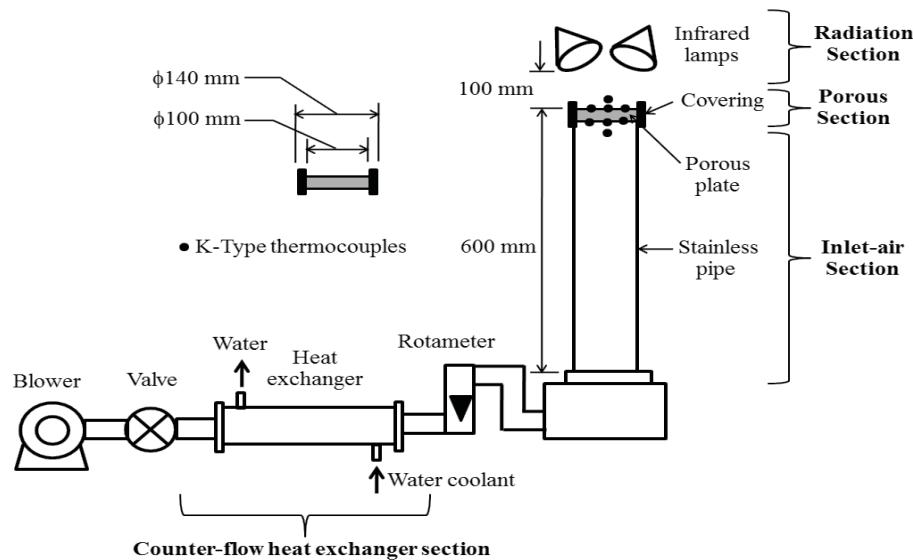
$$\frac{dG}{dx} + 3(1 - \omega\tilde{g})\beta q_{Rx,f} = 0 \quad (6)$$

จากสมการควบคุมทั้งหมดสภาวะขอบเขต (Boundary condition) ของการคำนวณกำหนดโดย

$$\left. \begin{aligned} x = 0; T_f = T_\infty, \frac{\partial T_s}{\partial x} = 0, \quad G - 2q_{Rx,f} = 4\sigma T_\infty^4 \\ x = x_0; \frac{\partial T_f}{\partial x} = \frac{\partial T_s}{\partial x} = 0, \quad G + 2q_{Rx,f} = 4\sigma T_R^4 \end{aligned} \right\} \quad (7)$$

3.2 ประสิทธิภาพเชิงอุณหภูมิและการเปลี่ยนแปลงพลังงาน

เพื่อแสดงถึงสมรรถนะของระบบระบายความร้อนแบบทranสู่外界 ในงานวิจัยนี้จึงนำเสนอในรูปของประสิทธิภาพเชิงอุณหภูมิ (Temperature efficiency, η_T) และประสิทธิภาพการเปลี่ยนแปลงพลังงาน (Conversion efficiency, η_c) ซึ่งประสิทธิภาพเชิงอุณหภูมิ มีความหมายทางกายภาพ คือ ค่าการเปรียบเทียบความใกล้เคียงกันระหว่างอุณหภูมิของวัสดุพูนกับอุณหภูมิของอากาศขาเข้า สำหรับความหมายทางกายภาพ คือ ความสามารถของวัสดุพูนในการส่งถ่ายพลังงานด้วยการพาความร้อนหลังจากที่วัสดุพูนได้ดูดซับความร้อนจากการสีที่แผ่เข้ามา สามารถหาได้ดังต่อไปนี้


$$\eta_T = \left[T_R - \frac{T_s(0) + T_s(x_0)}{2} \right] / (T_R - T_0) \quad (8)$$

$$\eta_c = \rho_f c_f u_f [T_f(x_0) - T_f(0)] / q_{Rx,f} \quad (9)$$

4. อุปกรณ์และวิธีการทดลอง

4.1 อุปกรณ์การทดลอง

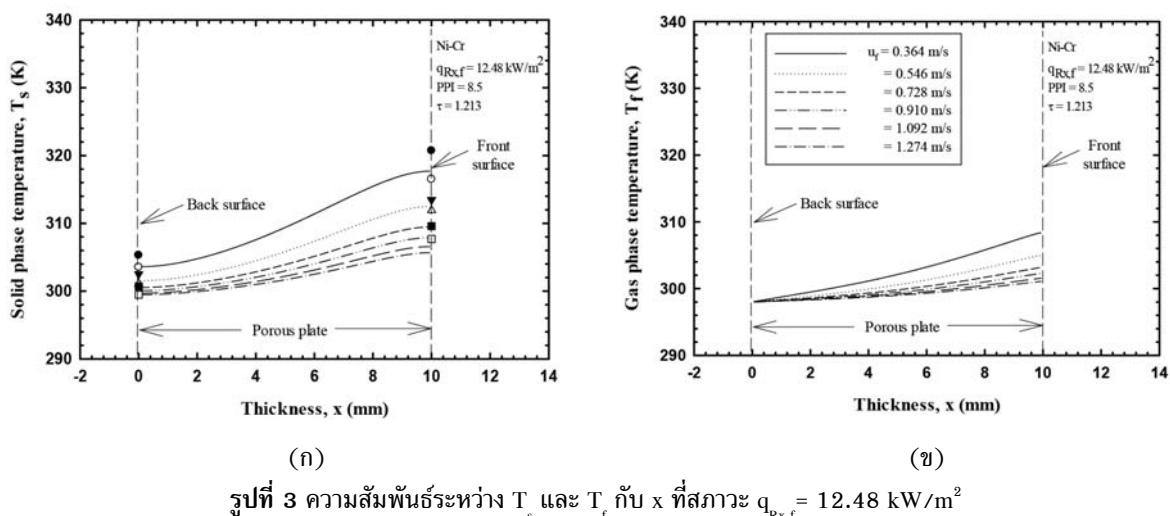
แผนผังอุปกรณ์การทดลองได้แสดงไว้ในรูปที่ 2 ประกอบด้วย 3 ส่วนที่สำคัญ ได้แก่ ส่วนที่หนึ่งเป็นส่วนของอากาศที่ไหลเข้าระบบ (Inlet air section) ส่วนที่สองเป็นวัสดุพูน (Porous section) ส่วนที่สามเป็นส่วนแผ่วรังสีความร้อน (Radiation section) โดยส่วนอากาศไหลเข้าหรือส่วนที่หนึ่งจะเป็นท่อทำมาจากสแตนเลสยาว 600 mm หนา 2 mm ขนาดเส้นผ่านศูนย์กลางภายใน 108 mm จะมีวัสดุทดลอง วางอยู่ด้านบนของท่อ ซึ่งเป็นวัสดุพูนแบบเซลลูลาร์เปิดชนิดนิกเกิล-โครม (Ni-Cr) ขนาดเส้นผ่านศูนย์กลาง 120 mm หนา 10.3 mm (ส่วนที่สอง) และด้านบนสุดจะติดตั้งหลอดไฟอินฟราเรดขนาด 250 W จำนวน 4 หลอด (ส่วนที่สาม) เพื่อเป็นแหล่งให้ความร้อนเพื่อการแผ่วรังสีเข้ามายังวัสดุทดลอง สำหรับคุณสมบัติทางกายภาพของวัสดุพูนที่นำมาทดลองในงานวิจัยนี้ จะแสดงไว้ในตารางที่ 1

รูปที่ 2 แผนผังอุปกรณ์การทดลองของระบบระบายความร้อนแบบทรายส์ไปเรชั่น

ตารางที่ 1 คุณสมบัติทางกายภาพของวัสดุพรุนแบบโพฟเมเซลล์เปิดชนิดนิกเกิล-โครม (Nickel -Chrome)

สัมประสิทธิ์	สัญลักษณ์	ค่ากายภาพ
ค่าความพรุน	ϕ	0.92
จำนวนช่องต่อหนึ่งหน่วยนิ้ว	PPI	8.5
ความหนา	x	0.0103 m
Extinction coefficient	β	117.8 m^{-1}
ความหนาเชิงแสง	τ	1.213

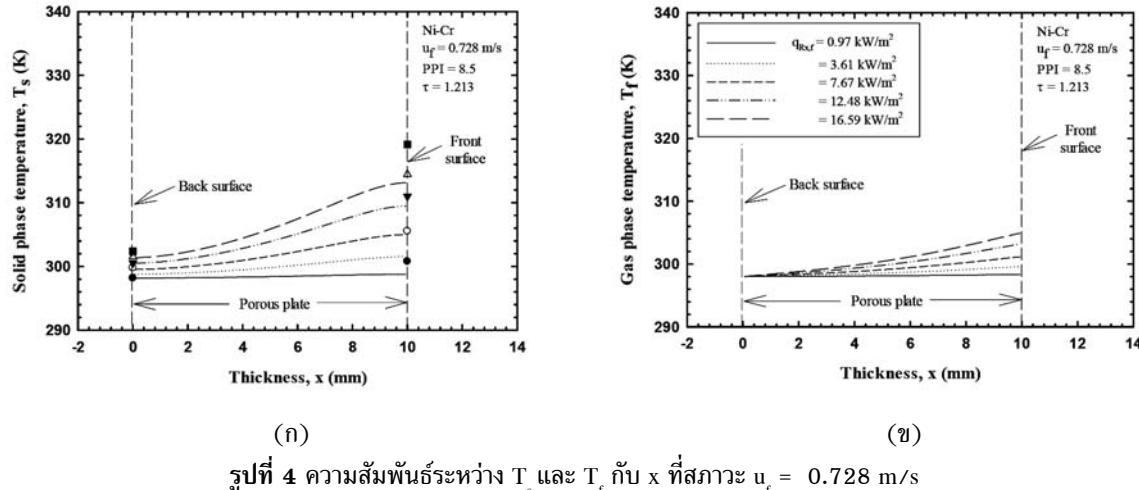
4.2 วิธีการทดลอง


จากส่วนประกอบทั้งหมดของระบบระบายความร้อนแบบนี้มีหลักการทำงานคือ อาคารเย็นถูกดูดมาจากพัดลมดูด(Blower) ด้านล่างผ่านอุปกรณ์วัดอัตราการไหลของอากาศ (Flow meter) และส่งอากาศเย็นนี้ขึ้นไปในแนวตั้งตามท่อเข้าสู่วัสดุทดลองหรือวัสดุพรุนที่ได้รับการแผ่รังสีจากหลอดไฟอินฟราเรดภายนอก ซึ่งพัฒนาการแผ่รังสีความร้อนถูกตัววัดด้วยเครื่องวัดพลังซึ่งการแผ่รังสีความร้อน (Heat flux sensor) ยี่ห้อ Hukeseflux Thermal Sensors รุ่น HFP01-05 เมื่อระบบอยู่ในสภาวะคงตัว (Steady state) ทำการวัดอุณหภูมิของอาคารที่ทางเข้าและทางออกจากวัสดุพรุนรวมทั้งอุณหภูมิของวัสดุพรุนที่ผิวด้านหน้าและด้านหลัง โดยใช้เทอร์โมคัปเปิลชนิด K (Type K thermocouples) ค่าอุณหภูมิที่ตรวจวัดได้จะนำไปเคราะห์และหาประสิทธิภาพเพื่อเป็นแนวทางในการเลือกใช้เป็นวัสดุระบายความร้อนหรือกำบังความร้อนต่อไป

5. ผลการวิเคราะห์ข้อมูล

5.1 โครงสร้างทางอุณหภูมิกรadiอิพลของความเร็วอากาศในหลอดเข้าสู่ระบบ (u_f)

รูปที่ 3 แสดงอิทธิพลของความเร็วอากาศในหลอดเข้าสู่ระบบ (Air flow velocity, u_f) แต่จะแปลงและนำเสนอด้วยเลข เรย์โนลด์ (Reynold number, Re) (แสดงรายละเอียดการคำนวณค่า Re ใน Kamiuto และคณะ [7]) ต่อโครงสร้างทางความร้อน ซึ่งแสดง


อยู่ในรูปการกระจายตัวของอุณหภูมิตามความหนา (Thickness, x) ของแผ่นวัสดุพรุนในที่นี้จะเรียกว่าโครงสร้างทางอุณหภูมิ (Temperature profile) โดยรูปที่ 3 (ก) เป็นโครงสร้างทางอุณหภูมิของสถานะของแข็ง (Solid phase temperature profile, T_s) และ รูปที่ 3 (ข) เป็นโครงสร้างทางอุณหภูมิของสถานะแก๊ส (Gas phase temperature profile, T_f) ในการคำนวณดำเนินการที่สภาวะ $q_{Rx,f} = 12.48 \text{ kW/m}^2$ และเป็นของวัสดุพรุนนิกโครม (Nickel-Chrome) ตำแหน่ง $x = 0 \text{ mm}$ และ 10.3 mm คือด้านผิวหลัง (Back surface) และด้านผิวหน้า (Front surface) ของแผ่นวัสดุตามลำดับ จากรูปที่ 3 (ก) พบว่า T_s จะเพิ่มขึ้นตามความหนาของ แผ่นวัสดุพรุนเนื่องจากที่ตำแหน่งผิวหน้า ($x = 10.3 \text{ mm}$) เป็นตำแหน่งที่ได้รับการแพร่รังสี มาจากแหล่งกำเนิดความร้อนได้ $(q_{Rx,f})$ ซึ่งก็คือหลอดไฟอินฟารेड (Infrared lamp) หากพิจารณาที่ตำแหน่งความหนาคงที่ได้ x พบว่า T_s จะลดลงเมื่อ Re เพิ่มขึ้น เนื่องจากอิทธิพลของการพาความร้อน (Heat convection) ที่รับความร้อนจากแผ่นวัสดุพรุน ขณะเดียวกันหากพิจารณา โครงสร้างอุณหภูมิของสถานะแก๊ส (T_f) และในรูปที่ 3 (ข) พบว่ามีแนวโน้มเพิ่มขึ้นเดียวกับกรณี T_s นอกเหนือนี้เมื่อทำการเปรียบเทียบ ค่า T_f กับ T_s จะสังเกตเห็นได้ชัดว่า T_f มีค่าสูงกว่า T_s ซึ่งเป็นพฤติกรรมตามธรรมชาติของการถ่ายเทความร้อนภายในวัสดุพรุน อธิบายได้ว่าเมื่อวัสดุพรุนดูดซับพลังงานจากหลอดไฟอินฟารेडไว้แล้ว วัสดุพรุนจะทำการถ่ายโอนพลังงานให้กับอากาศเย็นที่ไหล ผ่านเกิดการระบายความร้อนขึ้นในแผ่นวัสดุพรุน สรุปกลไกการถ่ายเทความร้อนที่เกิดขึ้นได้ คือ จะเกิดการแพร่รังสีความร้อน (Heat radiation) ของวัสดุพรุนไปยังอากาศเย็นด้วยวิธีการพาความร้อน ขึ้นในแผ่นวัสดุพรุน [9] สรุปกลไกการถ่ายเทความร้อนที่ เกิดขึ้นได้ คือ จะเกิดการแพร่รังสีความร้อน (Heat radiation) ของวัสดุพรุนไปยังอากาศเย็นด้วยวิธีการพาความร้อน

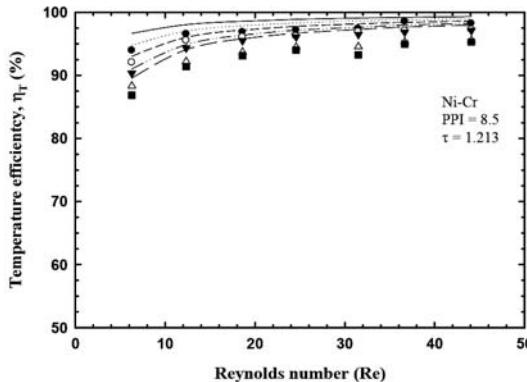
รูปที่ 3 ความสัมพันธ์ระหว่าง T_s และ T_f กับ x ที่สภาวะ $q_{Rx,f} = 12.48 \text{ kW/m}^2$

5.2 โครงสร้างทางอุณหภูมิกรณีอิทธิพลของค่าพลักซ์ความร้อน

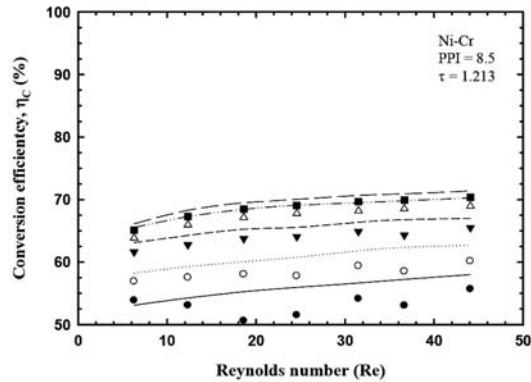
รูปที่ 4 แสดงอิทธิพลของค่าพลักซ์ความร้อน (Heat flux, $q_{Rx,f}$) ที่แพร่มากังวัสดุพรุนที่มีผลต่อโครงสร้างทางอุณหภูมิ ซึ่งรูปที่ 4 (ก) เป็นของสถานะของแข็ง (T_s) และรูปที่ 4 (ข) เป็นของสถานะแก๊ส (T_f) โดยทำการศึกษาที่สภาวะ $u_f = 0.728 \text{ m/s}$ จากรูปที่ 4 (ก) พบว่า T_s จะเพิ่มขึ้นตามความหนาของแผ่นวัสดุพรุน (x) เนื่องจากที่ตำแหน่ง $x = 10.3 \text{ mm}$ เป็นตำแหน่งด้านผิวหน้าของวัสดุพรุนที่ได้รับพลังงานจากแหล่งกำเนิด ความร้อนได้ $(q_{Rx,f})$ ซึ่งก็คือหลอดไฟอินฟารेडและหากสังเกตที่ตำแหน่ง x คงที่ได้ x พบว่าเมื่อ $q_{Rx,f}$ เพิ่มขึ้น T_s จะมีแนวโน้มเพิ่มขึ้นอย่างเด่นชัดเพราจะได้รับความร้อนจากการแพร่รังสีมากขึ้น ขณะเดียวกันหากพิจารณาโครงสร้างทางอุณหภูมิของสถานะแก๊ส (T_f) ซึ่งแสดงในรูปที่ 4 (ข) พบว่า T_f มีแนวโน้มเพิ่มขึ้นเดียวกับกรณี T_s แต่มีค่าต่ำกว่า เพราะวัสดุพรุนเป็นตัวรับพลังงานจาก $q_{Rx,f}$ และค่าอย่างเท่าไยังอากาศ (T_f) ที่ไหลเข้าสู่ระบบเพื่อระบายความร้อน จึงเป็นเหตุให้ T_f ต่ำกว่า T_s

รูปที่ 4 ความสัมพันธ์ระหว่าง T_s และ T_f กับ x ที่ สภาวะ $u_f = 0.728 \text{ m/s}$

5.3 ประสิทธิภาพเชิงอุณหภูมิ


รูปที่ 5 แสดงอิทธิพลของความเร็วอากาศที่ไหลเข้าสู่ระบบ (Re) เพื่อใช้ระบบความร้อนที่มีผลต่อค่าประสิทธิภาพ เชิงอุณหภูมิ (Temperature efficiency, η_T) โดยทำการศึกษาที่กรณี Ni-Cr มีค่าความหนาเชิงแสง (Optical thickness, τ) เท่ากับ 1.213 พบ ว่าค่า η_T มีแนวโน้มเพิ่มขึ้นเมื่อ Re เพิ่มขึ้น และจะลู่เข้าสู่ค่าคงที่ซึ่งมีค่า η_T ประมาณ 97% โดยเฉพาะเมื่อ Re มากกว่า 30 จากผลที่ได้แสดงให้เห็นว่าอุณหภูมิเฉลี่ยตลอดแผ่นวัสดุพูรุ่นซึ่งทำหน้าที่เป็นกำบังความร้อน มีค่าใกล้เคียงกับอุณหภูมิของอากาศที่ไหลให้กับระบบเพื่อทำการระบายความร้อน หากพิจารณาที่ต่ำแห่ง Re คงที่ได้ ฯ จะพบว่า η_T ลดลงเล็กน้อยเมื่อปริมาณ $q_{Rx,f}$ เพิ่มขึ้น เนื่องจากอุณหภูมิเฉลี่ยตลอดแผ่นวัสดุพูรุ่นกับอุณหภูมิของอากาศไหลเข้าระบบมีความแตกต่างกันมากขึ้น

สำหรับการเปรียบเทียบผลการทดลองกับการคำนวณ โดยกำหนดให้กราฟเส้นเป็นผลที่ได้จากการคำนวณแบบจำลองทางคณิตศาสตร์ ส่วนรูปสัญลักษณ์จะเป็นผลที่ได้จากการทดลอง พบว่าแนวโน้มของการศึกษาทั้งสองแบบ สอดคล้องกันเป็นอย่างดี แต่ผลจากการคำนวณมีค่าสูงกว่าเล็กน้อยเนื่องจากในสมมติฐานของการคำนวณได้กำหนดให้คุณสมบัติทางกายภาพของวัสดุพูรุ่น และของแก๊สไม่ขึ้นอยู่กับอุณหภูมิซึ่งในความเป็นจริงคุณสมบัติเหล่านี้จะเปลี่ยนแปลงตามอุณหภูมิ


5.4 ประสิทธิภาพการเปลี่ยนแปลงพลังงาน

รูปที่ 6 แสดงอิทธิพลของความเร็วอากาศที่ไหลเข้าสู่ระบบ (Re) เพื่อใช้ระบบความร้อนที่มีผลต่อค่าประสิทธิภาพการเปลี่ยนแปลงพลังงาน (Conversion efficiency, η_C) ซึ่งหมายถึงความสามารถของวัสดุพูรุ่นในการส่งถ่ายพลังงานด้วยการพาความร้อน (Convective heat transfer) หลังจากที่วัสดุพูรุ่นได้ดูดซับความร้อนจากการแผรังสี (Radiation) เข้ามา โดยทำการคำนวณที่กรณี Ni-Cr มีค่า τ เท่ากับ 1.213 พบว่าเมื่อ Re จะเพิ่มขึ้น แต่ค่า η_C แทนไม่มีการเปลี่ยนแปลงจากผลที่ได้ จึงอาจกล่าวได้ว่าอากาศเย็นที่ป้อนเข้าวัสดุพูรุ่นเพื่อระบายความร้อนนั้นไม่มีผลต่อการดูดซับพลังงานจากวัสดุพูรุ่น แม้จะเพิ่มความเร็วอากาศ (Re) ไปมากกว่าที่เป็น ทางการศึกษาที่ต่ำแห่ง Re คงที่ได้ ฯ จะพบว่า η_C เพิ่มขึ้นตามปริมาณ q_R ที่เพิ่มขึ้น เนื่องจากวัสดุได้รับพลังงานมากขึ้นจึงมีการแผรังสี

การเปรียบเทียบผลการทดลองกับการคำนวณ โดยกำหนดให้กราฟเส้นเป็นผลที่ได้จากการคำนวณแบบจำลองทางคณิตศาสตร์ ส่วนรูปสัญลักษณ์จะเป็นผลที่ได้จากการทดลอง พบว่าแนวโน้มของการศึกษาทั้งสองแบบ สอดคล้องกันเป็นอย่างดี แต่ผลจากการคำนวณมีค่าต่ำกว่าเล็กน้อย ด้วยเหตุผลเดียวกันกับกรณี η_T (รูปที่ 5)

รูปที่ 5 ความสัมพันธ์ระหว่าง η_T กับ Re ของวัสดุพรุน

รูปที่ 6 ความสัมพันธ์ระหว่าง η_C กับ Re ของวัสดุพรุน

6. สรุปผลการวิจัย

จากการศึกษาระบบระบายความร้อนแบบทรายสู่ไประชัน โดยใช้วัสดุพรุนเซลล์ลาร์เปิดชนิด Ni-Cr ที่มีค่า PPI เท่ากับ 8.5 สรุปผลการศึกษาได้ดังต่อไปนี้

- 1) โครงสร้างทางอุณหภูมิของสถานะแก๊ส (T_f) และของแข็ง (T_s) จะเพิ่มขึ้นตามการแพร่รังสีภายนอก ($q_{Rx,f}$) และลดลงตามความเร็วอากาศที่ไหลเข้าสู่ระบบหรือเลขเรย์โนล์ด (Re)
- 2) โครงสร้างทางอุณหภูมิของ T_s จะสูงกว่า T_f เนื่องจากวัสดุพรุนหรือของแข็งเป็นตัวดูดซับรังสีความร้อน แล้วจึงถ่ายเทาไปยังสถานะแก๊สด้วยการพาความร้อน (Heat convection)
- 3) ประสิทธิภาพเชิงอุณหภูมิ (η_T) จะมีแนวโน้มเพิ่มขึ้นอย่างรวดเร็วในช่วง Re ต่ำๆ และจะถูกลดลงอย่างช้าๆ เมื่อ $Re > 30$ แต่ค่า η_T จะลดลงเล็กน้อย เมื่อ $q_{Rx,f}$ เพิ่มขึ้น
- 4) ประสิทธิภาพการเปลี่ยนแปลงพลังงาน (η_C) ไม่เปลี่ยนแปลงตามค่า Re แต่จะเพิ่มขึ้นอย่างเด่นชัดตามปริมาณ $q_{Rx,f}$
- 5) ผลการคำนวณจากแบบจำลองทางคณิตศาสตร์ที่คำนวณได้ มีค่าสูงกว่าผลที่ได้จากการทดลองเพียงเล็กน้อย แต่มีแนวโน้มใกล้เคียงกัน จึงกล่าวได้ว่าแบบจำลองนี้สามารถคำนวณ η_T และ η_C ได้อย่างถูกต้อง

กิตติกรรมประกาศ

ขอขอบพระคุณวิทยาลัยเทคโนโลยีพนมวันที่ได้ให้ทุนสนับสนุนในการจัดทำงานวิจัยครั้งนี้ และคณะผู้ช่วยนักศึกษา ขอขอบคุณ นายนิธิภัทร์ สำเร็จศิลป์ นายศักดิ์ดา ลิมาซัย นายสมภพ กิจญ์โยวงศ์ นายสิทธิอัพงศ์ สีลาดเลา นักศึกษาสาขาวิชา วิศวกรรมเครื่องกลซึ่งอยู่ภายใต้ห้องปฏิบัติการวิจัยการพัฒนาในเทคโนโลยีของวัสดุพรุน (Development in Technology of Porous Materials Research Laboratory : DITO-Lab) สาขาวิชาวิศวกรรมเครื่องกล คณะวิศวกรรมศาสตร์และสถาปัตยกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลล้านนา ที่ได้ช่วยเก็บข้อมูลการทดลองบางส่วนจนทำให้งานวิจัยนี้สำเร็จลุล่วงไปด้วยดี

เอกสารอ้างอิง

- [1] M. P. Boyce, “Gas turbine engineering handbook (3rd ed.)”, Gulf Professional Publishing (GPP), Houston, Texas, 2006.
- [2] P. Duwez, and H. L. Wheeler, “Experimental study of cooling by injection of a fluid through a porous material”, Journal of Aeronautical Sciences, 15, September 1948, pp. 509 – 521.
- [3] P. Grootenhuis, “The mechanism and application of effusion cooling”, Journal of the Royal Aeronautic Society, 63, 1959, pp.73 – 89.
- [4] H. Kubota, “Thermal response of a transpiration-cooled system in a radiative and convective Environment”, Transaction of the ASME: Journal of Heat Transfer, 99, 1977, pp. 628 – 633.
- [5] S. Maruyama, R. Viskanta, and T. Aihara, “Analysis of an active high-temperature thermal insulation system”, International Journal of

Heat and Fluid Flow, 11(No.3), 1993, pp. 196 – 203.

[6] J. H. Wang, J. Messner, and H. Stetter, “An experimental investigation of transpiration cooling Part I: Application of an Infrared Measurement Technique”, International Journal of Rotating Machinery, 9 (No.3), 2003, pp.153 – 161.

[7] K. Kamiuto, K. Unoki, and A. Andou, “Thermal characteristics of transpiration cooling system using open-cellular porous materials in a radiative environment”, International Journal Transaction Phenomena, 7, 2005, pp. 85 – 96.

[8] P. Amatachaya, P. Khantikomol, R. Sangchot, and B. Krittacom, “Steady state transpiration cooling system in Ni-Cr open-cellular porous plate.”, International Conference on Fluids and Thermal Engineering : ICFTE 2011, River View Hotel, Singapore, 28-30 September 2011.

[9] B. Krittacom and P. Amatachaya, “Comparison of solution of radiative heat transfer equation in porous materials solving by the equation of formal solution and P1 approximation equation”, Engineering Journal of Siam University, 9, 2008, pp. 20-30.(in Thai)