

INFLUENCE OF SOIL PROPERTIES ON COPPER SORPTION AND
DISTRIBUTION FROM SEWAGE SLUDGE LEACHATE IN SOILS

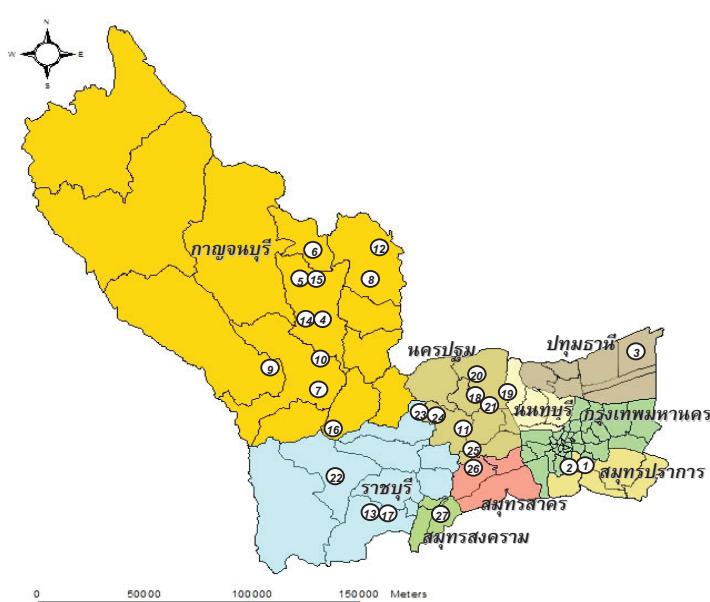
The Engineering Institute of Thailand under H.M. The King's Patronage

อิทธิพลของคุณสมบัติดินต่อการซับและการกระจายตัวของทองแดง
จากน้ำชาละลายน้ำเสียชุมชนในดิน

INFLUENCE OF SOIL PROPERTIES ON COPPER SORPTION AND DISTRIBUTION
FROM SEWAGE SLUDGE LEACHATE IN SOILS

ศุภเกียรติ ศรีพนมนาคร และ อุดมลักษณ์ ปัตภัย¹
ภาควิชาวิศวกรรมโยธา คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีหานคร กรุงเทพฯ 10530
โทรศัพท์ : 0-2988-3655 E-mail: suppakiet@gmail.com

บทคัดย่อ


การศึกษานี้มีวัตถุประสงค์เพื่อศึกษาถึงอิทธิพลของคุณสมบัติดินต่อการซับและการกระจายตัวของทองแดงจากน้ำชาละลายน้ำเสียชุมชนในดินจากพื้นที่กรุงเทพฯ และจังหวัดใกล้เคียง ผลการศึกษาพบว่าไอโซเทอร์มของฟรุนด์ลิชและแลงเมียร์อิบิาย กลไกของการซับทองแดงในดินได้ดี โดยมีค่า R^2 อยู่ระหว่าง 0.972-0.999 และ 0.916-0.996 ตามลำดับ ค่าล้มเหลวที่จากการซับจากไอโซเทอร์มฟรุนด์ลิชมีค่าในช่วง 24.47-67.97 (มก./กก.) $(\text{ล./มก.})^{1/n}$ และมีความล้มเหลวอย่างสูงกับปริมาณเหล็ก และแมงกานีสออกไซด์ แคลเซียมคาร์บอเนต สารอินทรีย์ ความสามารถในการแลกเปลี่ยนประจุบวก และอนุภาคดินเนื่อยา ในดินขณะที่ค่าความสามารถในการซับทองแดงสูงสุดจากไอโซเทอร์มแลงเมียร์มีค่าในช่วง 54.05-217.39 มก./กก. องค์ประกอบในรูปแบบทางเคมีของทองแดงในดินหลังจากการซับส่วนใหญ่อยู่ในรูปสารอินทรีย์และออกไซด์ของเหล็กและแมงกานีส การวิเคราะห์ความล้มเหลวที่อยู่ในดินพบว่าคุณสมบัติของดินกับลักษณะของทองแดงแสลงให้เห็นว่าค่าความสามารถในการแลกเปลี่ยนประจุบวก และปริมาณอนุภาคดินเนื่อยาเป็นคุณสมบัติที่สำคัญที่สุดที่มีผลต่อรูปแบบการกระจายตัวของทองแดงในดิน

ABSTRACT

The objective of this study was to investigate the influence of soil properties on Cu sorption and distribution from sewage sludge leachate in soils from areas within Bangkok and nearby provinces. The results showed that both the Freundlich and Langmuir isotherm can be well described the sorption phenomena of Cu in all soil types with the R^2 of 0.972 to 0.999 and 0.916 to 0.996, respectively. The sorption coefficient from the Freundlich isotherm ranged from 24.47 to 67.97 ($\text{mg/kg}(\text{L}/\text{mg})^{1/n}$) and highly correlated with Fe-Mn-oxide, CaCO_3 , organic matter, CEC and clay content in soils. The maximum Cu sorption capacity from the Langmuir isotherm varied from 54.05 to 217.39 mg/kg. Results from the sequential extraction of the sorbed Cu in soils indicated that the predominance of Cu associated with the organically bound and Fe-Mn oxide bound fractions. Correlation analysis between soil properties and different Cu fractions indicated that cation exchange capacity and clay content were the most important soil properties contributing the relative distribution of Cu to different fractions.

1. บทนำ

การนำสลัดจ์น้ำเสียมาใช้ประโยชน์ในการเกษตร เป็นแนวทางเลือกหนึ่งในการจัดการสลัดจ์ที่มีความเหมาะสม และลดค่าใช้จ่ายจากการนำสลัดจ์ไปกำจัด แต่การนำไปใช้ควรต้องคำนึงถึงโลหะหนักที่ปนเปื้อนมากับสลัดจ์น้ำเสีย โดยเฉพาะทองแดงที่มักพบได้ในปริมาณมากเมื่อเปรียบเทียบกับโลหะหนักอื่น ๆ การนำไปใช้ประโยชน์ในการเกษตรโดยที่ไม่มีการควบคุมปริมาณอาจก่อให้เกิดการสะสมในดินจนอาจส่งผลกระทบต่อคุณภาพดินและมีความเป็นพิษต่อพืชและจุลินทรีย์ในดินได้ [1-2] ทองแดงเป็นธาตุที่ทำปฏิกิริยาเร็วและอันตรายในการดินได้ง่าย ส่วนใหญ่มักถูกซับที่ผิวคลออลอยด์ดิน และเกิดคีเลชั่นกับสารอินทรีย์อยู่ในรูปแบบที่ค่อนข้างไม่เคลื่อนย้ายในดิน โดยปัจจัยหลักที่มีอิทธิพลต่อความสามารถในการซับตลอดจนปฏิกิริยาการแตกเปลี่ยนไอออนของโลหะหนักบนผิวอนุภาคดินก็คือลักษณะสมบัติของดินที่เป็นตัวดูดซับของดินนั้น การศึกษาถึงอิทธิพลของคุณสมบัติของดินจากชุดดินที่เป็นตัวแทนจากพื้นที่ซึ่งเริ่วเป็นพื้นที่ที่มีศักยภาพในการนำสลัดจ์น้ำเสียจากโรงบำบัดน้ำเสียของกรุงเทพฯไปใช้ประโยชน์ทางการเกษตร [3] ต่อความสามารถในการซับและรูปแบบการกระจายตัวของทองแดงที่มีผลโดยตรงต่อความเป็นพิษของทองแดงจากน้ำจะละลายสลัดจ์น้ำเสียซึ่งในดินก็สามารถทำให้เข้าใจถึงอิทธิพลและความสัมพันธ์ของลักษณะสมบัติดินต่อกลไกในการซับรวมถึงรูปแบบทางเคมีของทองแดงในชุดดินดังกล่าวเพื่อใช้เป็นข้อมูลพิจารณาใช้สลัดจ์น้ำเสียเป็นวัสดุปรับปรุงดินในการเกษตรได้ค่อนข้างเหมาะสมและปลอดภัยต่อไป

รูปที่ 1 ตำแหน่งเก็บตัวอย่างดินจากชั้ดินที่ใช้ศึกษาระบบนแผนที่

2. วิธีการศึกษา

ตัวอย่างดินเก็บที่ความลึก 0-20 ซม. จากพื้นที่ครอบคลุม 9 จังหวัด ดังแสดงตัวแหน่งระบบน้ำฝนที่ในรูปที่ 1 ส่วนตัวอย่างสลัดเจ็บน้ำเสียนำมาจากโรงปรับปรุงคุณภาพน้ำส่วนกลางหนองแขม กรุงเทพฯ ทำการวิเคราะห์พารามิเตอร์เบื้องต้นได้แก่ค่า pH [4] ความสามารถในการแลกเปลี่ยนประจุบวก [4] แคลเซียมและแมกนีเซียมที่ใช้ได้ [4] อินทรีย์ตฤதุ [5] ร้อยละอนุภาคดินเนื้ียว [6] คาร์บอนเนต [7] เหล็กและแมกนีเซียมออกไซด์ [8] การเตรียมน้ำชะลีละลายสลัดเจ็บน้ำเสียอ้างอิงตามวิธี Synthetic Precipitation Leaching Procedure ของ US. EPA [9] โดยใช้สลัดเจ็บและสารละลายสังเคราะห์ที่ปรับค่า pH ให้เท่ากับ 5.0 ด้วยสาร H_2SO_4 ; HNO_3 (60:40) ในอัตราส่วน 1:20 เช่น 18 ชั่วโมง ที่อุณหภูมิ $23 \pm 0.5^\circ C$ กรองและนำน้ำชะลีละลายส่วน

การเกียรติ ศรีพนมธนาร และอดลย์เดช ปิดภัย

หนึ่งไปลดปริมาณให้เหลืออยู่ประมาณร้อยละ 75, 50, 25 และ 15 ด้วยอั่งระเหยที่อุณหภูมิ 60°ซ ปรับค่า pH ที่ระดับ 7.10 ± 0.01 ซึ่งได้ค่าความเข้มข้นของ Cu ในช่วง 0.694–6.276 มก./ล. ทดลองโดยใช้ดิน 1 กรัม และน้ำฉะละลายน 20 มล. เขย่าเป็นเวลา 6 วัน (ได้จากการทดลองขั้นต้นเพื่อหาระยะเวลาสมดุลของการดูดซับเป็นระยะเวลา 14 วัน) ที่อุณหภูมิ $25+0.5$ °ซ บันทึกต่อๆ กันแล้วกรอง วิเคราะห์ปริมาณ Cu ในน้ำ ส่วนดินนำไปวิเคราะห์ห้องคปประจำบุรุษแบบทางเคมีของ Cu โดยวิธีสกัดตามลำดับของ Tessier et al. [10] ได้แก่ รูปที่แลกเปลี่ยนได้ (Exchangeable, EXCH) รูปคาร์บอนเนต (Carbonate Bound, CARB) รูปออกไซด์ของเหล็กและแมงกานีส (Fe-Mn Oxide Bound, Fe-Mn OXB) รูปสารอินทรีย์ (Organically Bound, ORGB) และรูปที่คงเหลือ (Residual, RESD) ทดลอง 3 ชั้้า วิเคราะห์ผลโดยใช้สมการไอโซเทอร์มฟรุนด์ลิช (Freundlich Isotherm) และไอโซเทอร์มแลงเมียร์ (Langmuir Isotherm) ดังสมการ (1-2) ตามลำดับ วิเคราะห์ทางสถิติด้วยโปรแกรม SPSS

$$q_e = KC_e^{\frac{1}{n}} \quad (1)$$

$$q_e = \frac{abC_e}{(1+bC_e)} \quad (2)$$

โดยที่ q_e คือปริมาณ Cu ที่ถูกซับต่อปริมาณของตัวดูดซับ (มก./กก.); C_e คือความเข้มข้น Cu ที่คงเหลือ (มก./ล.); K และ n คือค่าสัมประสิทธิ์สมการฟรุนด์ลิช; a และ b คือค่าสัมประสิทธิ์สมการแลงเมียร์

3. ผลการทดลองและวิจารณ์

3.1 ตัวอย่างดินที่ใช้ในการศึกษา

ผลการวิเคราะห์คุณสมบัติดินดังแสดงในตารางที่ 1 พบว่าตัวอย่างดินมีลักษณะเป็นดินร่วนปนทรายจนถึงดินเหนียว ประกอบด้วยอนุภาคดินเหนียวร้อยละ 7–67 โดยมีค่ามากที่สุดในชุดดินรังสิต (Rs) ค่า pH ในช่วง 3.46–8.07 ปริมาณอินทรีย์ต่อกันในช่วงร้อยละ 0.49–4.07 ค่า CEC ในช่วง 1–31 เชนติโมล/กก. โดยมีค่ามากที่สุดในชุดดินดำเนินสะตาก (Ds) ปริมาณ CaCO_3 ในช่วงร้อยละ 0.6–1.5 ปริมาณ Ca และ Mg ที่ใช้ได้ในช่วง 595–7,625 มก./กก. และ 133–2,585 มก./กก. ตามลำดับ ปริมาณออกไซด์ของ Fe และ Mn ในช่วง 22–411 มก./กก. และ 2–78 มก./กก. ตามลำดับ และมีปริมาณ Cu ทั้งหมดในดินอยู่ในช่วง 1.0–57.3 มก./กก. ส่วนตัวอย่างสลัดเจ็บน้ำเสียที่นำมารีดกับดิน pH เท่ากับ 6.28 ปริมาณอินทรีย์ต่อกันร้อยละ 28.6 และปริมาณ Cu ทั้งหมดเท่ากับ 3,775 มก./กก. Zn ทั้งหมดเท่ากับ 2,127 มก./กก. และ Ni ทั้งหมดเท่ากับ 380 มก./กก.

3.2 ลักษณะการซับทองแดงในดิน

ผลการวิเคราะห์สมการไอโซเทอร์มดังแสดงในตารางที่ 2 พบว่าทั้งสมการของฟรุนด์ลิช และสมการของแลงเมียร์สามารถใช้อธิบายผลการซับทองแดงในดินจากน้ำฉะละลายน 2 ชั้้า เสียได้อย่างดีโดยมีค่า R^2 ระหว่าง 0.972–0.999 และ 0.916–0.996 ตามลำดับ ($P\text{-value} < 0.01$) มีค่า K และ n ของสมการฟรุนด์ลิชในช่วง 24.474–67.967 (มก./กก.) ($\text{l.}/\text{มก.}$)^{1/n} และ 1.232–2.182 ตามลำดับ ส่วนค่า a และ b ของสมการแลงเมียร์มีค่าในช่วง 54.054–217.391 มก./กก. และ 0.324–2.383 ตามลำดับ ทั้งนี้ผลการวิเคราะห์ความสัมพันธ์ระหว่างคุณสมบัติของดินกับค่าสัมประสิทธิ์ต่างๆ แสดงในตารางที่ 3 พบว่า ค่า r ระหว่างคุณสมบัติดินกับค่า K ที่แสดงถึงศักยภาพในการซับทองแดงของดินมีค่าในช่วง 0.442–0.880 โดยให้ความสัมพันธ์เชิงบวกกับคุณสมบัติดินที่มีค่า r เรียงลำดับจากมากไปน้อยคือ $\text{Fe-oxides} > \text{CaCO}_3 > \text{Mn-oxides} > \text{OM} > \text{CEC} > \text{Clay} > \text{pH} > \text{Total Cu} > \text{Aval. Ca} > \text{Aval. Mg}$ สำหรับค่า r ระหว่างคุณสมบัติของดินกับค่า n มีค่าในช่วง (-) 0.418–0.090 โดยมีความสัมพันธ์ในเชิงลบสูงที่สุดกับค่า pH ของดิน ในส่วนของสมการแลงเมียร์ ค่า r ระหว่างคุณสมบัติของดินกับค่า a ที่แสดงถึงความสามารถในการดูดซับสูงสุดพบว่ามีค่าใน

ช่วง 0.179–0.586 (ซึ่งต่ำกว่าค่า r ของค่า K จากสมการฟรุนด์ลิช) โดยให้ความสัมพันธ์เชิงบวกกับคุณสมบัติดินที่มีค่า r เรียงลำดับจากมากไปน้อยคือ $\text{CaCO}_3 > \text{pH} > \text{CEC} > \text{Clay} > \text{Fe-oxides} > \text{Mn-oxides} > \text{Aval. Ca} > \text{OM} > \text{Aval. Mg} > \text{Total Cu}$

ตารางที่ 1 คุณสมบัติของตัวอย่างดินจากชุดดินที่ใช้ในการศึกษา

ชุดดิน	การจำแนกดิน*	pH	OM	Clay	CEC	CaCO_3	Avail. Ca	Avail. Mg	Fe oxides	Mn oxides	Total Cu
		1:1	%	%	cmol/kg	%	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
1. Bk	Vertic Endoaquepts	6.81	2.48	64	28	1.4	3,120	2,201	411	78	32.2
2. Cc	Vertic Endoaquepts	6.64	0.91	58	18	1.0	1,615	2,585	376	30	24.8
3. Rs	Sulfic Endoaquepts	4.14	1.89	67	20	1.0	1,805	1,331	183	23	25.9
4. Ng	Grossarenic Haplustalfs	6.33	0.88	8	3	0.8	1,030	133	205	49	11.4
5. Kt	Typic (Oxyaeric) Kandiustults	5.36	0.82	13	3	0.6	865	393	103	8	3.6
6. Mr	Typic (Kandic) Paleustults	4.52	0.92	10	4	0.8	2005	295	81	11	5.6
7. Pc	Rhodic Kandiustox.	8.07	2.94	57	18	1.5	4,420	788	381	56	17.8
8. Ct	Typic Haplustalfs	7.76	1.90	23	12	0.9	5,380	1,327	138	29	9.8
9. Hs	Lithic Haplustalfs	7.00	3.83	57	30	1.3	6,390	1,828	315	35	17.6
10. Png	Typic Haplustults	4.76	0.72	10	1	0.7	1,025	236	55	27	8.4
11. Np	Aeric Endoaqualfs	5.88	2.82	41	14	0.8	4,720	1,017	379	42	20.5
12. Mn	Aeric (Plinthic) Endoaqualfs.	6.32	0.49	43	16	1.0	4,640	401	66	13	3.6
13. Pth	(Aeric) Plinthic Paleaquults	6.86	0.64	19	5	0.9	845	311	90	27	1.0
14. Rn	(Aeric) Plinthic Paleaquults	7.13	1.18	12	6	0.9	2,660	170	238	61	11.8
15. Hg	Typic Haplustalfs	4.77	0.49	8	2	0.8	1,840	206	22	12	2.4
16. Yt	Oxyaeric (Ultic) Haplustalfs	6.42	1.44	7	4	0.8	1,855	345	209	18	6.8
17. Db	Aeric (Plinthic) Endoaqualfs	6.83	1.41	24	3	0.7	595	193	156	6	7.0
18. Sb	Vertic (Aeric) Endoaquepts	7.14	2.47	52	26	1.2	4,428	1203	369	28	19.1
19. Bn	Vertic Endoaquepts	3.53	1.34	33	18	0.9	4,515	1665	137	9	20.2
20. Se	Sulfic Endoaquepts	3.46	1.68	31	13	0.8	4,395	945	114	2	25.6
21. Ks	Typic Haplustalfs	7.23	1.20	25	12	1.2	2,925	435	301	35	11.9
22. Ty	Kanhaplic Haplustults	6.75	0.60	13	8	0.9	860	216	62	4	1.0
23. Kp	Oxyaeric (Ultic) Haplustalfs	6.85	4.07	41	26	1.1	2,010	1,022	380	63	57.3
24. Rb	Vertic (Aeric) Endoaquepts	6.69	2.60	55	21	1.2	7,625	445	323	54	23.4
25. Bl	Vertic Endoaquolls	6.55	2.11	42	30	1.1	6,715	1,303	289	39	14.9
26. Ds	Typic Haplaquolls	6.16	1.80	54	31	1.1	4,405	1,787	256	24	20.2
27. Sso	Aeric Tropaquepts	7.83	1.61	38	24	1.1	4,510	1,061	190	29	6.6
Max.		8.07	4.07	67	31	1.5	7,625	2,585	411	78	57.3
Min.		3.46	0.49	7	1	0.6	595	133	22	2	1.0

* กรมพัฒนาที่ดิน [11]

ตารางที่ 2 พารามิเตอร์ของสมการไอโซเทอร์ม

ชุดดิน	Freundlich			Langmuir			ชุดดิน	Freundlich			Langmuir		
	K	n	R ²	a	b	R ²		K	n	R ²	a	b	R ²
1. Bk	65.449	1.701	0.995*	125.000	1.356	0.932*	16. Yt	41.429	2.042	0.982*	87.719	1.226	0.923*
2. Cc	50.385	1.577	0.988*	116.279	0.925	0.975*	17. Db	40.077	1.808	0.984*	90.909	1.019	0.916*
3. Rs	47.174	1.709	0.982*	108.696	0.968	0.937*	18. Sb	61.433	1.738	0.993*	119.048	1.355	0.938*
4. Ng	51.428	1.455	0.972*	142.859	0.654	0.937*	19. Bn	30.262	1.539	0.988*	97.087	0.534	0.959*
5. Kt	27.021	2.056	0.994*	60.241	1.071	0.986*	20. Se	27.391	1.878	0.987*	72.464	0.754	0.946*
6. Mr	24.969	2.182	0.988*	54.054	1.149	0.989*	21. Ks	49.568	1.648	0.989*	112.360	0.978	0.961*
7. Pc	67.967	1.473	0.992*	147.059	0.958	0.961*	22. Ty	34.570	1.627	0.989*	95.238	0.695	0.955*
8. Ct	42.082	1.836	0.991*	91.743	1.112	0.939*	23. Kp	67.702	1.748	0.989*	114.943	1.740	0.982*
9. Hs	66.742	1.687	0.999*	121.951	1.464	0.953*	24. Rb	61.546	1.845	0.992*	107.527	1.755	0.954*
10. Png	28.432	1.923	0.992*	69.444	0.883	0.952*	25. Bl	57.836	1.757	0.992*	114.943	1.299	0.946*
11. Np	55.603	2.055	0.976*	89.286	2.383	0.996*	26. Ds	58.492	1.664	0.990*	117.647	1.214	0.970*
12. Mn	43.752	1.352	0.979*	147.059	0.472	0.922*	27. Sso	48.395	1.232	0.988*	217.391	0.324	0.953*
13. Pth	43.411	1.268	0.976*	62.112	0.425	0.938*	Max.	67.967	2.182	0.999	217.931	2.383	0.996
14. Rn	50.234	1.564	0.989*	119.048	0.875	0.969*	Min.	24.474	1.232	0.972	54.054	0.324	0.916
15. Hg	24.474	1.941	0.982*	62.112	0.805	0.926*	Avg.	46.906	1.725	0.987	106.082	1.052	0.952

** มีความสัมพันธ์ที่ระดับนัยสำคัญ 0.01 (2-tailed)

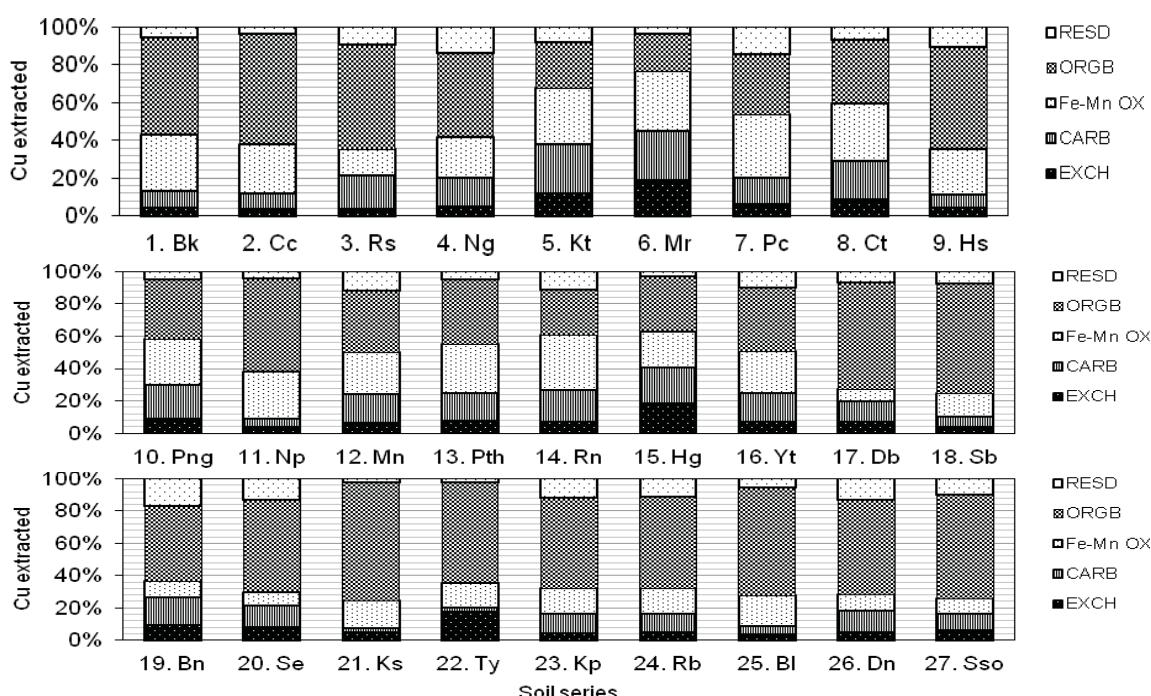
ตารางที่ 3 ค่าสัมประสิทธิ์สหสัมพันธ์ (r)

พารามิเตอร์	Freundlich			Langmuir		
	K	n	a	b		
pH	0.660*	-0.418	0.552*	0.119		
OM	0.764*	0.090	0.284	0.698*		
Clay	0.707*	-0.256	0.466	0.336		
CEC	0.736*	-0.263	0.544*	0.340		
CaCO ₃	0.819*	-0.407	0.586*	0.211		
Aval. Ca	0.470*	-0.063	0.359	0.350		
Aval. Mg	0.442	-0.138	0.283	0.223		
Fe-oxides	0.880*	-0.073	0.429	0.613*		
Mn-oxides	0.786*	-0.212	0.422	0.424		
Total Cu	0.568*	0.044	0.179	0.513*		

* มีความสัมพันธ์ที่ระดับนัยสำคัญ 0.01 (2-tailed)

สำหรับค่า r ระหว่างคุณสมบัติของดินกับค่า b มีค่าในช่วง 0.119-0.698 เมื่อพิจารณาถึงผลการวิเคราะห์ความสัมพันธ์ระหว่างคุณสมบัติของดินกับค่า K และ a ที่แสดงถึงคักษภาพการซับทองแดงในดินที่มีค่า r > 0.7 คุณสมบัติของดินที่ถือว่ามีลั่นล้มพันธ์กับความสามารถในการซับทองแดงในได้แก่ Fe-oxides, CaCO₃, Mn-oxides, OM, CEC และ Clay ซึ่งสอดคล้องกับงานวิจัยอื่น ๆ ที่ผ่านมารายงานเกี่ยวกับคุณสมบัติของดินที่มีต่อการซับทองแดงในดินที่พบว่าเหลือออกไซด์มีผลต่อการซับ

ทองแดงในดินสูงที่สุดรองลงมาคือปริมาณอินทรีย์ต่ำ และการซับจะเพิ่มขึ้นตามความเข้มข้นของทองแดง [12] นอกจากนี้ยังมีงานวิจัยอื่นๆ ที่แสดงให้เห็นว่าปริมาณแคลเซียมคาร์บอนे�ต [13] และค่าความสามารถในการแยกเปลี่ยนประจุบวกของดิน [14] มีอิทธิพลอย่างสูงต่อการซับทองแดงในดิน ผลการวิเคราะห์การทดสอบโดยพหุคุณด้วยโปรแกรม SPSS ใช้วิธีการตัดเลือกตัวแปรแบบขั้นตอนเพื่อหาสมการที่เหมาะสมที่สุด ในการทำนายค่าสัมประสิทธิ์ K และ a ตั้งแต่ในสมการที่ 3 และ 4 ตามลำดับ โดยพบว่าตัวแปรอิสระที่มีผลต่อสมการทำนายค่า K ของสมการฟรุนเดลิช ได้แก่ ปริมาณ Fe-oxides, pH, CEC, Mn-oxides, Aval. Mg และ Clay โดยมีค่า $R^2 = 0.954$ และที่สมการทำนายค่า a ของสมการแลงเมียร์ให้ค่า R^2 ที่น้อยกว่า $= 0.685$ โดยมีปริมาณ OM, CaCO_3 และ Fe-oxides เป็นตัวแปรอิสระ


$$K = 8.085 + 0.038(\text{Fe-oxides}) + 2.844(\text{pH}) + 0.482(\text{CEC}) + 0.168(\text{Mn-oxides}) - 0.005(\text{Aval.Mg}) + 0.157(\text{Clay})$$

$$R^2 = 0.954 \quad (3)$$

$$a = 1.321 + 0.290(\text{OM}) - 1.252(\text{CaCO}_3) + 0.002(\text{Fe-oxides}) \quad R^2 = 0.685 \quad (4)$$

3.3 องค์ประกอบรูปแบบทางเคมีของทองแดงในดินหลังจากการซับ

สัดส่วนองค์ประกอบรูปแบบทางเคมีของ Cu ในดินหลังทดลองการซับแล้วแสดงในรูปที่ 2

รูปที่ 2 องค์ประกอบรูปแบบทางเคมีของ Cu ในดิน

พบว่ามีสัดส่วนหลักในรูป ORGB เช่นเดียวกับผลการศึกษาอื่นๆ ที่พบว่า Cu นั้นมีความชอบที่จะรวมตัวอยู่กับสารอินทรีย์ในดิน [15-16] สัดส่วนของ Cu โดยรวมเรียงลำดับจากมากไปน้อยคือ (ORGB) > (Fe-Mn OX) > (CARB) > (RESD) > (EXCH) ประกอบด้วย Cu ในรูป ORGB ในอัตรารอยละ 49.2 ± 14.5 (ช่วง 12.1-120 mg./g.) มีค่าต่ำสุดในชุดดินแมริม(Mr) และค่าสูงสุดในชุดดินสารบุรี (Sb) รองลงมาคือ รูป Fe-Mn OX ในอัตรารอยละ 21.5 ± 8.5 (ช่วง 9.2-45.8 mg./g.) มีค่าต่ำสุดในชุดดินเดิมบาง (Db) และค่าสูงสุดในชุดดินปากช่อง (Pc) รูป CARB ในอัตรารอยละ 13.4 ± 6.8 (ช่วง 5.8-21.5 mg./g.) มีค่าต่ำสุดในชุดดินครบรูม (Np) และค่าสูงสุดในชุดดินรังสิต (Rs) รูป RESD ในอัตรารอยละ 8.7 ± 4.4 (ช่วง 1.6-27.6 mg./g.) มีค่าต่ำสุดในชุดดินท่ายาง (Ty) และค่าสูงสุดในชุดดินด่าน้ำตก (Ds) และรูป EXCH ในอัตรารอยละ 7.1 ± 4.3 (ช่วง 4.2-11.8 mg./g.) มีค่าต่ำสุดในชุดดินรังสิต (Rs) และค่าสูงสุดในชุดดินบางเขน (Bn) ตามลำดับ ทั้งนี้ผลรวมค่าเฉลี่ยของ Cu ที่อยู่ในรูปที่สามารถเคลื่อนย้ายได้ (EXCH + CARB + Fe - Mn OX) คิดเป็นร้อยละ 42 เทียบกับร้อยละ 58 ของผลรวมค่าเฉลี่ยของ Cu ที่อยู่ในรูปที่ไม่สามารถเคลื่อนย้ายได้ (ORGB + RESD)

พิจารณาจากตารางที่ 4 แสดงค่า r ระหว่างคุณสมบัติของดินและองค์ประกอบรูปแบบทางเคมีของ Cu ในดินพบว่าสัดส่วนของ Cu เฉพาะในรูป EXCH รูป CARB และ รูป ORGB มีความสัมพันธ์กับคุณสมบัติของดินอย่างมีนัยสำคัญ (P -value < 0.01) โดยสัดส่วน Cu ในรูป EXCH และรูป CARB มีความสัมพันธ์ในเชิงลบสูงสุดกับ Fe-oxides ในดินโดยมีค่า $r = -0.723^*$ และ -0.728^* ตามลำดับ สำหรับคุณสมบัติอื่นๆ ที่มีความสัมพันธ์ในเชิงลบเช่นกัน ได้แก่ Clay, CEC, Mn- oxides, CaCO_3 , OM และ Total Cu ในส่วนสัดส่วน Cu ในรูป ORGB ที่เป็นรูปแบบที่พบในปริมาณมากที่สุดในดินนั้น พบว่ามีความสัมพันธ์ในเชิงบวกกับค่า CEC และปริมาณอนุภาคดินเนหนี่ยาโดยมีค่า $r = -0.589^*$ และ -0.510^* ตามลำดับ ทั้งนี้จะเห็นได้ว่าค่า CEC และปริมาณอนุภาคดินเนหนี่ยาแสดงความสัมพันธ์อย่างมีนัยสำคัญทั้ง 3 องค์ประกอบรูปแบบทางเคมีของ Cu ส่วนใหญ่ในดินซึ่งอาจถือเป็นคุณสมบัติของดินที่สำคัญที่สุดที่มีผลต่อรูปแบบการกระจายตัวของ Cu ในดิน

ตารางที่ 4 ค่าสัมประสิทธิ์สหสัมพันธ์ (r) ระหว่างคุณสมบัติของดินและองค์ประกอบรูปแบบทางเคมีของ Cu

พารามิเตอร์	ค่าสัมประสิทธิ์สหสัมพันธ์ (r)				
	EXCH	CARB	Fe-Mn OX	ORGB	RESD
pH	-0.415	-0.205	0.189	0.144	-0.133
OM	-0.529*	-0.622*	-0.076	0.387	0.317
Clay	-0.659*	-0.625*	-0.198	0.510*	0.257
CEC	-0.603*	-0.710*	-0.320	0.589*	0.304
CaCO_3	-0.533*	-0.529*	0.003	0.340	0.185
Aval. Ca	-0.369	-0.494*	-0.128	0.304	0.333
Aval. Mg	-0.480	-0.551*	-0.114	0.404	0.153
Fe-oxides	-0.723*	-0.728*	0.047	0.476	0.127
Mn- oxides	-0.551*	-0.356	0.353	0.082	0.127
Total Cu	-0.519*	-0.643*	-0.193	0.444	0.362

* มีความสัมพันธ์ที่ระดับนัยสำคัญ 0.01 (2-tailed)

4. สรุปผลการศึกษา

- สามารถใช้ทั้งไอโซเทอร์มฟรุนเดลิช และแลงเมียร์ อธิบายการซับ Cu จากน้ำชั่วระยะสั้นเจ็บเลี้ยในดินได้ดีโดยมีค่า R^2 ระหว่าง 0.972 – 0.999 และ 0.916 – 0.996 ตามลำดับ
- ค่า K จากไอโซเทอร์มฟรุนเดลิช มีค่าในช่วง $24.47-67.97$ (mg./g.) $(\text{l./mg.})^{1/n}$ และมีความสัมพันธ์อย่างสูง

ในเชิงบวกกับ Fe-oxides, CaCO_3 , Mn-oxides, OM, CEC และ Clay ขณะที่ค่า a จากไอโซเทอร์มลงเมียร์มีค่าในช่วง 54.05-217.39 mg./g.

3. องค์ประกอบบูรณาแบบทางเคมีของ Cu ในดินหลังการซับส่วนใหญ่อยู่ในรูปสารอินทรีย์ และรูปออกไซด์ของเหล็กและแมลงกานีส โดยผลจากการวิเคราะห์ความสัมพันธ์ระหว่างคุณสมบัติของดินกับสัดส่วนรูปแบบของ Cu แสดงให้เห็นว่าค่า CEC และปริมาณดินหนี่ยวถือเป็นคุณสมบัติที่สำคัญที่สุดที่มีผลต่อรูปแบบการกระจายตัวของทองแดงในดิน

เอกสารอ้างอิง

- [1] McBride, M. B. (2002). Toxic metals in sewage sludge-amended soils: has promotion of beneficial use discounted the risks?. *Advances in Environmental Research*. No.8 (1), 5-19.
- [2] Alloway, B.J. *Heavy Metal in Soil*. 2nd Ed. Blackie Academic and Professional, UK, 1995.
- [3] Bangkok Metropolitan Administration. *Feasibility Study on Agricultural Use and Land Application of Sewage and Night Soil Sludge for Bangkok Metropolitan*, Bangkok, Thailand, 1998.
- [4] Soil and Plant Analysis Coil, Inc. *Soil Analysis: Handbook of Reference Method*, CRC Press, 1999.
- [5] Nelson, D.W. and Sommers L.E. Total carbon, organic carbon, and organic matter. In: A.L. Page et al. Ed, *Method of Soils Analysis*, part 2, 2nd, Agronomy, 1982, pp. 539-579.
- [6] Anderson, J. M. and Ingram, J. S. I. *Tropical Soil Biology and Fertility: A Handbook of Method*, 2nd Ed, CAB International, UK, 1993.
- [7] Rowell, D.L. *Soil Science: Methods and Applications*. Longman Singapore Publishers, 1996, pp. 32-35.
- [8] Carter, M.R. and E.G. Gregorich. Fe and Mn Oxide Analysis. In: *Soil Sampling and Methods of Analysis*, 2nd Ed, Canadian Society of Soil Science, 2007, pp. 311-312.
- [9] U.S. EPA. *Method 1312: Synthetic Precipitation Leaching Procedure*. U.S. EPA: Washington, D.C, 1994.
- [10] Tessier, A., Cambell, P. G. C. and Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate traces metal. *Analytical Chemistry*. No.51, 844-851.
- [11] กรมพัฒนาที่ดิน 2548. “ลักษณะและสมบัติของชุดดินในภาคกลางของประเทศไทย” เอกสารวิชาการฉบับที่ 54, สำนักสำรวจและวางแผนการใช้ที่ดิน, กรมพัฒนาที่ดิน, กรุงเทพฯ.
- [12] Bradl, H.B. (2004). Adsorption of heavy metals ions on soils and soils constituents. *J. Colloid Interf. Sci.* No.277, 1-18.
- [13] Natalya Irhha, Eiliv Steinnesb, Uuve Kirsoa, and Valter Petersell. (2009). Mobility of Cd, Pb, Cu, and Cr in some Estonian soil types. *Estonian J. Earth Sciences*. No.58 (3), 209-214.
- [14] Buchter, B. et al. (1989). Correlation of freundlich kd and n retention parameters with soils and elements. *Soil Sci.* No.148 (5), 370-379.
- [15] Rosazlin, A., I. Che Fauziah, A.B. Rosenani and S. Zauyah. (2007). Domestic sewage sludge application to an acid tropical soil: Part III. Fractionation study of heavy metals in sewage sludge and soil applied with sewage sludge Malays. *J. Soil Sci.*, No.11, 81-97.
- [16] ศุภเกียรติ ศรีพนมอนการ และเกรียงศักดิ์จันตัวง. (2550). การดูดซับและการกระจายตัวของสังกะสี ทองแดง และนิกเกิล ในดินจากแผนภาคกลางของประเทศไทย. *วารสารวิศวกรรมสิ่งแวดล้อมไทย*. 21 (1), 43-53.