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บทคัดยอ 
ฮาโลอะซิโตไนไตรล (HANs) จัดเปนสารพลอยไดจากการฆาเช้ือโรคกลุมไนโตรเจน ท่ีมีความเปนพิษมากกวาสารพลอยไดจากการฆา

เช้ือโรคท่ีถูกควบคุม เชน ไตรฮาโลมีเทน และกรดฮาโลอะซิติก งานวิจัยน้ีทําการศึกษาการกําจัดสาร HANs ไดแก โมโนคลอโรอะซิโตไน
ไตรล (Monochloroacetonitrile, MCAN) ไดคลอโรอะซิโตไนไตรล (Dichloroacetonitrile, DCAN) และ ไดโบรโมอะซิโตไนไตรล 
(Dibromoacetonitrile, DBAN) ดวยกระบวนการยูวีแอลอีดีคลอรีน (UV-LED/Cl2)  ท่ี pH 7 และ 8 โดยเปรียบเทียบกับยูวีแอลอีดี (UV-
LED) และคลอรีน (Cl2) จากการศึกษาพบวาความสัมพันธระหวางการลดลงของความเขมขน HANs กับเวลาเปนปฏิกิริยาอันดับหน่ึง การ
ทดลองท่ี pH 7 การกําจัด MCAN DCAN ภายใตกระบวนการ UV-LED/Cl2 มีคาคงท่ีอัตราการเกิดปฏิกิริยา (MCAN = 5.6 × 10-3 min-1, 
DCAN = 11.7 × 10-3 min-1) และประสิทธิภาพการกําจัด (รอยละ 27-52) ซึ่งสูงกวา UV-LED (MCAN = 4.4 × 10-3 min-1, DCAN = 
5.1 × 10-3 min-1)  และ Cl2 (MCAN = 2.4 × 10-3 min-1, DCAN = 5.3 × 10-3 min-1) แตการกําจัด DBAN กลับพบวากระบวนการ UV-
LED มีคาคงท่ีอัตราการเกิดปฏิกิริยา (6.4 × 10-3 min-1) และประสิทธิภาพการกําจัดสูงกวา UV-LED/Cl2 (5.6 × 10-3 min-1) และ Cl2 

(4.5 × 10-3 min-1) เมื่อทําการวิเคราะหทางสถิติโดยวิธี One-way ANOVA ของกระบวนการ UV-LED/Cl2 UV-LED และ Cl2 แลวพบวามี
ความแตกตางอยางมีนัยสําคัญ (p < 0.05) ขณะท่ี pH 8 ในการทดลองการกําจัด MCAN DCAN และ DBAN ของท้ัง 3 กระบวนการ 
พบวาไมมีความแตกตางอยางมีนัยสําคัญ (p > 0.05) จากการวิจัยในครั้งน้ีพบวากระบวนการ UV-LED/Cl2 สามารถเปนอีกทางเลือกหน่ึง
ในกําจัด HANs ในนํ้าดื่มได  

คําสําคัญ 
กระบวนการออกซิเดชันข้ันสูง ยูวีแอลอีดีคลอรีน สารพลอยไดจากการฆาเช้ือโรคกลุมไนโตรเจน ฮาโลอะซิโตไนไตรล 

Abstract 
Haloacetonitriles (HANs) are in the group of nitrogenous disinfection byproducts (N-DBPs). HANs are more toxicity 

than regulated DBPs ( trihalomethames and haloacetic acids) .  This work investigated the removal of 
monochloroacetonitrile ( MCAN) , dichloroacetonitrile ( DCAN)  and dibromoacetonitrile ( DBAN)  using UV- LED/ Cl2 in 
comparison with UV- LED alone and Cl2 alone at pH 7 and 8.  The results showed that the relationship between the 
decreasing of HAN concentration and time was the first order reaction. At pH 7, MCAN and DCAN removals under the 
UV-LED/Cl2 process had degradation rate constants (MCAN = 5.6 × 10-3 min-1, DCAN = 11.7 × 10-3 min-1) and removal 
efficiencies (27-52%) higher than UV-LED (MCAN = 4.4 × 10-3 min-1, DCAN = 5.1 × 10-3 min-1) and Cl2 (MCAN = 2.4 × 10-

3 min-1, DCAN =  5.3 × 10- 3 min-1) .  However, removal of DBAN under the UV-LED process was found to have a rate 
constant (6.4 × 10-3 min-1) and removal efficiency higher than UV-LED/Cl2 (5.6 × 10-3 min-1) and Cl2 (4.5 × 10-3 min-1). 
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One- way ANOVA statistical results showed that HANs removal by UV- LED/ Cl2 UV- LED and Cl2 processes were 
significantly different (p < 0.05). However, no statistically different for HANs removals among three processes at pH 8 
( p > 0. 05) .  The results of this work suggested that UV- LED/ Cl2 can be an alternative method to remove HANs in 
drinking water. 
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advanced oxidation processes; UV-LED/Chlorine; nitrogenous disinfection by products; haloacetonitriles 

 

1. บทนํา 

ฮา โลอะซิ โตไน ไตรล  (Haloacetonitriles, HANs) 
จัดเปนสารพลอยไดจากการฆาเชื้อโรคกลุมไนโตรเจน 
( Nitrogenous disinfection byproducts, N-DBPs)  เ กิ ด
จากสารฆาเชื้อโรค เชน คลอรีน คลอรามีน หรือคลอรีนได
ออกไซด ทําปฏิกิริยากับสารอินทรียไนโตรเจนละลายน้ํา 
(Dissolved organic nitrogen, DON) [1,2] ในชวงทศวรรษ
ที่ผานมา HANs ไดรับความสนใจอยางมาก เนื่องจากมีความ
เป นพิ ษม ากกว า ส า รพลอย ไ ด จ า กก า รฆ า เ ชื้ อ โ ร ค 
(Disinfection byproducts, DBPs) ที่ถูกควบคุม เชน ไตร
ฮาโลมีเทน (Trihalomethames; THMs) และกรดฮาโลอะซิ
ติก (Haloacetic acids; HAAs) [3] 

HANs ประกอบดวย 7 สารประกอบ ไดแก โมโนคลอ
โรอะซิโตไนไตรล (Monochloroacetonitrile, MCAN) ได
คลอโรอะซิโตไนไตรล (Dichloroacetonitrile, DCAN) ไตร
คลอโรอะซิโตไนไตรล (Trichloroacetonitrile, TCAN) โม
โน โบรโมอะซิ โ ต ไน ไตรล  (Monobromoacetonitrile, 
MBAN) โบรโมคลอโรอะซิโตไนไตรล (Bromochloroaceto-
nitrile, BCAN), ไดโบรโมอะซิโตไนไตรล (Dibromoaceto-
nitrile, DBAN) และไอโอโดอะซิโตไนไตรล (Iodoaceto-
nitrile, IAN) ในกลุมสาร HANs เหลานี้ DCAN ถูกตรวจพบ
มากที่สุดในน้ําประปา [4] ในสหรัฐอเมริกา แคนาดา และ
สกอตแลนด ความเขมขนของ DCAN DBAN และ BCAN 
โดยปกติตรวจพบต่ําวา 10 µg/L [5–7] ในออสเตรเลียโดย
ปกติตรวจพบความเขมเฉลี่ยแตละชนิดของ HANs (MCAN, 
MBAN, BCAN, DBAN, DCAN, TCAN) ต่ํากวา 3 µg/L [8] 
แตในบางพื้นที่ความเขมขนสูงสุดรวมของ 4 ชนิด (DCAN, 
BCAN, DBAN และ TCAN) ตรวจพบสูงถึง 36 µg/L [9] และ
ในประเทศไทยตรวจพบ HANs (DCAN TCAN และ DBAN) 
สูงถึง 30 µg/L [10] ปจจุบันองคการอนามัยโลกไดให
คําแนะนําปริมาณความเขมขนในน้ําดื่มสําหรับ DCAN และ 
DBAN ไมเกิน 20 และ 70 µg/L ตามลําดับ [4] 
 วิธีการกําจัด HANs ในน้ําดื่มสําหรับผูบริโภคแบบหนึ่ง
คือการปรับปรุงระบบเคร่ืองกรองน้ําใหมีขีดความสามารถใน
การกําจัด HANs ได ซึ่งเรียกวาการบําบัด ณ จุดใชงาน 
(point of use, POU) โดยทั่วไปแลวในการบําบัดข้ันสุดทาย

ของ POU จะมีแสงอัลตราไวโอเล็ต (Ultraviolet, UV) เพื่อ 
 
ใชสําหรับฆาเชื้อโรคในน้ํากอนบริโภค อีกทั้งยังกระตุน Cl2 ที่
คงเหลือในน้ําประปาทําใหเกิดกระบวนการออกซิเดชันข้ันสูง 
(Advanced oxidation processes, AOPs) (UV-Cl2 based 
AOPs) [11,12] จึงสามารถกําจัด HANs ได 
 UV- Cl2 based AOPs เ ป น ก ร ะ บ ว น ก า ร ที่ มี
ประสิทธิภาพในการกําจัดสารอินทรียในน้ํา [13] ในทาง
ปฏิบัติโดยปกติแลวหลอด UV ที่ใชเปนแบบบรรจุไอปรอท 
(UV-Hg lamp) อยางไรก็ตาม UV-Hg lamp มีขอเสียหลัก
คือมลพิษที่เกิดจากปรอทเม่ือหมดสภาพ ปจจุบัน UV แบบ
ไดโอดเปลงแสง (UV light emitting diode, UV-LED) ไดรับ
ความสนใจจากนักวิจัย เนื่องจากมีขอดีหลายอยางเมื่อ
เปรียบเทียบกับ UV-Hg lamp เชน หลอดมีขนาดเล็ก
สามารถออกแบบและจัดวางหลอดไดหลายรูปแบบ ใช
พลังงานไฟฟาต่ํา และที่สําคัญไมมีปรอท นอกจากนี้ยังพบวา 
UV-LED มีอายุการใชงานที่ยาวนานกวา UV-Hg lamp 
(3,000-50,000 ชั่วโมง กับ 5,000-12,000 ชั่วโมง) [14] 
ดังนั้นจึงทําให  UV-LED เปนตัวเลือกที่ดีสําหรับ POU 
treatment system  
 ในกระบวนการผลิตน้ําประปาอาจเติม Cl2 ไดใน
รูปแบบของ gas หรือสารละลายคลอรีน (NaOCl) โดย
รูปแบบของ free Cl2 ที่ละลายอยู ในน้ํา ไดแก Cl2(aq) 
Hypochlorous acid (HOCl)  และ Hypochlorite (OCl-) 
จะมีสัดสวนที่แตกตางกันข้ึนอยูกับคา pH ดังรูปที่ 1 ใน
กระบวนการผลิตน้ําประปา (pH 7-8) HOCl และ OCl- 
จัดเปน free Cl2 หลักที่ทําปฏิกิริยา [15]  
 ในกระบวนการ UV-LED/Cl2 จะเกิด Cl• Cl2-• OH• 
ซึ่งเปนสารออกซิไดซที่มีความรุนแรง ในสารละลายที่ pH 
เปนดาง OCl- จะเปนตัวหลักในการทําปฏิกิริยากับแสง UV 
ดังแสดงในสมการ 1-3 และในสารละลายที่ pH เปนกรด 
HOCl จะทําปฏิกิริยากับแสง UV ดังแสดงในสมการ 3-4 
[11,12] 



 วารสารวิชาการ วิศวกรรมศาสตร ม.อบ.    ปท่ี 14  ฉบับท่ี 1   41 

 

รูปท่ี 1 องคประกอบของคลอรีนท่ีสภาวะ pH ตางกัน [12] 

OCl– + hv → Cl• + O–   (1) 
O– + H2O ↔ OH• + OH–  (2) 
Cl• + Cl- → Cl2•-   (3) 
HOCl + hv → OH• + Cl•   (4) 
 

Yin และคณะ [16] ไดมีศึกษาการกําจัดสาร DCAN ดวย
กระบวนการ UV/Cl2 (UV wavelength 254 nm) พบวา 
Cl• และ OCl- สามารถยอยสลาย DCAN ไปเปนสาร N-
chloro-2,2- dichloroacetamide นอกจากนั้ น  OH•  ที่
เกิดข้ึนจะยอยสลาย DCAN เปนสาร dichloroacetamide 
ซึ่งสาร intermediates ทั้งสองชนิดจะถูกยอยสลายตอเนื่อง
ไปเปน dichloroacetic acid ในที่สุด 
 กระบวนการ UV-LED ออกซิเดชันดวย Cl2 สามารถ
กําจัดไอบูโปรเฟน (Ibuprofen) ไดประมาณ 70% และไนโต
รเบนซีน (Nitrobenzene) ไดประมาณ 50% (pH 7, Cl2 
dose 5 mg-Cl2/L และ UV dose 700 mJ/cm2) [17] และ
ยั ง มี ร า ย ง า น ว า  ใ น ก า ร กํ า จั ด ค า ร บ า ม า เ ซ พี น 
(Carbamazepine) UV-LED/Cl2 มีประสิทธิภาพการกําจัด
สูงถึง 96%  ซึ่งสูงกวา UV-LED/H2O2 ที่มีประสิทธิภาพการ
กําจัดเพียง  16% (Cl2 หรือ H2O2 dose 0.28 mM, UV 
dose 822 mJ/cm2) [18]  
 ถึงแมวา UV-LED/Cl2 จะมีศักยภาพในการกําจัดสาร
มลพิษที่ปนเปอนในน้ําหลายชนิด อยางไรก็ตามยังไมมี
การศึกษาการกําจัด HANs ที่เกิดข้ึนในน้ําประปา ดังนั้น
งานวิจัยนี้มีวัตถุประสงคที่จะทดสอบการกําจัดสารในกลุม 
HANs ไดแก MCAN DCAN DBAN ดวย UV-LED/Cl2 และ
โดยศึกษาผลของความเขมขน Cl2 และ pH ตอการกําจัด 
HANs 

2. วิธีการวิจัย 

2.1 การเตรียมนํ้าตัวอยางสังเคราะห 

น้ํ า ตั ว อย า ง  MCAN (98% , Wako, Japan)  DCAN 
(98%, Sigma-Aldrich, USA) และ DBAN (95% , Wako, 
Japan) สังเคราะห ทําไดโดยละลาย HAN แตละชนิดในอะซิ
โตน  จากนั้นเจือจางใหมีความเขมขน 100 µg/L ดวย
สารละลายฟอสเฟตบัฟเฟอรที่มี Ionic strength 10 mM 
[19] (pH 7 หรือ 8) ซ่ึงเตรียมจาก ไดโซเดียมไฮโดรเจน
ฟอสเฟตเฮปตะไฮเดรต (Na2HPO4·7H2O, Panreac, Spain
) และโซเดียมฟอสเฟตโมโนเบสิก (NaH2PO4·H2O, Carlo 
Erba, France)  

ซึ่ง pH 7 และ 8 มีคลอรีนในรูปแบบที่ตางกันโดยที่ pH 
7 จะมีองคประกอบของคลอรีนในรูปของ HOCl และ OCl- 
ร อ ย ล ะ  80 แ ล ะ  20 ต า ม ลํ า ดั บ  ใ น ข ณ ะ ที่  pH 8 มี
องคประกอบของคลอรีนในรูปของ HOCl และ OCl- รอยละ 
20 และ 80 ตามลําดับ (รูปที่ 1) 

2.2 การติดตั้งเคร่ืองปฏิกรณ UV-LED 

 การทดลองใช UV-LED (275-280 nm, 80-100 mW, 
model TY-UVC-COB-275 -280nm-100 -B, TaoYuan 
Electron (HK) Limited, Hong Kong)  พรอม Heat sink 
ในตําแหนง 7 cm เหนือ Petri Dish (Ø100 mm × สูง 15 
mm) (รูปที่ 2) 
 

 
 

รูปท่ี 2 การติดต้ัง UV-LED 
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2.3 การออกแบบและขั้นตอนการทดลอง 

 ตัวแปรที่ศึกษาไดแก 1) การเปรียบเทียบการกําจัด 
HANs ของกระบวนการ UV-LED/Cl2 UV-LED และ Cl2 
2) ชนิดของสาร HANs ที่กําจัด และ 3) คา pH โดยชุดการ
ทดลองประกอบดวย 1) UV-LED/Cl2 และ ชุดควบคุมไดแก 
2) Cl2 และ 3) UV-LED จะทําในถังปฏิกรณแบบกะ โดยใช
สารละลายฟอสเฟตบัฟเฟอรที่มี MCAN DCAN DBAN แต
ละชนิดมีความเขมขน 100 µg/L (single compound 
solution) ปริมาตร 50 mL มี pH 7 หรือ 8 ตรวจวัดดวย
เคร่ืองวัด pH (HACH sension 2, USA) โดยทําปฏิกิริยาที
ละสาร การทดลองของทั้ ง  3 กระบวนการมี ข้ันตอน
เหมือนกันโดยจะนําน้ําตัวอยางสารละลาย HANs (50 mL) 
ใสลงใน petri dish (รูปที่ 2) สําหรับชุดการทดลอง UV-
LED/Cl2 และ UV-LED จะเปดหลอด UV-LED นอกจากนั้น
ในชุดการทดลอง UV-LED/Cl2 และ Cl2 (ไมเปดหลอด UV-
LED) จะเติมสารละลาย NaOCl ใหมีความเขมขนของ
คลอรีนเทากับ 4 mg-Cl2/L ในการทําปฏิกิริยาเก็บน้ํ า
ตัวอยางคร้ังละ 5  mL ในชวงเวลา 0 5 15 30 45 และ 60 
min และเติมกรดอะซิติกเขมขน 1 M ปริมาตร 100 µL เพื่อ
ปองกันการไฮโดรไลซิสของ MCAN DCAN DBAN โดยการ
ทดลองแตละชุดทําซ้ําทั้งหมด 3 คร้ัง 

2.4 วิธีการวิเคราะห 

 ทําการสกัดตัวอยางดวยวิธี Liquid-Liquid Extraction 
โดยใช USEPA method 551.1 [20] น้ําตัวอยาง 5 mL ใส
ล ง ใ น ข ว ด แ ก ว ใ ส ป ริ ม า ต ร  4 0  mL ที่ มี ฝ า เ ป น 
Polypropylene และมี  Septum ทําจาก Telfon® เติม
โซเดียมซัลเฟต (Na2SO4, Carlo Erba, France) 1 g (เผา 
Na2SO4 ดวย Muffle furnace ที่อุณหภูมิ 400 °C เปนเวลา 
30 min และทิ้งใหเย็นในตูดูดความชื้นกอนนํามาทําการ
สกัด) เติม Methyl-t-Butyl Ether (MtBE, HPLC grade, 
RCI Labscan, Thailand) 5 mL จากนั้นเขยาขวดเปนเวลา 
2 min และตั้งทิ้งไว 4 min ให MtBE แยกชั้นจึงเก็บใสขวดสี
ชาที่มีปริมาตร 2 mL และเก็บไวในชองแชแข็ง (<-10 °C) 
จนกวาจะทําการวิเคราะห ซึ่งจะตองวิเคราะหภายใน 7 วัน 
 ทําการวิ เคราะหความเขมขนของ MCAN DCAN 
DBAN (Extraction solvent 1 µL) ดวยเคร่ืองแกสโครมา
โทกราฟชนิดอีซีดี (GC-ECD, Agilent 4890D, USA) คอลัมน
ช นิ ด  fused silica capillary ( HP-5, 30 m × 0. 25 mm 
I.D. × 0.25 µm film thickness, Agilent, USA) คอลัมน 
head pressure 2 psi อัตราการไหลของ Carrier gas (He 
gas) 1.3 mL/min อัตราการไหลทั้งหมด (He + N2 gas) 40 
mL/min ตั้ ง อุณหภูมิ  Injection port และ Detector ที่  

200°C และ 250°C ตามลําดับ สวน GC temperature 
program เร่ิมตนที่อุณหภูมิ 35 °C เปนเวลา 5 min จากนั้น
เพิ่มอุณหภูมิข้ึนไปที่ 240 °C โดยเพิ่มข้ึนในอัตรา 40 °C/min 
เมื่อถึงอุณหภูมิที่ตั้งไวใหคงอุณหภูมิไวเปนเวลา 1 min [21] 

3. ผลการทดลองและอภิปราย   

รูปที่ 3 4 และ 5 แสดงความเขมขนของ MCAN DCAN 
และ DBAN ตามลําดับ ภายใตกระบวนการ UV-LED/Cl2 

UV-LED และ Cl2 ซึ่งพบวาความสัมพันธระหวางการลดลง
ของความเขมขน HANs กับเวลาเปนปฏิกิริยาอันดับหนึ่ง ที่ 
pH 7 (รูปที่ 3a 4a 5a) การกําจัด MCAN DCAN ภายใต
กระบวนการ UV-LED/Cl2 มีคาคงที่อัตราการเกิดปฏิกิริยา 
(Reaction rate constant, k) และประสิทธิภาพการกําจัด
สูงกวา UV-LED และ Cl2 แตการกําจัด DBAN กลับพบวา
กระบวนการ UV-LED มีคา k และประสิทธิภาพการกําจัดสูง
กวา UV-LED/Cl2 และ Cl2 ดังแสดงในตารางที่ 1  ทั้งนี้
เนื่องจากกลไกหลักในการกําจัด DBAN อาจจะมาจากการ 
Photolysis และ DBAN มีคาสัมประสิทธิ์การดูดกลืนแสง 
(10,000 M-1 cm-1) สูงกวา MCAN (4615 M-1 cm-1) และ 
DCAN (5495 M-1 cm-1) [2] เมื่อทําการวิเคราะหทางสถิติ
โดยวิ ธี  One-way analysis of variance (ANOVA)  ของ
กระบวนการ UV-LED/Cl2 UV-LED และ Cl2 แลวพบวามี
ความแตกตางอยางมีนัยสําคัญ (p < 0.05, p = 0.0038, 
0. 0051, 0. 0463 สํ า ห รั บ  MCAN, DCAN แ ล ะ  DBAN 
ตามลําดับ) หลังจากนั้นจึงไดทําการเปรียบเทียบนัยสําคัญ
ของผลการ กํ า จั ด  HANs แต ล ะชนิ ด  ระหว า งทั้ ง  3 
กระบวนการ โดยวิธี Turkey-Kramer Procedure (รูปที่ 6) 
ซึ่งเปนการเปรียบเทียบผลตางของคาเฉลี่ยประสิทธิภาพการ
กําจัด (Mean difference) กับคา Critical range [22] 

สําหรับ MCAN พบวากระบวนการ UV-LED/Cl2 และ 
UV-LED จัดอยูในกลุมที่มีประสิทธิภาพการกําจัดเทากันแต
สูงวา Cl2 อยางมีนัยสําคัญ สําหรับ DCAN พบวา UV-LED  
กับ Cl2 ไมมีความแตกตางอยางมีนัยสําคัญ และ UV-
LED/Cl2 มีประสิทธิภาพการกําจัดที่สูงกวาอยางมีนัยสําคัญ 
ในสวนสาร DBAN พบวา UV-LED กับ Cl2 เทานั้นที่มีความ
แตกตางอยางมีนัยสําคัญ แต UV-LED และ UV-LED/Cl2 
ไมแตกตางกันอยางมีนัยสําคัญ รูปที่ 6c แสดงผลของการ
เป รียบค า เ ฉลี่ ยประสิทธิ ภ าพการ กํ าจั ดของ  BDAN  
สัญลักษณ AB อยูดวยกันของชุดขอมูล UV-LED/Cl2 
แสดงถึงความไมตางแตกอยางมีนัยสําคัญกับท้ัง 2 กลุม
ขอมูล A และ B 

รูปที่ 3b 4b และ 5b แสดงผลความเขมขนของ HANs 
ที่ pH 8 ในการทดลองการกําจัด MCAN พบวา คา k และ
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ประสิทธิภาพการกําจัดมีลําดับดังนี้ Cl2 > UV-LED/Cl2 > 
UV-LED  ซึ่งแตกตางจากการกําจัด DCAN ที่มีคา k และ
ประสิทธิภาพการกําจัด UV-LED/Cl2 > UV-LED > Cl2 อีก
ทั้งการกําจัด DBAN พบวาคา k และประสิทธิภาพการกําจัด 

UV-LED/Cl2 > UV-LED ≈ Cl2 ดังแสดงในตารางที่ 1จาก
การวิเคราะห ANOVA ของทั้ง 3 กระบวนการ พบวาไมมี
ความแตกตางอยางมีนัยสําคัญ (p > 0.05, p = 0.3424, 
0.3915 , 0.4278  สํ าห รับ  MCAN, DCAN และ  DBAN 
ตามลําดับ)   

 

 
 
รูปท่ี 3 ความเขมขนของ MCAN (C/C0) ท่ี pH 7 (a) และ 8 (b) 
ภายใตกระบวนการ UV-LED/Cl2 UV-LED และ Cl2, [Cl2] = 4 mg-
Cl2/L 
 

เมื่อเปรียบเทียบประสิทธิภาพการกําจัด HANs ที่ pH 
7 แ ล ะ  8  จ ะ พ บ ว า ก ร ะบ วนก า ร เ ติ ม  Cl2 ที่  pH 8 
ประสิทธิภาพการกําจัด MCAN และ DCAN มีคาสูงกวา pH 
7 ทั้งนี้เนื่องมาจาก pH ที่เพิ่มข้ึนสงผลให เกิดการสลายตัว
ดวยกระบวนการ hydrolysis ของ HAN ที่ เพิ่ม ข้ึน [21] 
นอกจากนั้นแลวอาจจะเกิดจากปฏิกิริยา nucleophilic 
attack  จาก OCl-  ที่เพิ่มข้ึน [16] (รูปที่ 1)  อยางไรก็ตาม
พบวาการกําจัดสาร DBAN ดวยกระบวนการ Cl2 ใหผลตรง
ขามทั้งนี้อาจเนื่องมาจากมวลโมเลกุลของ DBAN มีคาสูงกวา 

MCAN และ DCAN จึงทําใหมีความตานทานตอกระบวนการ 
hydrolysis สูงกวา Shi et al. [23] พบวาในสภาวะความ
เขมขน Cl2 3 mg/L สามารถกําจัด DBAN และ DCAN ได
รอยละ 37 และ 65 ตามลําดับ 
 

 
 
รูปท่ี 4 ความเขมขนของ DCAN (C/C0) ท่ี pH 7 (a) และ 8 (b) 
ภายใตกระบวนการ UV-LED/Cl2 UV-LED และ Cl2, [Cl2] = 4 mg-
Cl2/L 
 

จากผลการทดลองพบวา Cl2 มีแนวโนมกําจัด HANs ได
ต่ํากวา UV-LED และ UV-LED- Cl2 เน่ืองจาก Cl2 มีการจําเพาะ
เจาะจงสูง (high selectivity) ในการทําปฏิ กิริยา ในกลุม
สารประกอบอินทรียแอลิแฟติกจําพวก คีโตน กรดอะมิโนท่ีใน
โมเลกุลมีซัล เฟอร  (sulfur-containing amino acids)  และ
สารประกอบอะโรมาติก [24] สวน UV-LED สามารถทําลาย
พันธะของ HANs ดวยปฏิกิริยา photolysis จากนํ้า และยัง
กระตุน Cl2 ในกระบวนการ เพ่ือสราง Cl• Cl2-• และ OH• 
(สมการท่ี 1-4) สําหรับ Cl• เปนสารออกซิไดซท่ีกําจัด HANs ได
ดีกวา OH• เน่ืองจาก Cl• ตอบสนองเชิงบวกกับสารปนเปอนท่ี
อุดมดวยอิเล็กตรอน [25] ดังน้ันจึงทําให UV-LED/Cl2 กําจัด 
HANs ไดดีกวา UV-LED และ Cl2 
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รูปท่ี 5 ความเขมขนของ DBAN (C/C0) ท่ี pH 7 (a) และ 8 (b) 
ภายใตกระบวนการ UV-LED/Cl2 UV-LED และ Cl2, [Cl2] = 4 mg-
Cl2/L 

ในการศึกษาคร้ังนี้ กระบวนการ UV-LED และ UV-
LED/Cl2  มีประสิทธิภาพการกําจัด MCAN DCAN และ 
DBAN อยูในชวงรอยละ 12-52 ในชวงเวลา 60 นาที (ตาราง

ที่ 1 (เมื่อเปรียบเทียบกับงานวิจัยในอดีตที่มีการศึกษาการ
กํ า จั ด MCAN DCAN และ  DBAN ด ว ยกระบวนการที่

คลายคลึงกันไดแกกระบวนการ UV และ Vacuum UV 
(VUV) Kiattisaksiri [2] พบวาประสิทธิภาพการกําจัด HANs 
ดวย UV กําจัด MCAN DCAN และ DBAN ได รอยละ 15 
10 และ 99 ตามลําดับ และ VUV กําจัด MCAN DCAN และ 
DBAN ได รอยละ 70 80 และ 99 ตามลําดับ ในเวลา 60 
นาที ตามลําดับ ซึ่งพบวา UV และ VUV มีประสิทธิภาพการ
กําจัด  DBAN สู งกว า  UV-LED และ UV-LED/Cl2 ทั้ งนี้
เนื่องมาจาก UV-LED ที่ใชในการทดลองมีความยาวคลื่น 
275 nm ซึ่งสูงกวา UV (254 nm) และ VUV (185+254 
nm) ซ่ึงโมเลกุลของ HANs จะสามารถดูดซับแสงที่ความ
ความยาวคลื่นที่ต่ําไดดีกวาสงผลใหสลายตัวไดดีกวา (เชน 
DCAN มีคา Molar absorptivity (ɛ) ที่ 254 nm และ 200 
nm5 ,495 M-1cm-1 และ 14, 000M-1cm-1 ตามลําดับ) [2] 
นอกจากนั้น ในการศึกษานี้กําลังวัตต UV-LED มีคา 80 mW 
(UV intensity 0.590 mW/cm2, UV dose 2131 mJ/cm2 

@ 60 min) ซึ่งนอยกวางานวิจัยในอดีตที่ใชมีกําลังวัตต UV 
และ VUV 30 W (UV intensity 6.64 mW/cm2, UV dose 
23,904 mJ/cm2 @ 60 min)  [2] 
 

 
ตารางท่ี 1 คาคงท่ีอัตราการเกิดปฏิกิริยาและประสิทธิภาพการกําจัด HANs ท่ี pH 7 และ 8 

การทดลอง 
คาคงท่ีอัตราการเกิดปฏิกิริยา (k × 10-3, min-1) ประสิทธิภาพการกําจัดท่ี 60 min (%) 

MCAN DCAN DBAN MCAN DCAN DBAN 

pH 7 UV-LED/Cl2 5.6 (0.997) 11.7 (0.976) 5.6 (0.994) 27.35 ± 4.72 52.64 ± 6.66 28.87 ± 5.32 
 UV-LED 4.4 (0.975) 5.1 (0.996) 6.4 (0.997) 23.87 ± 4.87 25.64 ± 1.08 32.51 ± 1.86 
 Cl2 2.4 (0.968) 5.3 (0.959) 4.5 (0.996) 14.03 ± 0.22 27.22 ± 9.93 24.08 ± 5.32 

pH 8 UV-LED/Cl2 3.2 (0.996) 10.5 (0.991) 5.5 (0.998) 16.95 ± 3.36 48.27 ± 9.38 22.97 ± 3.39 
 UV-LED 2.8 (0.991) 9.8 (0.995) 3.7 (0.979) 12.90 ± 5.15 43.60 ± 16.00 19.58 ± 6.98 
 Cl2 3.6 (0.995) 8.7 (0.950) 3.6 (0.998) 19.06 ± 5.53 37.83 ± 10.15 19.92 ± 0.00 
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4. สรุปผลการศึกษา 

ก า ร กํ า จั ด  MCAN DCAN แ ล ะ  DBAN ภ า ย ใ ต
ก ร ะบ วนกา ร  UV- LED/Cl2 UV- LED และ  Cl2 พบว า
ความสัมพันธระหวางการลดลงของความเขมขน HANs กับ
เวลาเปนปฏิกิริยาอันดับหนึ่ง ที่ pH 7 การกําจัด MCAN 
DCAN ภายใตกระบวนการ UV-LED/Cl2 มีคา k (MCAN = 
5.6 × 10-3 min-1, DCAN = 11.7 × 10-3 min-1) และ

ประสิทธิภาพการกําจัดสูงกวา UV-LED (MCAN = 4.4 × 
10-3 min-1, DCAN = 5.1 × 10-3 min-1) และ Cl2 (MCAN 
= 2.4 × 10-3 min-1, DCAN = 5.3 × 10-3 min-1) แตการ

กําจัด DBAN กลับพบวากระบวนการ UV-LED มีคา k (6.4 
× 10-3 min-1) และประสิทธิภาพการกําจัดสูงกวา UV-

LED/Cl2 (5.6 × 10-3 min-1) และ Cl2 (4.5 × 10-3 min-1) 
ขณะที่ pH 8 การกําจัด MCAN พบวาคา k และประสิทธิภาพ
การกําจัดมีลําดับดังนี้ Cl2 > UV-LED/Cl2 > UV-LED (3.6× 
10-3 > 3.2 × 10-3 > 2.8 × 10-3 min-1) ซึ่งตางจาก DCAN 
ที่มีคา k และประสิทธิภาพการกําจัด UV-LED/Cl2 > UV-
LED > Cl2 (10.5 × 10-3 > 9.8 × 10-3 > 8.7 × 10-3 min-

1) อีกทั้งการกําจัด DBAN พบวาคา k และประสิทธิภาพการ

กําจัด UV-LED/Cl2 > UV-LED ≈ Cl2 (5.5 × 10-3 > 3.7 × 

10-3 ≈ 3.6 × 10-3 min-1) ซึ่งในการวิจัยคร้ังนี้ UV-LED/Cl2 

สามารถกําจัด DCAN ไดดีกวา DBAN และ MCAN ทั้ง pH 7 
และ 8  

ผลจากงานวิจัยนี้แสดงถึงความเปนไปไดของการใช
กระบวนการ UV-LED/Cl2 เพื่อกําจัดสาร HANs ในน้ํา
อยางไรก็ตามยังมีปจจัยอ่ืนที่อาจสงผลตอประสิทธิภาพใน
การกําจัดและควรศึกษาเพิ่มเติมไดแก ปริมาณสารอินทรีย
และไอออนละลายในน้ํา ความเขมของแสง UV และยังรวม
ไปถึงสาร intermediates และ final products และความ
เปนพิษของสารที่ เ กิดจากกระบวนการยอยสลายดวย
กระบวนการ UV-LED/Cl2 และควรมีการศึกษาในรูปแบบ
การไหลตอเนื่อง (continuous flow) เพื่อใหเหมาะสมกับ
สภาพการนําไปใชจริง 

กิตติกรรมประกาศ 

การศึกษาคร้ังนี้ไดรับการสนับสนุนจากทุนวิจัยสําหรับ

คณาจารยบัณฑิตศึกษาเพื่อใหสามารถรับนักศึกษาที่มี

ความสามารถและศักยภาพสูงเขาศึกษาในหลักสูตรและทํา

วิจัยในสาขาที่อาจารยมีความเชี่ยวชาญ ประจําปการศึกษา 

2560 บัณฑิตวิทยาลัย มหาวิทยาลัยขอนแกน ศูนยวิจัยเพื่อ

 

 
 
รูปท่ี 6 การเปรียบคาเฉล่ียประสิทธิภาพการกําจดัท่ี pH 7 โดยวิธี Turkey-Kramer Procedure ของ MCAN (a) DCAN (b) และ DBAN (c) 
ตัวอักษร A หรือ B แสดงกลุมขอมูลท่ีมีนัยสําคัญเทากัน 
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