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บทคัดยอ 
งานวิจัยนี้นําเสนอวิธีไรโครงตาขายชื่อวาวิธีดิฟเฟอเรนเชียลควอดราเจอรสําหรับแกปญหาปวซอง การแกปญหาปวซองเปนข้ันตอนสําคัญ

ขั้นตอนหนึ่งสําหรับการคํานวณพลศาสตรการไหล สนามไฟฟา และการถายเทความรอน วิธีนี้จะประเมินคาอนุพันธตางๆโดยตรงจึงไม
จําเปนตองเกี่ยวของกับกระบวนการของการหาปริพันธ ปญหาปวซองท่ีเลือกถูกวิเคราะหบนโดเมนสี่เหลี่ยมจัตุรสัหนึ่งหนวย  คําตอบของวิธีเชงิ
ตัวเลขจากวิธีดิฟเฟอเรนเชียลควอดราเจอร ถูกนํามาเปรียบเทียบกับคําตอบจากวิธีเชิงวิเคราะหใน 5 กรณี ความผิดพลาดโดยรวมของวิธีการนี้
ต่ํากวาหนึ่งเปอรเซ็นตในทุกกรณี 

คําสําคัญ 

วิธีดิฟเฟอเรนเชียลควอดราเจอร  วิธีไรโครงตาขาย  วิธีการคํานวณเชิงตัวเลข  ปญหาปวซอง 

Abstract 
This article presents a meshless method called Differential Quadrature Method for solving the Poisson problems. 

Solving the Poisson problem is one of the important steps for calculating flow dynamics, electric field, and heat transfer. 
This method estimates the derivatives directly so there is no need to deal with integration process. The selected Poisson’s 
problems were analyzed in a unit square domain.  The numerical solutions were compared with the analytical solutions 
in five cases. The overall error in all cases were less than one percent. 
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1. บทนํา 

วิ ธีเชิงตัวเลขสําหรับการหาคําตอบใหแกสมการเชิง

อนุพันธยอยที่ไดรับการยอมรับอยางแพรหลายในปจจุบันไดแก 

วิธีไฟไนตเอลิเมนต วิธีไฟไนตดิฟเฟอเรนซ และวิธีไฟไนตวอลุม

เปนตน วิธีไฟไนตเอลิเมนตถูกใชอยางกวางขวางในปญหา

กลศาสตรของแข็งซึ่งโดเมนมีรูปรางซับซอน วิธีไฟไนตดิฟเฟอ-

เรนซเปนวิธีที่เกาแกที่สุดของการหาผลเฉลยเชิงตัวเลข แตยัง

สามารถใชงานไดดีในหลากหลายปญหา โดยเฉพาะปญหาที่มี

รูปรางโดเมนไมซับซอน ขอดีของวิธีไฟไนตดิฟเฟอเรนซคือ การ
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สรางสมการคํานวณทําไดงายไมตองอาศัย การหาปริพันธ 

(integration) ที่ยุงยาก วิธีไฟไนตวอลุมเปนอีกวิธีหนึ่งซึ่งตอง

อาศัยวิธีหาปริพันธในการสรางระบบสมการ วิธีนี้ถูกใชอยาง

กวางขวางในการคํานวณพลศาสตรการไหล และการถายเท

ความรอน เปนวิธีที่เหมาะสําหรับโดเมนที่มีรูปรางซับซอน  

ปจจุบันวิธีนี้ถูกนํามาประดิษฐเปนโปรแกรมคํานวณเชิงพาณชิย 

นิยมใชในอุตสาหกรรมตางๆที่ตองเก่ียวของกับแรงผลัก แรงยก

จากความดันของของไหลที่กําลังเคลื่อนที่ผาน และการพา

ความรอนโดยของไหล  

วิธีที่กลาวมาขางตนทุกวิธี ผูใชจะตองจัดเตรียมขอมูลที่

เรยีกวา เมช (mesh) ใหกับโปรแกรมคอมพิวเตอรเรยีกขั้นตอน

นี้ ว า pre-processing step  เมชคือ โครงขายของจุดตอ 

(node) ตางๆที่อยูใกลเคียงกันตรงตําแหนงใดตําแหนงหนึ่ง

ของโดเมนที่ระบุวา เปนจุดตออางอิง ( reference node) 

ตัวอยางของ    เมชสามเหลี่ยม (triangular mesh) ของวิธีไฟ-

ไนตเอลิเมนตเปนไปดังรูปที่ 1(a)  ฟงกชันและคาอนุพันธตางๆ

ที่ตําแหนงตางๆรอบจุดตออางอิง ไดรับอิทธิพลมาจากฟงกชัน

ที่อยูในเอลิเมนตสามเหลี่ยมทั้งหมดที่มีจุดตออางอิงเปนสมาชิก  

เอลิเมนตรูปสามเหลี่ยมจํานวน 6 เอลิเมนตอยูรอบจุดตอ

อางอิง การประมาณคาภายในเอลิเมนตเหลานี้ เปนการ

ประมาณคาแบบเชิงเสน  เอลิเมนตตางๆจะตองไมซอนทับกัน

และกระจายตัวใหครอบคลุมทั่วทั้งโดเมนโดยไมมีชองวาง 

วิ ธีไรโครงตาขายหรือ meshless method ถูกคิดคน

ขึ้นมาเพื่อใหการคํานวณเชิงเลขไมตองอาศัยเมช เพราะการ

สรางเมชเปนขั้นตอนที่ใชระยะเวลานาน ตองตรวจสอบความ

ถูกตองในการเชื่อมตอระหวางจุดตอตางๆ ในเอลิเมนต และ

อาจตองตรวจสอบรูปรางของเอลิเมนตดวย ปญหานี้จะมี

ผลกระทบอยางยิ่งในปญหาสามมิติ ปญหาไมอยูตัวที่รูปราง

ของโดเมนเปลี่ยนแปลงไปตามเวลา ตัวอยางของวิธีไรโครงตา

ขายในปจจุบันมีอยูมากมาย รายชื่อวิธีไรโครงตาขายบางสวนที่

มี อ ยู ในปจจุบั น ไดแก  Element-Free Galerkin method 

( EFG)  [ 1] , Local Meshless Petrov- Galerkin method 

( MLPG)  [ 2] , Kansa’ s method [ 3] , Method of 

Fundamental solutions [ 4] , Differential Quadrature 

Method (DQM) [5], Smoothed Particle Hydrodynamics 

method  ( SPH)  [ 6]  และ  Reproducing Kernel Particle 

Methods (RKPM) [7] เปนตน ความแตกตางของแตละวิธี

สามารถอานเพิ่มเติมไดใน [8]  

 

(a)   

 
(b) 

 
รูปที่ 1  ความแตกตางของสองวิธีที่ใชในการหาผลเฉลยเชิงตัวเลข (a) 
Triangular mesh ของวิธีไฟไนตเอลิเมนต (b) วิธีที่ไมตองจัดเตรียมเมช
ใหกับการคํานวณ (meshless) เพราะวิธีการน้ีจะคนหาจุดที่เกี่ยวของ
โดยอัตโนมัติ 

 

วัตถุประสงคของงานวิจัยนี้ คือเพื่อแสดงข้ันตอนในการ

ป ระ ดิ ษ ฐ ร ะ เ บี ยบ วิ ธี ขอ ง  meshless method สํ า ห รั บ

ปญหาปวซอง ซึ่งเปนปญหาพื้นฐานสําคัญทางคณิตศาสตรและ

วิศวกรรม วิธี meshless ที่ตองการนําเสนอคือ differential 

quadrature method ( DQM)  ผู ใ ช ไ ม จํ า เ ป น ต อ ง มี ก า ร

จัดเตรียมเมชกอนเริ่มการคํานวณ  การหาโครงขายของจุดตอ 

สามารถทําไดแบบอัตโนมัติดวย การกําหนดของอาณาเขตของ

โดเมนยอยเชน รูปวงกลม เปนตน ภายในวงกลมมี จุดตอ

สนับสนุน (supporting nodes) และจุดตออางอิง อยูรวมกัน

ดังรูปที่ 1(b)  วงกลมรอบจุดตออางอิงตางๆสามารถซอนทับ

กันได จุดตอที่อยูนอกวงกลมถือวาไมไดมีสวนรวมในการสราง

สมการของจุดตออางอิงนั้น  ระบบสมการขนาดใหญเกิดจาก

การรวบรวมสมการของจุดตออางอิงตางๆ ที่อยูภายในโดเมน 

และจุดตออางอิงบนขอบเขต (กรณีที่ไมไดระบุคาผลเฉลย

ใหกับจุดตอนั้น) 
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ปญหาของปวซองถือเปนปญหาพื้นฐานสําคัญของ การ 

ศึกษาทางวิศวกรรมดานตางๆไดแก การนําความรอนในวัตถุ 

การไหลแบบอัดตัวไมไดและไมมีความหนืด สนามความดันใน

การไหลแบบไมอัดตัวและมีความหนืด สนามไฟฟาสถิตย สนาม

การไหลของน้ําใตดิน เปนตน ดังนั้นในบทความนี้จึงใหความ

สนใจไปที่สมการนี้เพียงอยางเดียวเพื่อทําความเขาใจถึงการใช

เทคนิค DQM ไดอยางถูกตองเหมาะสม หัวขอที่จะกลาวถึง

ต อ ไป ได แก  หลั กคิ ดของ  DQM ต อจากนั้ น เปน หั วข อ

วิธีดําเนินการวิจัย หัวขอตอไปคือผลการศึกษา และหัวขอ

สุดทายเปนสรุปผลการศึกษา 

 

2. Differential Quadrature Method (DQM) 

กําหนดใหโดเมนของปญหาคือตัวแปร   และขอบเขต

ของปญหาคือตัวแปร   ในบทความนี้ตองการนําเสนอการใช

วิธี DQM เพื่อหาผลเฉลยเชิงตัวเลขสําหรับปญหาที่เปนไปตาม

สมการทั่วไปแบบปวซองดังนี้ 
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โดยใชเงื่อนไขขอบเขตแบบดิริเคลท (Dirichlet) หรือ

เงื่อนไขระบุคา u  บนขอบเขต   โดยใชคําตอบเชิงวิเคราะห 

 yxue ,    ในการสรางสมการดวยวิธีนี้ไมจําเปนตองมีการหา

ปริพันธ แตใชการหารูปแบบสมการพีชคณิตเทียบเทาสําหรับ

อนุพันธ อันดับสองที่ เ ก่ียวของของสมการ ซึ่ ง ในที่นี้คือ 
22 xu  และ 22 yu  สําหรับแตละจุดที่ยังไมทราบคา 

u     
ขั้นตอนแรกของวิธี DQM คือการกําหนดฟงกชันประมาณ

คาใหแกตัวแปรไมทราบคา u ภายในอาณาเขตรอบจุดอางอิงที่

ถูกกําหนดโดยผูใช  ฟงกชันประมาณคาคือ ฟงกชันโพลิโน

เมียลอันดับที่สอง ซึ่งสามารถหาอนุพันธไดสองครั้งโดยไมมีคา

อนุพันธอันดับที่สองกลายเปนศูนย  ฟงกชัน  yxu ,  ถูก

ประมาณคาดวยผลบวกขององคประกอบโพลีโนเมียลจํานวน 6 

พจนดังสมการที่ (2) 
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โดย 6,,2,1, kak  คือสัมประสิทธิ์คาคงที่ของแตละ

องคประกอบโพลิโนเมียล 6,,2,1, kpk  ซึ่งเปนฟงกชัน

องคประกอบโพลีโนเมียลดังตอไปนี้ 
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หลังจากแทนคา  yxp ,1  ถึง  yxp ,6  ในสมการที่ 

(2) จะไดสมการดงันี้ 

  yaxaayxu 321,   
2

65
2

4 yaxyaxa   

 

(4) 

คาอนุพันธอันดับสองของ  yxu , เทียบกับระยะทาง x   

หาไดจาก 

4

6

1
2

2

2

2

2aa
x

p

x

u

k
k

k 





 



 (5) 

และคาอนุพันธอันดับสองของ  yxu , เทียบกับระยะทาง

y  หาไดจาก 

6

6

1
2

2

2

2

2aa
y

p

y

u

k
k

k 





 



 (6) 

วิธี DQM กําหนดใหคาอนุพันธทั้งสองสามารถหาไดจาก

ผลบวกของผลคูณระหวางตัวแปร jb  และ jc  กับคา u  

ตางๆที่อยูในขอบเขตรอบจุดตออางอิงดังตอไปนี้ 

    





 6

1
2

2

j
jjbu

x

u
 

662211 ububub    (7) 

และ 

    





 6

1
2

2

j
jjcu

y

u
 

662211 ucucuc    

 

 

(8) 

โดย 
  13121111 , yaxaayxuu     

                  
2
16115

2
14 yayxaxa                           (9a) 
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  23221222 , yaxaayxuu                           

                   
2
26225

2
24 yayxaxa   (9b) 

  33321333 , yaxaayxuu                          

                   
2
363135

2
34 yayxaxa   (9c) 

  43421444 , yaxaayxuu                           

                  
2
46445

2
44 yayxaxa   (9d) 

  53521555 , yaxaayxuu                            

                  
2
56555

2
54 yayxaxa   (9e) 

  63621666 , yaxaayxuu                            

                  
2
66665

2
64 yayxaxa   (9f) 

หากเปรียบเทียบสมการที่ (5) และ (7) จะพบวา 
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2
4

2
3

2
2

2
1

665544332211

2
6

2
5

2
4

2
3

2
2

2
1

654321

654321

b

b

b

b
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(10) 

ในทํานองเดียวกัน หากเปรียบเทียบสมการที่ (6) และ (8) 

จะพบวา 
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(11) 

สัมประสิทธิ์คาคงที่  jb  ทั้ ง  6 คาและ  jc ทั้ ง  6 คา

สามารถคํานวณไดจาก การใชวิธีเมตริกซผกผันจากสมการที่ 

(10) และ (11) ตามลําดับ การแทนสมการที่ (7) และ (8) ลงใน

สมการที่ (1) จะทําใหไดสมการคํานวณสําหรับจุดตออางอิง

ใดๆที่มีกลุมจุดตอรอบขางจํานวน 5 จุดตอดังนี้ 

       222111 ucbucb  

                    66666 , yxgucb   (12) 

ถาพิจารณารูปที่ 2 และ 3 และสมมุติวา จุดตออางอิง คือ 

616 Uu   จุ ด ต อ ส นั บ ส นุ น ป ร ะ กอ บ ด ว ย  491 Uu  , 

502 Uu  , 623 Uu  , 724 Uu   และ 605 Uu    โดย

u หมายถึงตัวแปรของจุดตอภายในพื้นที่รอบจุดตออางอิง และ 

U  หมายถึงตัวแปรของจุดตอในโดเมน   หากตองการคํานวณ

คาตัวแปร U  ของจุดตอทั้งโดเมนจะตองนําเอา 81 สมการมา

ประกอบเขาดวยกันแลวเพิ่มเงื่อนไขขอบเขตจํานวน  40 

สมการ ดังนั้นระบบสมการพีชคณิตเชิงเสนคือ 

      11211121121121   GUA  (13) 

โดย  A  คือเมตริกซสัมประสิทธิ์,  U  คือเวคเตอรของ

คําตอบและ  G  คือเวคเตอรดานขวามือของเมตริกซ ในที่สุด

ตัวแปรไมทราบคาในเวคเตอร  U จํานวน 81 คาหาไดจากวิธี 

กํ า จั ดตั ว แปรแบบ เกาส  (Gauss elimination method) 

สําหรับกรณีที่จํานวนจุดตอไมมากนัก แตถาจะใชกับโจทยที่มี

จํานวนจุดตอคอนขางมาก ควรใชวิธีการแกระบบเมตริกซดวย

การคาํนวณซ้ํา (iterative method) ไดแก วิธียาโคบี (Jacobi) 

หรือวิ ธี เกาส ไซ เดิล (Gauss Seidel)  เปนตน  โปรแกรม

คอมพิวเตอรถูกสรางข้ึนมาดวยภาษา fortran90  

 
 

รูปที่ 2  ตัวอยางของกลุมจุดตอท่ีใชในการสรางสมการพีชคณิต
ประกอบดวยจุดตออางอิง (หมายเลข 6) และจุดตอรอบขาง (หมายเลข 
1 ถึง 5) 

 

3. วิธีดําเนินงานวิจัย 

สมการสําหรับปญหาของปวซองคือ สมการที่ (1) ถูกเลือก

มาใชในการตรวจสอบความแมนยําของวิธี DQM  โดเมนการ

คํานวณถูกกําหนดให เปนสี่ เหลี่ยมจัตุรัสขนาด 1 หนวย 

ระยะหางระหวางจุดตอแบบสม่ําเสมอเทากับ 0.1 หนวยทั้ง

แกน  x  และแกน y  หรืออาจ เรี ยกว ากริดมี รูปแบบ 

(structured grid) ก็ไดดังรปูที่ 3 

คาของตัวแปรบนขอบเขตเปนตัวแปรที่ทราบคา ซึ่งนํามา

จากคําตอบเชิงวิเคราะห (exact solution) ของแตละกรณี 

กรณีทดสอบทั้งหมด 5 กรณีมีตัวแปร  yxg , และผลเฉลย

เชิงวิเคราะห  yxue , ดังนี้ 
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1.  พจน  g มี ค า เป นศู นย ทั้ ง โ ด เมน ,    0, yxg , 

        sinhsinsinh, xyyxue   

2.  พ จ น  g มี ค า ค ง ที่ ทั้ ง โ ด เ ม น ,   26, yxg , 

   232, yxyxue   

3. พจน g เปลี่ยนแปลงตาม x และ y แบบเสนตรง,

   yxyxg  12, ,    3, yxyxue   

4. พจน g เปลี่ยนแปลงตาม x และ y แบบเอกโปเนน

เชียล,   yxeyxg  2, ,   yx
e eyxu ,  

5. พจน g เปลี่ยนแปลงตาม x และ y แบบฟงกชันสวน

กลับของผลบวกยกกํ าลั ง ,     314,  yxyxg , 

   11,  yxyxue  

 

 
 

รูปที่ 3  ตําแหนงและหมายเลขของ 121 node ที่ใชในการคํานวณ
ภายในโดเมนรูปสี่เหลี่ยมจัตุรัสหนึ่งหนวย  

 

ผูวิจัยเลือกกรณีทดสอบทั้ง 5 กรณีเพื่อใหเปนกรณีทดสอบ

ที่มีคําตอบเชิงวิเคราะหที่แตกตางและ งายตอการตรวจสอบ

ความถูกตองดวยการแทนคําตอบนั้น เขาไปในสมการปวซอง 

เพื่อพิสูจนวาคําตอบเชิงวิเคราะหนั้นถูกตองหรือไม ผูอาน

สามารถประยุกตแนวทางอ่ืนกับวิธี DQM ในการสรางโครงขาย

ระหวาง 5 จุดตอรอบขางและจุดตออางอิง แตทุกโครงขายตอง

มี 6 จุดตอเทานั้นเพราะผูวิจัยใชฟงกชันโพลีโนเมียลกําลังสอง

ในการประมาณคา  รูปแบบโครงขายที่ผูวิจัยใชคือรูปแบบใน

รูปที่ 2  เพราะไดมาจากการคํานวณระยะทางระหวางจุดตอ

รอบขางกับจุดตออางอิง  รูปแบบนี้ประกอบดวย จุดตอรอบ

ขางหรือจุดตอสนับสนุนจํานวน 2 จุดตอในแนวแกน x  (จุด

ตอ 3 และ 5) และ y (จุดตอ 2 และ 4) ที่เหลือคือ จุดตอ  1 

ที่ตองมีอยูเพื่อทําใหเมตรกิซของจุดตออางอิงเปนเมตริกซจัตุรัส 

6 x 6 ซึ่งสามารถหาเมตริกซผกผันได หากตองการใชรูปแบบ

อ่ืนก็สามารถทําไดเชนกัน  การเพิ่มอันดับของโพลีโนเมียลให

สูงขึ้นจําเปนที่จะตองมีจํานวนจุดตอ เขามาเก่ียวของมากขึ้น 

 

4. ผลการศึกษา 

ความผิดพลาด 2-norm ( E )  ถูกใชในการประเมิน

เปอรเซ็นตความผิดพลาดโดยรวมจากทุกจุดตอ ในโดเมนของ 

ผลเฉลยเชิงตัวเลข (numerical solution) จากผลเฉลยเชิง

วิเคราะหมีนิยามวา 

  %100
1

2

1

2 








 


N

i
e

N

i
Ne uuuE  (14) 

ตารางที่ 1 สรุปเปอรเซนตความผิดพลาด norm-2 ของทั้ง

โดเมนสําหรับทุกกรณีทดสอบ   เห็นไดวาความผิดพลาดของ

ทุกกรณีต่ํากวา 1 เปอรเซ็นต ดังนั้นวิธี DQM ใหคําตอบที่มี

ความแมนยําสูงมาก 

 
ตารางท่ี 1  เปอร เซนตความผิดพลาดของผลเฉลยจากวิธี  DQM 

สําหรับทุกกรณี 

กรณ ี เปอรเซนตความผิดพลาด (%) 

1 11015720.4   

2 41020756.2   

3 41029308.9   

4 31065026.3   

5 21002055.1   
 

ผลเฉลยจากวิธี DQM และความผิดพลาดของผลเฉลยจาก

วิธี DQM สําหรับกรณีที่ 1, 2, 3, 4 และ 5 แสดงอยูในรูปที่  4, 

5, 6, 7 และ 8 ตามลําดับ  
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(a)  

(b)  
 

รูปที่ 4 (a) ผลเฉลยจากวิธี DQM (b) ความผิดพลาดเฉพาะท่ีของวิธี 
DQM สําหรับกรณีที่ 1  
 

 (a)  

(b)  
 

รูปที่ 5  (a) ผลเฉลยจากวิธี DQM (b) ความผิดพลาดเฉพาะท่ีของวิธี 
DQM สําหรับกรณีที่ 2  

(a)  

(b)  
 

รูปที่ 6 (a) ผลเฉลยจากวิธี DQM (b) ความผิดพลาดเฉพาะท่ีของวิธี 
DQM สําหรับกรณีที่ 3 
 

(a)  

(b)  
 

รูปที่ 7  ผลเฉลยจากวิธี DQM และความผิดพลาดเฉพาะที่ของวิ ธี 
DQM สําหรับกรณีที่ 4 
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(a)  

(b)  
 

รูปที่ 8  (a) ผลเฉลยจากวิธี DQM (b) ความผิดพลาดเฉพาะท่ีของวิธี 
DQM สําหรับกรณีที่ 5 

 

ความผิดพลาดเฉพาะที่ (Error) ของผลเฉลยจากวิธี DQM 

มีนิยามวา 
       %100,,,  yxuyxuyxuError eNe

 (15) 

คาสูงสุดของความผิดพลาดเฉพาะที่ทั้ง 5 กรณีสวนใหญ

เกิดขึ้นตรงมุมซายลางยกเวนกรณีที่ 1 ความผิดพลาดเฉพาะที่

สูงสุดอยูตามแนวเสน y  = 0.125 หนวย กรณีที่ 4 ความ

ผิดพลาดเฉพาะที่สูงสุดอยูที่ตําแหนงก่ึงกลางของแผนสี่เหลี่ยม

จัตุรัส  

 

5. สรุปผลการศึกษา 

การคาํนวณแบบไรโครงตาขายทําใหผูวิเคราะหสามารถละ

ทิ้งขั้นตอนการสรางเมชได แมวาจะมีผูวิจัยทางดานนี้แลว

พอสมควรและมีแนวโนมวาจะเพ่ิมข้ึนเร่ือยๆ ในตางประเทศแต

การศึกษาในประเทศไทยมีคอนขางนอยมาก ผูวิจัยหวังวา

ขอมูลนี้จะเปนประโยชนตองานวิจัยของผูอาน บทความนี้ใชวิธี

ไรโครงตาขายชื่อวา DQM เพื่อวิเคราะหปญหาปวซองใน

โดเมนสี่เหลี่ยมจัตุรัสหนึ่งหนวย  ขั้นตอนของการสรางสมการ

พีชคณิตแสดงอยูในบทความนี้ เชนกัน  ปญหาที่ใชในการ

ทดสอบความแมนยําของวิธี DQM มีทั้งหมดหากรณี แตละ

กรณีมีความแตกตางกันที่คา g ทางดานขวามือของสมการปว

ซอง ผลการศึกษาพบวาวิธี DQM ใหคาความผิดพลาดโดยรวม

นอยกวา 1% ในทุกกรณี  ขอจํากัดของวิธี DQM ที่คิดวา

จะตองปรับปรุงคือ การเพิ่มกระบวนการคนหาจุดตออัตโนมัติ 

และการหาคาอนุพันธตางๆ โดยมีจุดตอสนับสนุนมากกวา 6 

จุดตอซึ่งเปนสิ่งที่เลี่ยงไดยาก หากตองนํามาใชกับจุดตอที่

กระจายไปทั่วทั้งโดเมนโดยไรระเบียบ 

แนวทางที่สามารถตอยอดไดการนําไปใชในปญหาอื่นๆ คือ 

การวิเคราะหปญหาที่สภาวะไมอยูตัว การวิเคราะหปญหาสาม

มิติ การวิเคราะหปญหาทางกลศาสตรของแข็ง กลศาสตรของ

ไหล ปญหาทางวิศวกรรมไฟฟา ปญหาทางวิศวกรรมโยธา 

ปญหาทางวิศวกรรมเคมี รวมถึงการทดสอบวิธี DQM กับ

ปญหาที่มีรูปรางซับซอน เปนตน 
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