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Effects of temperature distribution on portable rotary dryer using finite thermal resistance
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m/s FABILUY FTR ﬁ]ximqmmumsauLmqwmmwawlmwmimam‘[mmaaaagw 11.3 Clmqmuguammqgﬁqu 69.6 °C
AUAAIAAADULRAY 9.2% duYadis CFD 1é’qmmﬁamﬁqgaqmﬁ 83.0 °C Aa1ALAABUIINNSNAABlAELRaE 4.0% Tededis
winulvesgamgiiarlulufimmaieaiunainnisveaes fisnsnisaemanuieuadeeyil 49.28 fnd Tudauveamsiinsigh
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Abstract

This research studied the fluid dynamics and thermal boundary distribution on portable rotary dryers using finite
thermal resistance analysis with no external conditions involved. A small squared-edged rotary dryer was used to generate
a swirling of hot air. The study was conducted with a mathematical model of finite thermal resistance (FTR) and the
computational fluid dynamics (CFD) model for calculating drying temperature and heat transfer rate. Afterward, the

experimental results were examined in real conditions using the testing equipment. The test results revealed that at the
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actual experimental temperature of 85 °C, hot air velocity of 1.5 m/s, the FTR method, the drying temperature was lower

than the average experimental result at 11.3 °C, with the maximum drying temperature of 69.6 °C and an average deviation
of 9.2%. The CFD method resulted in the highest drying temperature of 83.0 °C, with an average deviation of 4.0%. Both

methods showed the same direction as the experimental results with the average heat transfer rate of 49.28 watts. In the

analysis of the uncertainty of drying temperature, the FTR and CFD methods resulted in +2.171 °C and %2.252 °C,
respectively. The Coefficient of Determination: R? of the FTR and the CFD method provided the values of 0.9679 and
0.9989, respectively. The results can be applied in the analysis of the drying temperature of rotary dryers for other

products.
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2. MEAuasisn1ivg
2.1 Portable rotary dryer
Tnssa$randnueaindsauursuuunyuUszneue
vionsenszuanuyuviyudsaimnaufuLuIse iy
iielianiaztnunouuiainnisiedeud Wnianazgn
Joudhnsvanedranisveaiensinszuendsazgnihli
widlponnsdudatuanfeuilnasiuvienssnszuanvie
Tnonsduilafuiivienssnszueniifianufevluvasiin
nsindeudilunuiBsvewionsanseuen [9] fuans
mug‘dﬂ' 1
2.2 Geometric model
dnwalnnamuiifveirdoseunisunadnnsain
AN (Squared edged) lagnesnuuulazilisuluulag
141Usunsu SolidWorks ileldlunsdrasuaziinszs
anmnsinavesemeaeunazaunginigluvisauwi
dnlaseainavesiivioi uuenLIATIEIRUY WuUT1Aed
Alluinsgignuaniniuguil 1

nsasauuuaesazUseneulusmenssiusiudeya
mamada udihwanisirassilinnlusunsaluguuuy
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[21] §99252089015A1MUARIVBULYANITI1A0
(Boundary condition) laA Amnsiilinesvesveanaily
91M1eWie Jandmsuriuisvesieuiliuie wsdives
AfifeanIsiodasdmaNSeus i (c/c,), i
lutana (kg/mol), Aunilalawndin (Pa-s), A11YAIN
Foudnag (J/kg-K) Arn1suiamusou (W/m-K) way
ALY (kg/m?) [22]

cetary Dryer =4
3 =
[y . Verar . ]
ml Ferilzer Dry Solid outout
Moior
V) | Blower
rweriercentrel e : 7y :
L‘;, . Eleoirio Hearer
P

WEIOr CoNfrol L

JUN 1 (a) duUI¥N0UYRILATRIBULILU UV UL WIUBY
wuaLan (b) Model of Portable rotary dryer (c) laagunsunis
MUYBIATEY

2.3 Thermal flow in pipes

Wevaslvaluakuvesuuwisniigamaiiinieluvie
wani1eangungiivesvedlradzinisaiemainuiou
\Windu Msdsuulasgungiveslranasnainugiivie

aunsamunalanadl [23]
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hA /mC,

L=T—(T,-T)e """ M
T-T
AT, =—t—— @)
T -T
11'1 _s e
[R—Z}
Q=mC,(T,~T) (3)

o

C, Ao AnugANuTeudmzyesian (J/kg°0)

m fAw 8nsINsiualdeng (ke/s)

T #e gamgiiniseonviegungiivesivaiinidn
Taqluvierfuaingmizusi (°0)

T fo gumniiiovie Tnefifinnsnszanegamniiviniu
naemaR (°0)

T, Ao gaumgimadn (°C)

AT, fio gaungiunnstssznineiiavieduveslva
(Logarithmic mean temperature, °C)

0 fig onsINsaemANSou (W)

2.4 WludwmasuaasBaunud

MsmemaNuTaukaznsmeuniniglurieauwis
wana1nlIsn19nnasslunealfuanisuda[9] 15184
ANU130AATIZVUALATINABURUNYAVDINITOURTIUUY
vionyurdnanfouaruiielfiinmuwsiudiveanis
Passeneuiames Ingldnsimeigunginieluve
kUU thermal resistance network Mi‘d‘w 2(a) nely
aumadail [23]

1 In(r,/r) In(x/r,) 1

R, ., = + +—2—2-4 @)
hd — 2xkL 27kl hA,
. T -T
quréwe =u (5)
’ Rmtal
b

R 9 AUAIUNINS aLdannusauYanilavia

total

U (°C/W)

Osee 0 BMTIMIABMAMTOUVDIHTIIDOU (W)

b

h A duuseanoniswiaduseau (W/°0)

D

k @B Thermal conductivity (W/m-°C)

@ | | 0. 2. (b)

Insulation

i, R 10 e

gﬂﬁz (a) Multilayered cylindrical thermal resistance
network (b) Finite thermal resistance

lWludivesunaidaunud (Finite thermal
resistance, FTR) 1 un13f1uamnisaieanusouds
HauNaIukwIAnMIBIludlqu(Finite Volume) way
Wesuoa3Taunus (Thermal Resistance) Usznautdng
iy [24] [25] evihnisuusuiunsaneluvieauTiiy
USumsaaueu (control volume) ne Aveidaming fu
widameluvielnsusasduiinnuenavingfu (Le) Fos
sofulunaanAuevie figuil 2(b) Tnsnsaemaiy
Sounteluvieaingungiitdrluauianisesnviesy

WisuisuAvaun1s Thermal flow in pipes Tuaunisi

1%

Yo A
1) lodsil
G-T) @D,
VolConv,edge RThermalFlow + VolConv ,edge
VolConv ed;
T :T_(T_T) 0lConv ,edge (7)
e K K i R +R
Thermal Flow VolConv,edge
VolConv edge — e*hAS/rhCP (8)
RT hermal Flow + RVol Conv ,edge
—hA_/mC
— s o
Thermal Flow — RVo/Conv,edge (e 1) (9)
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thermal

ANEIve (CC/W)

R AD AITUATUNIUNISAIINSDUNVDU

VolConv,edge

USumsmvauduuengn CC/W) = _2
hPL

A a
A9 ANNENIUININTAIUAL (M)

Le’
P @9
AS

WuveureslSunsmuaunduiavesiva (m)
funiniswiauieu (m?) = PL
2

®o o

A
A fe wuimddnnieluvie (m?)
p fo AnuvuduYedian (ke/m?)

v #o anusiausauluvie (m/s)

2.5 Computational fluid dynamics, CFD

warnansvesluaidediuins CFD 1 Jun1siAsen
Usngmsaliifendesiumsluasieg msmomanuiou
N1TuNsNIEA8veIRUNIA tngldnauiiineidienina
masuaxaﬁ’waquaﬂswﬁLﬁm%u Fausznaudieaunis
aunaIaluUAY Lazaun1sndasnu [5] Saunisida
ou¥nting  Tuans uasndsnu eldUssRugiunan
aruassiinatulifinegame mslingded 2 vesdn
Funagndsnutulifinisgyme audidu deliian

aunsdveyiusdosdanunsaaguaumslanad

auNsLRYSNYNIE

o(pu) . o(pv) . apw) _ 0 (10)
ox oy Oz

aunsWeeusnYlumUAY 3 wwuny :
Momentum direction X:

ou Ou ou oP u Ou du (11)
plu—+v—tw— |=—+ul —+—+—
ox oy oz ox ox- oy Oz

Momentum direction y:

aV 51/ aV GP azv 62\/ aZV (12)
plu—+v—tw—|=—+pu| —S+—+—
ox 0Oy oz | oy ox~ oy Oz

Momentum direction z:

ow  ow ow| OP ow O'w O'w (13)
plu—+v—tw— |=—+pu| —+—F+—
Ox oy oz 0z ox” oy Oz

AUNITOUTNYNAIY :
or (o or) o or) o or
pC——| | k— |+—| k— |+—| k— | |-0=0 (14)
ot ox\_ Ox/) oy\ 0Oy /) 0z\ Oz

2.6 \nsesiiouazisnnmaaad

2.6.1 \nTasilodmiunaaas

mu"?%’mj@ﬁLﬁuﬂﬁimmaaqﬁﬁawﬁﬂ’amiﬁa
QRAMNTTN AMTATAIAATAAAINNTIY UNITNEIRY
wielulagsvasnadany Inewnvouunu THadosouuis
WUUYieunyu (Rotary Drum Dryer) Us¢Naunl8e
nsenszuenyydsatunusEFuLioliTaqiinns
indoufiuaziinnisuanilasunnnuiou Yandidesnis
suuaazgnieulimaaetravilsvemiensnszuends
Yanazgnvirliukelasnmsdudatuanfoudilvasusie
n3anszuen iolasmsdudaiuiaviensenszueniil
Awfeuvasitaniadeuiluniuyudosvesvie
ysanszuen [9] SuaTeseuuraitnaldlunisvaaosnds
fifmueviesuuiaianwdnuiuen 1 was vhaudes
1 2IMAURLITEAU LHURIAUENAT 0.3 1UAT T1UIUUKY
gntuvieauLIiall 7 Wiy welmesAuidwIn 1.5 wsash
THiAe$na 1:30 Tuanesouia 0.5 wsedh deranudoudi
THlunsmaassegil 30-85°C uazingamaieuusislasly
wesluduilaria K Sasnslnavesauiougagndl 200
cfm YWInYBIdAWas 4000 nd firn1enisivavesausou
fuFanduuuuauma veuwsveAdeseuLsisligaani
10-15 kg/h diiundndsufudenfivanndnnosdeas
dsmasealdiefifintu eradanisuandnuestasiu
nsdifildmnmisisevgaiuly

2.6.2 MSNNUAVBULYANITINABY

d115UN1SAINUATBULYANISANYI(boundary
conditions) M19AAFEUANY NMTOLINE NI LTHY
iy TnguesyBios (Fourier’s law) Bananamnadusius

senI1eUTuunNand (lux) g Auauduvesgunyil
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(Temperature gradient) Tufiein199uang19iu d1m5u
Yeymnsnszaredivesnusoulsznauiey

- aunINHlawy (domain surface) lag T, 813
[ 1 Y =) v fa
Wuamsa viieulsiulunulaeasiium x, y, z kaglian
t

- ufiveslawuiimsliuiinuenuieu g, viudng
A7 Tunsdlduil Usinandng q melutaniifadosauna
AUUSHIUAINTOUANATENY AD g = -qs

- InkuAnnisanewmausoulaen1sn (convection
heat transfer) Tng h AeduUszAnsnismiaudou uay
UNONWINTONUNLYNIFINA1TOUTNS

- lunaveulwnuean1saaetazlsenauluiienis
vos¥aqliifuviewdn AlSI304 guugiifindsviamund
293 K #70uun)iivied vu1AYeaUe1d 1LUAT 3U1A
VRRUHURIAUENA 0.3 1WAs Mat-aanvieay 0.065
\un3, Default roughness: 100.0 lulasiuns Tngluina
wazwoulwndiltlunismaasazgnadiasnelusunsumiy
g‘dﬁ 3

madnviseunie gaumgll 358.15 K manunsiauseu
1.5 m/s tduuuvu Fuly developed flow. The
turbulence intensity was set at 2%, The turbulence
length 0.005 m

- NN40BNYIBOU AUYALIAUAUUTTEINIA 101,325

Pa L‘TJUEULLUU static pressure

U 3 lumauazveuuaiildlunmmeaes

M5 1 dayaildlunisvaaeuazuin

Symbol Variables Value Unit
A Cross-sectional area of | 0.07 m’
rotary dryer
D Diameter 0.3 m
Lo Length of rotary dryer 1 m
V Volume of rotary dryer 0.07 m’
Con Specific heat of air 1.009 | kJ/kg’C

Cov Specific heat of vapor 4.185
Cow Specific heat of water 1.172 | kI/kg°C

Te Hot air temperature 30-85 °C

Gv Hot air flow rate 0.268 | kg/min

L Latent heat of water @ 2270 kJ/ke
100°C

RH Relative humility 60 %RH

3. WAN159Y

91NMNINARBIATOIB UL UMM LUUIUDLILUN
Endianusiaufeuldaedeedd 1.5 m/s sasinnslva
yosauouLade 0.28 kg/min gumgiivesauiousas 30-
85°C uagAUFITOUVBVIBBULAY 20 Soudeunl Tned
nMsfuamneufiuneiiiiodudunaniimaasdlagld
ANN1TNNANNAIEASAI8TS Finite thermal resistance
wagldaislumanfauiuinnisinaenavenasansues
Inatgadruiunislusunsy SolidWorks simulation
ver.2021 13U 3 Inslusunsuazsinnisdrasasig
aunsliseysndiia waww uazlumudu laeilisingu
1N9NANN15Y89 Navier-Stokes Tugunnsdl 10-13
3.1 wan1svaassigampiniseuniineluiaiesey

wuuviavyuIIaangUNswmanuing

NHANTNAABIGUNYTINITOUUIVB AT IB UL
wuuevLIUAngUnsIida e AR sV
YDA gldIBN1sAuMIUNIAUTEUSe Finite
thermal resistance $3uUN1531889 CFD kagyinnnsg
fudunanissianssnenisnaaeinisiesufiRnng 4
puvnfouutiaiinanosfodus 30 - 85 °C uielvinsuils

wualiuvesaunginisluieieseunisdsaziilugnis
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Uszgndldlun1siiasigimiargamginiseuuieiy

HAANAY N TNYATLUUDUY) foll

A15199 2 WANISNAABILATNITANUIMTBILAa IS LaalYAS Y
QUL UUYONYUTUIALANTINYULBES 1 0361
ATINIEITBUNTINYY 10 RPM

Run Drying temperature (°C)

NO. | Experimental FTR CFD
1 26.4 27.3 28.9
2 32.2 33.5 33.2
3 355 44.0 37.9
4 41.0 475 43.1
5 45.2 49.8 47.2
6 51.6 52.2 53.8
7 57.3 55.9 59.0
8 61.6 57.6 63.2
9 67.4 59.6 68.8
10 70.7 61.7 74.0
11 75.0 63.4 77.4
12 81.0 69.6 83.0

nseanwuulvvesulisdunsautdavinsasinle
WAanisvguruvesandouluvioouuiasinliiig
UsgAnsnmluniseuuiiligeluuazardwmal vigumngd
melurioauwiilnmuaiiauenaentisnue1 e
U Iﬂﬂﬂﬂiwmaa&ﬂ%ﬂﬁiﬁam Reynolds number 18,598
Fadugrenisivauuudutau 1éav Nusselt number
54.16 uavMsMAABIASILIdAdNUsE AN NSINALSeY
WAy 5.33 W/m? °C Tngdnn1snnaoainani 143501
Aurunaaudeu dsaunsanlalagldsuuuunis
ATUILUY Internal forced convection [26] Lagn1s
Tasgndeyaneaiflisiieeilusunuuresauns
ANd3@e9 (quadratic model)

a v =

Hansnaaedlugun () gaumgilidngszuuin 30 °C -

Y Y

85 °C wui138 CFD lagmuuaiiounviagegai 83.0 °C

'
=

AaNALAREUIINNIINAABILAEIRRY 4.0% F9a1nnTIHaL
nudnaamgiineluviesuuieiivuilunasulusienis
wenfunugungandewdiluluseuu [9] udiileniinig

Anneinnsmifaznuigumgdildanlusunsudiass
CFD azdldrganinAriiléiannnismaasadntos esan
Ha31nN139a09rkildAnAugayideainaninenie
meusnvideannuesdanadenlunismaassiuiliiia
Augaydetes [27] warnavesds FTR lagumginig
puusisnIeaildannismaassaden 11.3 °C Tag s
FTR Isigaumnfieuuisgeandl 69.6 °C AanaLAdeUAINNS
naasslagiade 9.2% winuilduvesguugiazlvly
sy Fuin1n33 FTR szthnansAuiaes
AUATUNIUNIAUTOU (thermal resistance network)
finvianuevevissunindudiug Fesaudanany
adonnannudeudiiatulussuuderilinsniinn
THsnugamgleuuiefiiindu drudwesuuliunaada
Tusudl 4(b) azaeandoslulumaiafiuuazuysiun
gaumifiteuingszuu Inedi3s FTR uay CFD axdian R?
087 0.9679 uay 0.9989 MU

90

s | (@) R
70 y i
- = ®
8)
< 60 B, o °
¢ 8 o
2 !
= 50 °
3 o o B
£ 40 q ?
» ]
£ 30
> g
o
20 A Experimental
10 o Finite thermal resistance
o CFD Simulation
0

30 35 40 45 50 55 60 65 70 75 80 85

Inlet temperature (°C)

90.0

80.0 (b)

70.0

y = -0.0058x + 5.0694x + 23.148

R? = 0.9989

60.0

50.0
y =-0.2158x° + 6.1077x + 23.821

400 R? = 0.9679

30.0

Drying temperature (°C)

& Finite thermal resistance
20.0 o  CFD Simulation
,,,,,,,, Predicted of FTR

10:0 Predicted of CFD simulation

0.0
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