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Abstract

This study aims to analyze the views of international users on Thai food through the transcripts in YouTube videos
by comparing the performance of Latent Dirichlet Allocation (LDA) and Non-negative Matrix Factorization (NMF) techniques
in identifying Thai food-related topics. Data was collected from 352 YouTube videos published between 2010-2024, data
preprocessed, and transformed into N-Grams before analysis. The results revealed that LDA achieved optimal performance
with the highest coherence score of 0.794 at 5 topics: (1) ingredients and food flavors, (2) tourism and food experiences,

(3) Thai food components, (4) street food and popularity, and (5) cooking processes and ingredients. Meanwhile, NMF
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yielded optimal results with the highest coherence score of 0.956 at 8 topics: (1) seafood ingredients and flavors, (2) taste

preferences, (3) street food culture, (4) Thai curry components, (5) dining experiences and food flavors, (6) food

exploration, (7) rice and meat dishes, and (8) restaurant experiences and service. From the overall results of both

techniques, international users perceive Thai food in four main dimensions: distinctive flavors, specific ingredients, dining

experiences, and environmental context. Comparing both techniques, LDA excelled in showing connections between Thai

food components through keyword overlap but had limitations in distinguishing subtopics. Meanwhile, NMF demonstrated

superiority in identifying specific topics but lacked connections between them. The choice of technique should depend

on the intended application, and combining results from both techniques may provide the most comprehensive

perspective for developing strategies to promote Thai food internationally.
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1 market, bangkok, meat, sticky, WaAuLaY
noodles, mango, sticky rice, flavor, SAYR
fresh, sugar, coconut, egg, shrimp, DT
chili, crispy, street, night, soup,
seafood, sour

2 water, feel, hot, tell, sticky, need, Jszaunisal
fun, mango, together, bangkok, nsvioadien
sticky rice, noodles, probably, city, LALDINNT
coconut, cool, better, walk, help,
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3 curry, dish, flavor, chili, meat, soup, 29AUsENBU

noodles, shrimp, dishes, crispy, egg, 015ty
basil, green, fresh, coconut, garlic,

famous, milk, sour, need

il street, street food, bangkok, market, 8197153u
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5 cook, curry, ingredients, green, stuff,  AT¥UIUNIT

shrimp, pretty, price, chili, making, ‘U?ﬂa’lmi
need, fish sauce, night, morning, uaEIngAU
fresh, though, help, coconut,

vegetables, together
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