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Abstract
The objective of this research was to predict

drying behavior of hot air drying using an empirical

model (EM) and an artificial neural network model
(ANNM). Tilapia and Banana were dried under
drying temperature of 60-8000 and air velocity of
0.5-1.0 m/s. Subsequently, EM and ANNM were
applied to describe the drying behavior of both
products. Furthermore, prediction results between
EM and ANNM were compared with the
experimental data. In this research, it was obviously
found that EM and ANNM can describe the drying
behavior effectively. Additionally, it was also found
that prediction results of Multilayer feed forward
Levenberg-Maqurdt 's Back-propagation ANNM are
good agreement with experimental results than that
of EM 1.4 %.

Keywords: Drying model, artificial neural network,

back-propagation
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