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Abstract 

Due to inherent characteristics of products, 

items are subject to lose their value or usability 

overtime. A perishable inventory system has 

received increasing attentions in the past years. An 

optimal ordering policy for deteriorating inventory 

system has become more and more important. This 

paper has focused on the fixed life time and 

continuous review (Q, r) perishable inventory 

systems with a positive lead time. A method to 

determine the optimal order quantity that minimizes 

the total expected cost for perishable items is 

developed. The results indicate that the expected 

cost function is convex in ordering quantity. The 

solution methodologies to obtain the optimal policy 

are presented. Moreover, the results of sensitivity 

analysis show that the relationships between the 

holding costs, outdating costs, and ordering costs, 

and the demand with the optimal ordering quantity 

are varied. 

Keywords:  Continuous review inventory systems; 

perishable products. 

  

1. Introduction 

 The ever increasing attention in determining an 

optimal ordering policy for perishable inventory 

systems has added a new level of complexity to the 

task of managing inventory. The traditional inventory 

management problem works well under deterministic 

demand assumption. However, when the demand is 

assumed to be a random variable and items are 

assumed to be perishable to reflect the real life 

situations, the classical approach leads to a poor 

performance and unsatisfactory management. 

 Nahmias [1] has done a comprehensive review 

of previous research on perishable inventory 

systems. His review has focused on perishable 

inventory ordering policies. Most of the literatures 

examined deterministic and stochastic demand 

models for fixed-lifetime perishables. In the 

deterministic case, ordering policies are developed 

in such a way that items will never perish. For the 

stochastic demand, most of the research is based 

on a single product. The optimal policies are 

developed both for two periods of lifetime problem 

and the one with a general period of lifetime ‘m’. 

Nahmias also mentioned in his review that the first 

analysis of optimal policies for a fixed life perishable 

commodity was begun by Van Zyl. This topic was 

extended later by Fries [2] and Nahmias [3-5].  

 Fries [2] has developed an optimal policy for a 

perishable commodity with a fixed lifetime in a finite 

horizon problem with continuous demand where the 

quantity of goods expiring in any period. He has 

focused on no backlogging case where the demand 

distribution is stationary over time. Nahmias [3] has 

developed a bound on the outdating cost that is a 

function of the total inventory on hand. He also 

approximated the optimal ordering policy myopically 

for the new problem. Results obtained from the 

numerical analysis suggest that the approximation is 

effective to the optimal policy. In another paper, 

Nahmias [4] generalizes the case with the ‘m’ period 

product to extend his model in which ordering, 



                                                                                        

 

holding, stock out, and outdating costs are charged. 

In order to analyze the dynamics of the perishable 

process, Nahmias has used a multi-echelon 

structure where the i
th echelon corresponding to the 

amount of product would outdate exactly ‘i’ periods 

of time after its receipt on order in the future. The 

solution of the multi periods dynamic model for the 

single ordering decision problem has lead to the 

analysis of the perishable nature of the inventory. 

When an outdating occurs each time, the cost of 

inventory is incurred. Nevertheless, the total cost 

function to be minimized is determined as pseudo 

convex. Nahmias and Wang [5] have developed an 

approximation of the fixed life continuous review 

problem. They have considered the effect of the lead 

time in the decay problem and have developed and 

tested a heuristic (Q, r) model, which allows for a 

random demand, an exponential decay and a 

positive lead time for ordering.  

Most of the previous studies such as those of 

Nahmias [6], Cohen [7], and Chazan and Gal [8] 

have concentrated on the periodic review and multi-

period lifetime problem with zero lead time. 

In recent works, Sivakumar, Anbazhagan, and 

Arivarignan [9] have developed a two-commodity 

perishable stochastic inventory system under 

continuous review at a service facility with a finite 

waiting room. A joint reordering policy is created with 

a random lead time for orders. In addition, Ignaciuk 

and Bartoszewicz [10] proposed linear-quadratic 

optimal control for periodic–review perishable 

inventory systems. Unlike other papers that mainly 

deploy heuristics and static optimization, they have 

applied formal methodology of discrete-time 

dynamical optimization. This methodology can solve 

the optimal control problem analytically. 

 Generally, goods having finite lifetimes are 

subject to the perishables. Hence, a perishable 

inventory, such as fashion garments, blood, and 

drugs, is one in which all the units of one material 

item in stock will be outdated, if not being used 

before the expiration date, resulting in an additional 

outdating cost of perished items. Therefore, it is 

required that the outdating issue is taken into 

account to reflect the real-life situations. In this work, 

the focus is placed on the fixed life time and 

continuous review (Q, r) perishable inventory 

systems with a positive lead time.  The objective of 

this research is to determine the optimal ordering 

quantity that minimizes the expected cost, for a 

perishable item over a finite horizon.  

 The traditional model is extended in which the 

outdating costs are considered. An approximate 

expected outdating of the current order size from 

[11-12] is used to obtain an optimal ordering policy 

under positive order lead time, which minimizes the 

total expected average cost. A solution methodology 

to find the optimal order quantity is presented.  In 

addition, the behavior of the expected cost function 

that is composed of ordering cost, holding cost and 

outdating cost, is analyzed and shown that it is 

convex in order quantity.  

 The paper is organized as follows. In section 

two, a mathematical model for the problem is 

presented. The solution methodology is described in 

section three. In section four, the numerical 

examples with preliminary results are shown. The 

sensitivity analysis is carried out in section five. In 

section six, primary contributions of this paper and 

suggestions for the potential future research are 

summarized. 

 

2. Mathematical Model 

 In this section, we will introduce assumptions of 

the model as well as model development. 

2.1 Assumptions 

       The following assumptions and notations will 

be used throughout this paper: 



                                                                                        

 

1. One perishable item is considered. It is assumed 

that each unit of the item has a fixed lifetime equal 

to m and no loss or decrease in utility occurring 

before m time units. 

2. Inventory levels are reviewed continuously. When 

the inventory level reaches the reorder point r an 

order size Q where Q > 0 is placed. 

3. All units of a replenishment order arrive in fresh 

condition. 

4. A positive order lead time L for replenishment; L 

is less than the lifetime m. 

5. The demand in unit time t, dt is a nonnegative 

random variable and normally distributed. It is also 

assumed that if ( )Φ t is cumulative normal demand 

by time t then ( )Φ t is a stochastic process with 

stationary independent increments. 

6. +m L
d  is a random variable ( )Φ +m L has normal 

density ( )+ +m L m L
f d and mean ( )+m L d . 

7. No shortage is allowed (all demands are met). 

8. Units are always depleted according to an FIFO 

(First in first out) issuing policy. 

9. If each unit has not been used to meet a demand 

before the expiration date, it must be discarded and 

an outdate cost equals to W is charged. 

10. The cost which spent to keep and maintain each 

unit of goods per unit time is called holding cost, h. 

11.  Given that X is a random variable during lead 

time demand. A parameter D stands for the total 

demand in a year and K is the fixed ordering cost 

per order. 

2.2 Model Development 

 The traditional model is extended in which the 

outdating costs are considered. In this paper, we 

assume that the total expected cost function consists 

of ordering cost, holding cost, and outdating cost as 

shown below.  

      
( )EC Q,r E[ Ordering cost + Holding cost 

                  + Outdatting cost]

=
       

 

                                            (1) 

Based on the assumption that the demand is 

normally distributed, reorder point can be calculated 

by using the safety factor of normal distribution. 

Therefore, the following relationship can be used to 

express the lead time demand. 

X
E[ X ] L E[ D ] DLµ = = × =

     
(2) 

X Var[ X ] L Var[ D ]σ = = ×2 , so that.     

X Lσ σ=                         (3)                            

Pr{ X r }≥ is the probability of stockout during the 

lead time, then choosing r such that Pr{ X r } q≥ = , 

where q is the allowable stockout probability. Due to 

the normal distributed probability, the Pr{ X r } q≥ =  

becomes Pr{ Z k } q≥ = , where X

X

r
k

µ
σ
−

=  is the 

safety factor. Thus,
 X X
r kµ σ= +  

From (2) and (3), the reorder point using the safety 

factor becomes, 

    r DL k Lσ= +                    (4) 

After approximating the reorder point by the safety 

factor, equation (1) can be recognized as
  

( )EC Q E[ Ordering cost + Holding cost 

                  + Outdatting cost]

=

 
(5) 

Ordering Cost 

KD
Ordering cost = K(number of cycles) = 

Q
   (6) 

Holding Cost 

The expected inventory level can be obtained by 

E[Inventory level]=
1

[Inventory level at  the beginning of a cycle
2
+Inventory level at  the end of a cycle ]

 

The inventory level at the beginning of a cycle can 

be computed by 

   r E[ X ] Q− +                 (7) 

The inventory level at the end of a cycle can be 

calculated by 

      r E[ X ]−                   (8) 

From equation (7) and (8), the expected inventory 

level can be written as 



                                                                                        

 

1
E[Inventory level] ( r E[ X ] Q r E[ X ])

2
Q

                              = r E[ X ]
2

= − + + −

+ −
(9

)      

The holding cost function is known as 

Holding Cost = h E[Inventory level]×  

 From equation (9), holding cost function can be 

expressed as 

Holding Cost 
Q

= h {  + r - E[X]}
2

 

From (2) and (4), the holding cost function can be 

rewritten as 

Holding Cost.   
Q

= h {  + k L }
2

σ                   (10) 

Outdating Cost 

 The expected outdating approximation is 

borrowed from [11, 12]. The approximate expected 

outdating of the current order size with a positive 

lead time can be obtained by 

Expected Outdating Quantity =  

          

r Q

m L m L m L m L( r Q d ) f ( d )dd

+

+ + + ++ −∫
0

                 r

m L m L m L m L( r d ) f ( d )dd+ + + +− −∫
0

  (11) 

Hence, the expected outdating cost can be 

expressed as 

Expected Outdating Cost =  
r Q

m L m L m L m L

r

m L m L m L m L

( r Q d ) f ( d )dd

W

( r d ) f ( d )dd

+

+ + + +

+ + + +

 
+ − 

 
 
− − 
 

∫

∫
0

0
       (12)

                                              

The total Expected Cost Function 

From equations (5), (6), (10), and (12), the total 

expected cost function can be written as 

KD Q
EC( Q )  h k L

Q 2
σ 

= + + 
 

         

             

r Q

m L m L m L m L

r

m L m L m L m L

( r Q d ) f ( d )dd

W

( r d ) f ( d )dd

+

+ + + +

+ + + +

 
+ − 

 +
 
− − 
 

∫

∫
0

0

(13)   

By using Leibniz’s rule, it can be shown that the first 

derivatives of equation (13) is 

r Q

m L m L m L2

EC( Q ) KD h
W f ( d )dd

Q 2Q

+

+ + +

 ∂
= − + +  

∂   
∫
0

(14)

 

From (14), the second derivative of the total 

expected cost function using Leibniz’s rule can be 

written as 

r Q2

m L2 3

EC(Q) 2KD
W f ( r Q )d( r Q )

Q Q

+

+

 ∂
= + + + 

∂   
∫
0

(15)

 

Since equation (15) is greater than 0,

 Q > 0, EC(Q)∀  is a convex function. 

As the total cost function is a convex 

function, equating equation (14) to zero and solving 

yields the optimal Q*. 

    ( )*

*2

KD h
r Q ,   or

2WWQ
Φ + = −  

( )*

*2

KD h
r Q 0

2WWQ
Φ + − + =                 (16) 

Finally, the proposed model (16) is compared with 

the conventional EOQ model to show that the results 

of proposed model are more realistic than the 

conventional EOQ.  

The conventional EOQ equation is known as 

2 2KD
Q

h
=                  (17) 

After simplifying proposed model, equation (16) can 

be written as 

2 2KD
Q

[ 2W ( r Q ) h]
=

Φ + +
            (18)

 

It can be shown that equation (17) ≥  (18) by the 

following proof 

                    

2KD 2KD

h [ 2W ( r Q ) h]
≥

Φ + +
 

                              

1 1

h [ 2W ( r Q ) h]
= ≥

Φ + +
 

                              

h 2W ( r Q ) h= ≤ Φ + +  

We know that 2W ( r Q ) 0Φ + ≥  , since W ≥ 0 and 

0 (r+Q) 1≤ Φ ≤ . 

Therefore, it can be concluded that the conventional 

EOQ model is the upper bound of the proposed 

model. 

 



                                                                                        

 

3. Solution Methodology 

 The optimal order quantity that minimizes total 

expected cost can be calculated by using equation 

(16). However, equation (16) cannot be solved 

directly due to the computational complexity of the 

normal density function, which represents the 

demand distribution. When all fixed values of 

parameters are given, except for the order quantity, 

one method that can solve equation (16) is to find a 

value of Q
* that makes equation (16) equal to 0. 

Some heuristic algorithms can be applied. In this 

paper, we choose to use a function in Microsoft 

Excel called Goal Seek to find an optimal solution. 

This function keeps randomizing the value of Q* until 

the value, which makes equation (16) equal to 0, is 

found. After solving equation (16), the optimal order 

quantity that minimizes the total expected cost is 

obtained. 

 

4. Numerical Examples 

       In this section, we illustrate a numerical 

example. Assume that h = 1, L = 1, K = 10, W = 5, 

and demand is normally distributed with mean 10 

and variance 10, and the stockout probability is 0.10. 

Based on the safety factor, the value of k is 

determined as 1.28 from the unit normal table. After 

the value of k is calculated, the reorder point is 

obtained by using equation (4). In this paper, we 

decided to find an optimal solution of (16) by using 

the Goal Seek function in Microsoft Excel. Fig. 1 

demonstrates how to set up the numerical example 

in Microsoft Excel. All parameters in this example 

are inputs of the Goal Seek. The output of this 

function is the optimal order quantity. Goal Seek 

finds the optimal order quantity, Q*, in equation (16) 

equal to 4.26. Table 1 demonstrates the results. 

 

 

 

 

Table 1. Results of the numerical example 

Parameters Values 

k 10 

W 5 

L 1 

h 1 

D 10 

2σ  10 

k 1.28 

r   14.05 

Variable Values 

Q
* 4.26 

 

5. Sensitivity Analysis 

The sensitivity analysis is implemented to study 

how the optimal order quantity behaves when the 

selected parameters are changed. The parameters 

used in the analysis are the holding cost per unit, 

outdating cost per unit, ordering cost, demand and 

lead time. The results of sensitivity analysis when 

changing holding cost per unit is shown in Table 2. 

Table 3 shows the effects of changing outdating 

costs on the order quantity. When the ordering costs 

are altered, the results of sensitivity analysis are 

displayed in Table 4. The results of sensitivity 

analysis when changing the demand is shown in 

Table 5. Table 6 shows the effects of lead time on 

the order quantity. 

The results of sensitivity analysis show that the 

relationships between the holding costs, outdating 

costs, and ordering costs, and the demand with the 

optimal ordering quantity are varied. For instance, 

while the holding cost increases, the optimal 

ordering quantity decreases. On the other hand, 

while the ordering cost increases, the optimal 

ordering quantity increases. The increase in 

outdating cost leads to the decrease of the optimal 

ordering quantity. Additionally, the increase in 



                                                                                        

 

demand leads to the increase of the optimal ordering 

quantity. While the lead time increases to 1.2, the 

normal cumulative distribution function equals to one 

indicating that the optimal ordering quantity would 

not change after this point. 

The values of optimal ordering quantity obtained 

from the proposed model are also compared with 

the values obtained from the classic EOQ. The 

solutions indicate that the classic EOQ is the upper 

bound of the proposed model. The results of the 

classic EOQ are included in the tables 2 to 6. 

From a managerial perspective, it can be 

concluded that the ordering size obtained from the 

solution of the proposed model, is better than the 

conventional EOQ, since it considers outdating of 

the perishable products. Additionally, the model can 

also help to determine the optimal ordering quantity 

that will minimize the total cost incurred during a 

planning horizon. From a strategic perspective, the 

results of this research imply that the implementation 

of the solution methodology given in this work will 

provide benefits in determining the optimal ordering 

quantity by considering the outdating of the 

perishables. 

 

6. Conclusions 

 This paper presented a solution methodology 

for the fixed life time perishable inventory systems 

with a positive lead time to determine the optimal 

ordering quantity. It was shown that the cost function 

to be minimized is convex in ordering quantity. 

Direct computation of an optimal ordering policy for 

a perishable product has been shown. Finally, the 

sensitivity analysis is implemented to study how the 

optimal order quantity behaves as the selected 

parameters are modified. 

 Different continuous and discrete demand 

distributions for perishables require further study. 

Furthermore, the reorder point should be considered 

as a variable to approximate the optimal ordering 

quantity more precisely. An extension of this study 

can be conducted to formulate more accurate 

estimates. Various optimal ordering policies can be 

compared with the proposed quantity to evaluate the 

performance of the solution method presented in this 

work. A comparison of the proposed ordering policy 

with simulated policies can also be carried out in 

order to further analyze the model. Finally, upper 

and lower bounds for the expected outdating can be 

obtained to determine a confidence interval for the 

outdating quantity.  
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Fig.1 The input and output of the numerical example using Goal Seek function  

 

Table 2. The results of sensitivity analysis of changing the holding cost 

K  W  L  h  D  
2σ  k  r  

*Q  EOQ  
10 5 1 1 10 10 1.2815 14.05246 4.270556 14.14214 

10 5 1 2 10 10 1.2815 14.05246 4.09093 10 

10 5 1 2.5 10 10 1.2815 14.05246 4.009358 8.944272 

10 5 1 2.51 10 10 1.2815 14.05246 4.007761 8.926437 

10 5 1 3 10 10 1.2815 14.05246 3.93059 8.164966 

10 5 1 3.5 10 10 1.2815 14.05246 3.857792 7.559289 

10 5 1 100 10 10 1.2815 14.05246 1.351085 1.414214 

 

Table 3. The results of sensitivity analysis of changing the outdating cost 

K  W  L  h  D  
2σ  k  r  

*Q  EOQ  
10 5 1 1 10 10 1.2815 14.05246 4.272207 14.14214 

10 6.5 1 1 10 10 1.2815 14.05246 3.791122 14.14214 

10 8 1 1 10 10 1.2815 14.05246 3.445038 14.14214 

10 8.1 1 1 10 10 1.2815 14.05246 3.425209 14.14214 

10 9 1 1 10 10 1.2815 14.05246 3.259957 14.14214 

10 9.5 1 1 10 10 1.2815 14.05246 3.178177 14.14214 

10 10 1 1 10 10 1.2815 14.05246 3.103544 14.14214 

 

 

 

 

Input Output 

Equation (16) 



                                                                                        

 

 

Table 4. The results of sensitivity analysis of changing the ordering cost 

K  W  L  h  D  
2σ  k  r  

*Q  EOQ  
10 5 1 1 10 10 1.2815 14.05246 4.273002 14.14214 

20 5 1 1 10 10 1.2815 14.05246 6.032123 20 

25 5 1 1 10 10 1.2815 14.05246 6.742922 22.36068 

30 5 1 1 10 10 1.2815 14.05246 7.385484 24.4949 

40 5 1 1 10 10 1.2815 14.05246 8.526783 28.28427 

50 5 1 1 10 10 1.2815 14.05246 9.534013 31.62278 

55 5 1 1 10 10 1.2815 14.05246 9.999313 33.16625 

 

Table 5. The results of sensitivity analysis of changing the demand 

K  W  L  h  D  
2σ  k  r  

*Q  EOQ  
10 5 1 1 5 10 1.2815 9.052459 3.031799 10 

10 5 1 1 10 10 1.2815 14.05246 4.272147 14.14214 

10 5 1 1 15 10 1.2815 19.05246 5.227161 17.32051 

10 5 1 1 25 10 1.2815 29.05246 6.74404 22.36068 

10 5 1 1 35 10 1.2815 39.05246 7.977387 26.45751 

10 5 1 1 50 10 1.2815 54.05246 9.534013 31.62278 

10 5 1 1 55 10 1.2815 59.05246 9.999312 33.16625 

 

Table 6. The results of sensitivity analysis of changing the lead time 

K  W  L  h  D  
2σ  k  r  

*Q  EOQ  
10 5 1 1 10 10 1.2815 14.05246 4.271766 14.14214 

10 5 1.2 1 10 10 1.2815 16.43925 4.264797 14.14214 

10 5 1.5 1 10 10 1.2815 19.96323 4.264843 14.14214 

10 5 1.8 1 10 10 1.2815 23.43694 4.263975 14.14214 

10 5 2 1 10 10 1.2815 25.73104 4.264147 14.14214 

10 5 2.2 1 10 10 1.2815 28.01077 4.263911 14.14214 

10 5 2.5 1 10 10 1.2815 31.4075 4.263912 14.14214 

 


