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Abstract

Due to inherent characteristics of products,
items are subject to lose their value or usability
overtime. A perishable inventory system has
received increasing attentions in the past years. An
optimal ordering policy for deteriorating inventory
system has become more and more important. This
paper has focused on the fixed life time and

continuous review (Q, r) perishable inventory
systems with a positive lead time. A method to
determine the optimal order quantity that minimizes
the total expected cost for perishable items is
developed. The results indicate that the expected
cost function is convex in ordering quantity. The
solution methodologies to obtain the optimal policy
are presented. Moreover, the results of sensitivity
analysis show that the relationships between the
holding costs, outdating costs, and ordering costs,
and the demand with the optimal ordering quantity
are varied.
Keywords: Continuous review inventory systems;

perishable products.

1. Introduction

The ever increasing attention in determining an
optimal ordering policy for perishable inventory
systems has added a new level of complexity to the
task of managing inventory. The traditional inventory
management problem works well under deterministic
demand assumption. However, when the demand is
assumed to be a random variable and items are

assumed to be perishable to reflect the real life

situations, the classical approach leads to a poor
performance and unsatisfactory management.

Nahmias [1] has done a comprehensive review
of previous research on perishable inventory
systems. His review has focused on perishable
inventory ordering policies. Most of the literatures
examined deterministic and stochastic demand
models for fixed-lifetime perishables. In the
deterministic case, ordering policies are developed
in such a way that items will never perish. For the
stochastic demand, most of the research is based
on a single product. The optimal policies are
developed both for two periods of lifetime problem
and the one with a general period of lifetime ‘m’.
Nahmias also mentioned in his review that the first
analysis of optimal policies for a fixed life perishable
commodity was begun by Van Zyl. This topic was
extended later by Fries [2] and Nahmias [3-5].

Fries [2] has developed an optimal policy for a
perishable commodity with a fixed lifetime in a finite
horizon problem with continuous demand where the
quantity of goods expiring in any period. He has
focused on no backlogging case where the demand
distribution is stationary over time. Nahmias [3] has
developed a bound on the outdating cost that is a
function of the total inventory on hand. He also
approximated the optimal ordering policy myopically
for the new problem. Results obtained from the
numerical analysis suggest that the approximation is
effective to the optimal policy. In another paper,
Nahmias [4] generalizes the case with the ‘m’ period

product to extend his model in which ordering,



holding, stock out, and outdating costs are charged.
In order to analyze the dynamics of the perishable
process, Nahmias has wused a multi-echelon
structure where the i echelon corresponding to the
amount of product would outdate exactly ‘i’ periods
of time after its receipt on order in the future. The
solution of the multi periods dynamic model for the
single ordering decision problem has lead to the
analysis of the perishable nature of the inventory.
When an outdating occurs each time, the cost of
inventory is incurred. Nevertheless, the total cost
function to be minimized is determined as pseudo
convex. Nahmias and Wang [5] have developed an
approximation of the fixed life continuous review
problem. They have considered the effect of the lead
time in the decay problem and have developed and
tested a heuristic (Q, r) model, which allows for a
random demand, an exponential decay and a
positive lead time for ordering.

Most of the previous studies such as those of
Nahmias [6], Cohen [7], and Chazan and Gal [8]
have concentrated on the periodic review and multi-
period lifetime problem with zero lead time.

In recent works, Sivakumar, Anbazhagan, and
Arivarignan [9] have developed a two-commodity
perishable stochastic inventory system under
continuous review at a service facility with a finite
waiting room. A joint reordering policy is created with
a random lead time for orders. In addition, Ignaciuk
and Bartoszewicz [10] proposed linear-quadratic

optimal control for periodic-review perishable
inventory systems. Unlike other papers that mainly
deploy heuristics and static optimization, they have
applied formal methodology of discrete-time
dynamical optimization. This methodology can solve
the optimal control problem analytically.

Generally, goods having finite lifetimes are
subject to the perishables. Hence, a perishable
inventory, such as fashion garments, blood, and

drugs, is one in which all the units of one material

item in stock will be outdated, if not being used
before the expiration date, resulting in an additional
outdating cost of perished items. Therefore, it is
required that the outdating issue is taken into
account to reflect the real-life situations. In this work,
the focus is placed on the fixed life time and
continuous review (Q, r) perishable inventory
systems with a positive lead time. The objective of
this research is to determine the optimal ordering
quantity that minimizes the expected cost, for a
perishable item over a finite horizon.

The traditional model is extended in which the
outdating costs are considered. An approximate
expected outdating of the current order size from
[11-12] is used to obtain an optimal ordering policy
under positive order lead time, which minimizes the
total expected average cost. A solution methodology
to find the optimal order quantity is presented. In
addition, the behavior of the expected cost function
that is composed of ordering cost, holding cost and
outdating cost, is analyzed and shown that it is
convex in order quantity.

The paper is organized as follows. In section
two, a mathematical model for the problem is
presented. The solution methodology is described in
section three. In section four, the numerical
examples with preliminary results are shown. The
sensitivity analysis is carried out in section five. In
section six, primary contributions of this paper and
suggestions for the potential future research are

summarized.

2. Mathematical Model

In this section, we will introduce assumptions of
the model as well as model development.
2.1 Assumptions

The following assumptions and notations will

be used throughout this paper:



1. One perishable item is considered. It is assumed
that each unit of the item has a fixed lifetime equal
to m and no loss or decrease in utility occurring
before m time units.

2. Inventory levels are reviewed continuously. When
the inventory level reaches the reorder point r an
order size Q where Q > 0 is placed.

3. All units of a replenishment order arrive in fresh
condition.

4. A positive order lead time L for replenishment; L
is less than the lifetime m.

5. The demand in unit time ¢, d; is a nonnegative
random variable and normally distributed. It is also
assumed that if®(¢)is cumulative normal demand
by time ¢ then <I)(t) is a stochastic process with
stationary independent increments.

6.d
density £, (d,.,)and mean(m+L)d .

... is @ random variable ®(m+ L)has normal
7. No shortage is allowed (all demands are met).
8. Units are always depleted according to an FIFO
(First in first out) issuing policy.
9. If each unit has not been used to meet a demand
before the expiration date, it must be discarded and
an outdate cost equals to W is charged.
10. The cost which spent to keep and maintain each
unit of goods per unit time is called holding cost, /.
11. Given that X is a random variable during lead
time demand. A parameter D stands for the total
demand in a year and K is the fixed ordering cost
per order.
2.2 Model Development

The traditional model is extended in which the
outdating costs are considered. In this paper, we
assume that the total expected cost function consists
of ordering cost, holding cost, and outdating cost as

shown below.

EC(Q,r) = E[ Ordering cost + Holding cost
+ Outdatting cost]

(1)

Based on the assumption that the demand is
normally distributed, reorder point can be calculated
by using the safety factor of normal distribution.
Therefore, the following relationship can be used to
express the lead time demand.

Uy =E[X]=LxE[D]=DL 2)

oy =Var[X ] =LxVar[D] , so that.
o, =oL (3)
Pr{ X >r}is the probability of stockout during the
lead time, then choosing r such thatPr{ X >r}=¢q,
where ¢ is the allowable stockout probability. Due to
the normal distributed probability, the Pr{ X >r }=g¢q

becomes Pr{Z >k }=¢q, where k=l"Hx

Oy

is the

safety factor. Thus, r = u, +ko,
From (2) and (3), the reorder point using the safety
factor becomes,

r=DL+ko~L 4)
After approximating the reorder point by the safety
factor, equation (1) can be recognized as

EC(Q) = E[ Ordering cost + Holding cost
+ Outdatting cost]

(%)
Ordering Cost

Ordering cost = K(number of cycles) = % (6)

Holding Cost
The expected inventory level can be obtained by
E[Inventory level]=
— [Inventory level at the beginning of a cycle
+Inventory level at the end of a cycle |
The inventory level at the beginning of a cycle can
be computed by

r—E[X]+Q )
The inventory level at the end of a cycle can be
calculated by

r—E[X] (8)

From equation (7) and (8), the expected inventory

level can be written as



E[Inventory level] zé(r—E[X]+Q+r—E[X])

= %+r—E[X]

©

The holding cost function is known as

Holding Cost = hx E[Inventory level]
From equation (9), holding cost function can be

expressed as
Holding Cost = h {% +r-E[X]}

From (2) and (4), the holding cost function can be

rewritten as
Holding Cost. = h {% + koL ) (10)

Outdating Cost
The expected outdating approximation is

borrowed from [11, 12]. The approximate expected
outdating of the current order size with a positive

lead time can be obtained by

Expected Outdating Quantity =
r+Q
[(r+0-d,.)f,.(d,., )dd,.,

[(r=dp )f(d,, )dd,, (11

Hence, the expected outdating cost can be

expressed as

Expected Outdating Cost =
r+Q
J. ( r+ Q - dm+L )fm+L( d1n+L )dd1n+L

W r
__!‘(r_derL )fm+L(dm+L )ddn1+L (12)

The total Expected Cost Function
From equations (5), (6), (10), and (12), the total

expected cost function can be written as

EC(Q)= %+h{%+kaﬁ}

r+Q
J. ( r+ Q - dm+L )fnz+L(d1n+L )dd1n+L

+W (13)

r

_I( r— dm+L )fn1+L( dm+L )ddnl+L

0

By using Leibniz’s rule, it can be shown that the first

derivatives of equation (13) is

OEC(Q) KD h '
T:—?"FEJ"W{ '!. fm+L(dm+L )ddn1+L:|

(14)

From (14), the second derivative of the total
expected cost function using Leibniz's rule can be
written as
%: 2g_f)+w{ '!.Qfm+L(r+Q)d(r+Q)}

(15)
Since equation (15) is greater than O,

YQ > 0, EC(Q) is a convex function.
As the total cost function is a convex
function, equating equation (14) to zero and solving

yields the optimal Q*.

N KD h
q)(r+Q)=WQ*2_W’
CD(r+Q*)—%+%=0 (16)

Finally, the proposed model (16) is compared with
the conventional EOQ model to show that the results
of proposed model are more realistic than the
conventional EOQ.

The conventional EOQ equation is known as
2KD

T h

After simplifying proposed model, equation (16) can

0’ (17)

be written as

o - 2KD
C[2WO(r+Q)+h]

(18)
It can be shown that equation (17) > (18) by the

following proof

ZKD> 2KD
h [2ZWD(r+Q )+h]
RN !
h [2WD(r+Q)+h]
=h<2WO(r+Q)+h

We know that 2Wd(r+Q )>0 , since W>0 and
0<D(r+Q)<1.

Therefore, it can be concluded that the conventional
EOQ model is the upper bound of the proposed

model.



3. Solution Methodology

The optimal order quantity that minimizes total
expected cost can be calculated by using equation
(16). However, equation (16) cannot be solved
directly due to the computational complexity of the
normal which

density function, represents the

demand distribution. When all fixed values of
parameters are given, except for the order quantity,
one method that can solve equation (16) is to find a
value of Q that makes equation (16) equal to O.
Some heuristic algorithms can be applied. In this
paper, we choose to use a function in Microsoft
Excel called Goal Seek to find an optimal solution.
This function keeps randomizing the value of Q* until
the value, which makes equation (16) equal to O, is
found. After solving equation (16), the optimal order
quantity that minimizes the total expected cost is

obtained.

4. Numerical Examples

In this section, we illustrate a numerical
example. Assume that h =1, L =1, K=10, W =5,
and demand is normally distributed with mean 10
and variance 10, and the stockout probability is 0.10.
Based on the safety factor, the value of k is
determined as 1.28 from the unit normal table. After
the value of k is calculated, the reorder point is
obtained by using equation (4). In this paper, we
decided to find an optimal solution of (16) by using
the Goal Seek function in Microsoft Excel. Fig. 1
demonstrates how to set up the numerical example
in Microsoft Excel. All parameters in this example
are inputs of the Goal Seek. The output of this
function is the optimal order quantity. Goal Seek
finds the optimal order quantity, Q", in equation (16)

equal to 4.26. Table 1 demonstrates the results.

Table 1. Results of the numerical example

Parameters Values
k 10
W 5
L 1
h 1
D 10
o2 10
k 1.28
- 14.05

Variable Values

0 4.26

5. Sensitivity Analysis

The sensitivity analysis is implemented to study
how the optimal order quantity behaves when the
selected parameters are changed. The parameters
used in the analysis are the holding cost per unit,
outdating cost per unit, ordering cost, demand and
lead time. The results of sensitivity analysis when
changing holding cost per unit is shown in Table 2.
Table 3 shows the effects of changing outdating
costs on the order quantity. When the ordering costs
are altered, the results of sensitivity analysis are
displayed in Table 4. The results of sensitivity
analysis when changing the demand is shown in
Table 5. Table 6 shows the effects of lead time on
the order quantity.

The results of sensitivity analysis show that the
relationships between the holding costs, outdating
costs, and ordering costs, and the demand with the
optimal ordering quantity are varied. For instance,
while the holding cost increases, the optimal
ordering quantity decreases. On the other hand,
increases,

while the ordering cost the optimal

ordering quantity increases. The increase in

outdating cost leads to the decrease of the optimal

ordering quantity. Additionally, the increase in



demand leads to the increase of the optimal ordering
quantity. While the lead time increases to 1.2, the
normal cumulative distribution function equals to one
indicating that the optimal ordering quantity would
not change after this point.

The values of optimal ordering quantity obtained
from the proposed model are also compared with
the values obtained from the classic EOQ. The
solutions indicate that the classic EOQ is the upper
bound of the proposed model. The results of the
classic EOQ are included in the tables 2 to 6.

From a managerial perspective, it can be
concluded that the ordering size obtained from the
solution of the proposed model, is better than the
conventional EOQ, since it considers outdating of
the perishable products. Additionally, the model can
also help to determine the optimal ordering quantity
that will minimize the total cost incurred during a
planning horizon. From a strategic perspective, the
results of this research imply that the implementation
of the solution methodology given in this work will
provide benefits in determining the optimal ordering
quantity by considering the outdating of the

perishables.

6. Conclusions

This paper presented a solution methodology
for the fixed life time perishable inventory systems
with a positive lead time to determine the optimal
ordering quantity. It was shown that the cost function
to be minimized is convex in ordering quantity.
Direct computation of an optimal ordering policy for
a perishable product has been shown. Finally, the
sensitivity analysis is implemented to study how the
optimal order quantity behaves as the selected
parameters are modified.

Different continuous and discrete demand
distributions for perishables require further study.

Furthermore, the reorder point should be considered

as a variable to approximate the optimal ordering
quantity more precisely. An extension of this study
can be conducted to formulate more accurate
estimates. Various optimal ordering policies can be
compared with the proposed quantity to evaluate the
performance of the solution method presented in this
work. A comparison of the proposed ordering policy
with simulated policies can also be carried out in
order to further analyze the model. Finally, upper
and lower bounds for the expected outdating can be
obtained to determine a confidence interval for the

outdating quantity.
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Fig.1 The input and output of the numerical example using Goal Seek function

Table 2. The results of sensitivity analysis of changing the holding cost

K W L h D o’ k r Q | EOQ
10 5 1 1 10 10 1.2815 | 14.05246 | 4.270556 | 14.14214
10 5 1 2 10 10 1.2815 | 14.05246 | 4.09093 10

10 5 1 2.5 10 10 1.2815 | 14.05246 | 4.009358 | 8.944272
10 5 1 2.51 10 10 1.2815 | 14.05246 | 4.007761 | 8.926437
10 5 1 3 10 10 1.2815 | 14.05246 | 3.93059 | 8.164966
10 5 1 3.5 10 10 1.2815 | 14.05246 | 3.857792 | 7.559289
10 5 1 100 10 10 1.2815 | 14.05246 | 1.351085 | 1.414214

Table 3. The results of sensitivity analysis of changing the outdating cost

®

K W L h D o’ k r 0 EOQ

10 5 1 1 10 10 1.2815 | 14.05246 | 4.272207 | 14.14214
10 6.5 1 1 10 10 1.2815 | 14.05246 | 3.791122 | 14.14214
10 8 1 1 10 10 1.2815 | 14.05246 | 3.445038 | 14.14214
10 8.1 1 1 10 10 1.2815 | 14.05246 | 3.425209 | 14.14214
10 9 1 1 10 10 1.2815 | 14.05246 | 3.259957 | 14.14214
10 9.5 1 1 10 10 1.2815 | 14.05246 | 3.178177 | 14.14214
10 10 1 1 10 10 1.2815 | 14.05246 | 3.103544 | 14.14214




Table 4. The results of sensitivity analysis of changing the ordering cost

®

K W L h D o’ k r 0 EOQ
10 5 1 1 10 10 1.2815 | 14.05246 | 4.273002 | 14.14214
20 5 1 1 10 10 1.2815 | 14.05246 | 6.032123 20

25 5 1 1 10 10 1.2815 | 14.05246 | 6.742922 | 22.36068
30 5 1 1 10 10 1.2815 | 14.05246 | 7.385484 | 24.4949
40 5 1 1 10 10 1.2815 | 14.05246 | 8.526783 | 28.28427
50 5 1 1 10 10 1.2815 | 14.05246 | 9.534013 | 31.62278
55 5 1 1 10 10 1.2815 | 14.05246 | 9.999313 | 33.16625

Table 5. The results of sensitivity analysis of changing the demand

K W L h D o> k r o) EOQ
10 5 1 1 5 10 1.2815 | 9.052459 | 3.031799 10

10 5 1 1 10 10 1.2815 | 14.05246 | 4.272147 | 14.14214
10 5 1 1 15 10 1.2815 | 19.05246 | 5.227161 | 17.32051
10 5 1 1 25 10 1.2815 | 29.05246 | 6.74404 | 22.36068
10 5 1 1 35 10 1.2815 | 39.05246 | 7.977387 | 26.45751
10 5 1 1 50 10 1.2815 | 54.05246 | 9.534013 | 31.62278
10 5 1 1 55 10 1.2815 | 59.05246 | 9.999312 | 33.16625

Table 6. The results of sensitivity analysis of changing the lead time

K W L h D o> k r o EOQ
10 5 1 1 10 10 1.2815 | 14.05246 | 4.271766 | 14.14214
10 5 1.2 1 10 10 1.2815 | 16.43925 | 4.264797 | 14.14214
10 5 1.5 1 10 10 1.2815 | 19.96323 | 4.264843 | 14.14214
10 5 1.8 1 10 10 1.2815 | 23.43694 | 4.263975 | 14.14214
10 5 2 1 10 10 1.2815 | 25.73104 | 4.264147 | 14.14214
10 5 22 1 10 10 1.2815 | 28.01077 | 4.263911 | 14.14214
10 5 25 1 10 10 1.2815 31.4075 | 4.263912 | 14.14214




