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Floods are one of the most devastating natural hazards, causing deaths, economic
losses, and destruction of property. Flood susceptibility maps are an essential tool
for flood mitigation and preparedness planning. This study mapped flood
susceptibility using statistical index (SI) and weighting factor (WF) models in
San Pa Tong District, Chiang Mai Province, Thailand. The conditioning factors
used to perform flood susceptibility mapping were elevation, slope, aspect,
curvature, topographic wetness index, stream power index, rainfall, distance from
rivers, stream density, soil drainage, land use, and road density. The flood data
were randomly classified as training data for mapping (70% of data) and testing
data for model validation (30% of data). The results revealed that the ST and WF
models classified 49.49% and 51.74% of the study area, respectively, as very
highly susceptible to flooding. In the WF model, the factors with the greatest
influence were land use, soil drainage, and elevation. The validation of the
models using the area under the curve revealed that the success rates of the SI
and WF models were 91.80% and 93.06%, while the prediction rates were
92.05% and 93.52%, respectively. The results from this study can be useful for
local authorities in San Pa Tong District for flood preparedness and mitigation.

1. INTRODUCTION

Flooding is the most devastating category of
natural disaster, affecting people and properties
around the world (Paul et al., 2019; Samanta et al.,
2018), with an average of 71.9 million people reported
as affected by flooding annually (CRED, 2020). In the
monsoon-dominated tropical and subtropical regions
of the world, flooding occurs frequently and across
wide areas (Khaing et al., 2021). In Asia, flooding is
one of the most destructive natural disasters, with the
highest proportion (79.9%) of the total population
affected by floods globally (CRED, 2020). In
Thailand, floods are one of the most destructive
natural disasters. In 2011, the country suffered the
worst floods in more than half a century; these floods
inundated more than six million hectares of land in 66
provinces and affected more than 13 million people.
The estimated damage and losses totaled
approximately USD 46.5 billion (World Bank, 2012).

Flood occurrence is affected by various factors.
Heavy rainfall is one of the main factors, leading to the

rapid accumulation and release of runoff waters from
upstream to downstream areas (Kongmuang et al.,
2020). Climate change also causes flood occurrences
with rising frequency and magnitude (Khaing et al.,
2021; Tehrany et al., 2019), while human activities
such as urbanization and deforestation can also
increase flooding incidence rates (Cabrera et al., 2019;
Paul et al., 2019). In flood-prone areas, flood risk can
be assessed to prevent damage to residential areas,
agriculture, public properties, etc. (Paul et al., 2019;
Samanta et al., 2018). Flood susceptibility mapping is
an essential tool for flood preparedness and mitigation,
in particular, planning using reliable information can
help support communities and government authorities
to precisely implement flood protection strategies.
Various approaches have been applied for flood
susceptibility mapping. Hydrological models have
been developed by various researchers such as SWAT
(Igarashi et al., 2019) and HEC-RAS (Khaing et al.,
2021; Rahmati et al., 2016). Although hydrological
model can predict and simulate flood hazard, there are
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some limitations such as the requirement of vast data
budget, unavailability of large-scale data and time
consuming for preparation and calibration of
parameters (Cabrera et al., 2019; Hoang et al., 2020). In
the few past decades, geographic information system
(GIS) and remote sensing (RS) have made remarkable
contributions in flood hazard mapping (Rahmati et al.,
2016; Samanta et al., 2018). Several techniques have
been applied with GIS and RS, including analytical
hierarchy process (AHP) (Hoang et al., 2020; Khaing et
al., 2021; Rahmati et al., 2016), frequency ratio (FR)
(Anucharn, 2019; Cao et al., 2016; Samanta et al., 2018;
Tehrany et al., 2019), logistic regression (LR) (Tehrany
etal., 2019), weight of evidence (WoE) (Tehrany et al.,
2017), statistical index (SI) (Cao et al., 2016; Khosravi
et al., 2016; Tehrany et al., 2019), and artificial neural
network (ANN) (Anucharn, 2019; Kia et al., 2012). The
results of the research mentioned above, demonstrate
slightly variance from place to place and each type of
model is still necessary to be examined. Thus, testing
and valuation of these models can provide optimal and
more reliable results.

Statistical index (SI) modeling has been applied
to various hazard mapping efforts and has performed
efficiently with acceptable results (Khosravi et al.,
2016). It has been widely used in mapping landslide
susceptibility (Budha et al., 2016; Pourghasemi et al.,
2013) and has also been applied to flood susceptibility
mapping (Khosravi et al., 2016; Tehrany et al., 2019).
However, the main limitation of SI is the lack of
consideration of the relationship between the causative
factors themselves which needs further research. The
weighting factor (WF) method has been applied widely
in the field of landslide studies (Yalcin, 2008), however,
its use is still lacking in the field of flood susceptibility
mapping (Khosravi et al., 2016). Additionally, some
causative factors have not been applied to the WF
model to measure their impact on flood occurrence such
as aspect and road density. Given this context, a
comparative study of the SI and WF models may
contribute to the assessment of flood susceptibility.

This research, therefore, aimed to perform flood
susceptibility mapping of the San Pa Tong District,
Chiang Mai, which suffered from flooding in 2005,
2009, 2010, and 2011, by applying SI and WF models
and to examine the performance of these two models.
This research also aimed to find the most influential
factors for flood occurrence in the study area. The
study results can be useful for local administrators to
minimize the consequences of future floods, and,
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furthermore, these research methods can provide
guidelines for further research.

2. METHODOLOGY
2.1 Study area

The study area is the San Pa Tong District,
Chiang Mai Province, in northern Thailand. It is located
between latitudes 18°30” and 18°43" N and longitudes
98°48" and 98°57E, covering an area of approximately
173.45 km? (Figure 1). The altitude ranges between 239
m and 640 m above sea level, with a mountainous area
in the north and lowlands covering the central and the
southern parts of the area. There are three main rivers in
San Pa Tong, namely the Ping River, Khan River, and
Mae Wang River. Due to the area’s topographic and
hydrological characteristics, San Pa Tong is flood-
prone and has been frequently affected by floods. The
main causes of flooding in the area are the high intensity
of rainfall and runoff from the upper catchments
flowing to the lower areas in the south. Regarding the
flood data of 2005, 2009, 2010, and 2011, 59.49 km? of
San Pa Tong has been recorded as a flooded area
(Suppawimut, 2020). In this context, the San Pa Tong
District was, therefore, selected as the study area.

2.2 Data collection

The historic flood data was collected from
multi-source satellite imagery from 2005 to 2019
including RADARSAT, COSMO, and THAICHOTE,
operated by the Geo-Informatics and Space
Technology Development Agency (GISTDA). In this
study, the flood inventory was prepared based on the
floods that occurred in 2005, 2009, 2010, and 2011.
Flood raster data were randomly classified as training
data (70%) and testing data (30%) (Figures 2 and 3).
The conditioning factor data were acquired from
secondary data sources and government organizations.
The digital elevation model (DEM) data were derived
from the Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) with 30 m x 30 m
resolution and was obtained from the Earthdata
website (https://earthdata.nasa.gov). The DEM was
used to extract the topographic factors, namely slope,
aspect, curvature, topographic wetness index (TWI),
and stream power index (SPI). The other sources of
data were as follows: rainfall data from the Upper
Northern Region Irrigation Hydrology Center; land
use data of 2018 and soil drainage data from the Land
Development Department; road data from Nostra
Map; and river and stream data derived from 1:50,000
topographic maps.
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2.3 Flood conditioning factors W, = In (F]) —n [(S_]J/E)] (1)

Flood conditioning factor data is essential for
examining the relationships between the causative
factors and flood occurrence (Khosravi et al., 2016).
In this study, 12 conditioning factors were considered
for flood susceptibility mapping based on the literature ~ J» D 1s the total flood density of the study area, Nj; is
(Anucharn, 2019; Khosravi et al., 2016; Kongmuang the number of flood piXGlS in class i of the factorj, Sij
et al., 2020; Paul et al., 2019; Tehrany et al., 2017; is the total number of pixels in class i of the factor j, N
Tehrany et al., 2019), namely elevation, slope, aspect, is the total number of flood pixels, and S is the total
curvature, TWI, SPI, rainfall, distance from rivers, number of pixels in the study area.
stream density, soil drainage, land use, and road The conditioning factors were reclassified using
density (Figures 3 and 4). All conditioning factors ~ the Wj; values. Then, the classified factors were
were used to perform the flood susceptibility — combined using the raster calculator to calculate the

mapping. Each factor was prepared in raster format  flood susceptibility index (FSI). The FSI can be
at a spatial resolution of 30 m x 30 m and was  described by the following equation:
classified using the natural breaks method. Figure 3

Where; Wj; is the weight given to class i of the
factor j, Dj; is the flood density in class i of the factor

shows a flowchart of the research methodology, and FSlg; = T, W )
Table 1 shows the class values and the characteristics
of the conditioning factors. Where; FSlg; is the flood susceptibility index of

the SI model, Wj; is the weight given to class i of the
2.4 Flood susceptibility mapping

PR factor j, and n represents the number of conditioning
2.4.1 Statistical index model

) A o ) factors.
The SI model is a bivariate statistical analysis
(BSA) introduced by van Westen et al. (1997). It has 2.4.2 Weighting factor model
been applied to various natural hazard studies, The weighting factor model is a modified

including landslides (Budha et al., 2016; Pourghasemi version of the SI model (Oztekin and Topal, 2005;
etal., 2013), floods (Khosravi et al., 2016; Tehrany et Yalcin, 2008; Khosravi et al., 2016). Weights are
al., 2019), and flash floods (Cao et al., 2016). For SI,  gerived for the conditioning factors to determine their
the weighted value of a conditioning classis calculated  jpfluence on flood occurrence. TSI values are

as the natural logarithm of flood existence in each  .;iculated by multiplying the SI values by the number
class of a conditioning factor divided by the total flood ¢ f100d pixels in the same conditioning class, then,

density for the study as expressed in Equation 1 (he values of all conditioning classes for a particular
(Tehrany et al., 2019): factor are summed (Oztekin and Topal, 2005). The
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weighting factor values for each conditioning factor
are calculated, ranging from 1 to 100, using the
following equations (Yalcin, 2008; Khosravi et al.,
2016):

TSlyawe =

i, SI x S. pixel 3)

— (TSIyalue) —(MIinTSly 41ye)
f T (MaxTSIya1ye)— (MinTSlyarye)

w,, x 100 ()

Where; TSI is the total weighting index value of
pixels in the conditioning class for each factor,
MinTSLawe and MaxTSLyae are the minimum and
maximum values of the total weighting index value
among all conditioning factors, respectively, and
Wye is the weighting factor wvalue for each
conditioning factor.

To calculate the flood susceptibility index value
using the WF model, the Wj; weighting value (i.e., Wj;
of the SI method) of the conditioning class is
multiplied by the weighting factor value. The FSI of
the WF model is then calculated using the following
equation:

FSlyr = 3™, SI X WF (5)

Where; FSlyyg is the flood susceptibility index
of the WF model, SI is the weighting value of the
conditioning class, and WF is the weighting factor
value of each conditioning factor.

2.4.3 Validation of the model

The receiver operating characteristic (ROC)
and the area under the curve (AUC) metrics were
used to evaluate the performance of the results of the
SI and WF methods. ROC and AUC methods are
widely used in natural hazard research (Khosravi et
al., 2016; Tehrany et al., 2019). Both susceptibility
map results were compared with training data and
testing data. The calculated AUC values represent the
success rate and prediction rate performance for
training data and testing data, respectively. The AUC
has a value range from 0-1, where 1 indicates the
highest accuracy; if the AUC is closer to 1, the map
results are considered more precise and reliable
(Tehrany et al.,, 2019). The AUC value can be
classified as follows: weak (0.5-0.6), moderate (0.6-
0.7), good (0.7-0.8), very good (0.8-0.9), or excellent
(0.9-1.0) (Pourghasemi et al., 2013; Yesilnacar,
2005).
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Figure 4. Conditioning factors: (a) elevation, (b) slope, (c) aspect, (d) curvature, (¢) TWIL, (f) SPI, (g) rainfall, (h) distance from rivers, (i)

stream density, (j) soil drainage, (k) land use, and (1) road density
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Figure 4. Conditioning factors: (a) elevation, (b) slope, (c) aspect, (d) curvature, (¢) TWIL, (f) SPL, (g) rainfall, (h) distance from rivers, (i)
stream density, (j) soil drainage, (k) land use, and (1) road density (cont.)

3. RESULTS AND DISCUSSION
3.1 Flood susceptibility mapping using SI model
The results of using the SI model to calculate
the weight of each flood conditioning factor class
represent the correlation with flood occurrence and are
presented in Table 1. A positive weight for the
conditioning class indicates a high correlation with
flood occurrence, whereas a negative weight means a
low correlation. Each conditioning class of 12 factors
was reclassified using its SI weight (Wj;) and was used
to calculate the flood susceptibility index (FSI), as
expressed in Equation (6). FSI values from the SI
model were reclassified into five susceptibility classes
(very low, low, moderate, high, and very high) using
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the geometrical interval classifier in ESRI ArcGIS
10.5 software.

l:SISI = SIelevation + SIslope + Slaspect + SIcurvature +

SITWI + SISPI + Slrainfall + SIdistance toriver T
Slstream density + SIsoil drainage + SIland use T

(©)

SIroad density

The SI results presented in Figure 5 (a) show
that about 49.49% of the study area is classified as
very high susceptibility. The proportions of the study
area classified as high, moderate, low, and very low
susceptibility are 23.35%, 23.21%, 3.71%, and 0.24%,
respectively (Table 1). The very highly susceptible
areas are found in the west, the east, and the south,
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while the very low susceptibility regions are mostly
found in the northern area.

3.2 Flood susceptibility mapping using WF model

The WF model showed the weight of each
conditioning factor as an influence on flooding, as
shown in Table 1. The advantage of the WF approach
is its consideration of the different weights among the
factors. The results showed that land use, soil
drainage, and elevation are the most influential

Table 1. Calculation of weight values of ST and WF models

factors, with WF weights of 100, 82.61, and 75.77,
respectively (Table 1). This indicates the importance
of these factors and their necessity for flood
susceptibility mapping research. The remaining
conditioning factors are, in order of influence: road
density, slope, distance from rivers, TWI, SPI, stream
density, rainfall, aspect, and curvature. In contrast, the
study of Khosravi et al. (2016) in the Haraz watershed
of Iran found that the most influential factors were
distance from rivers, elevation, and TWI.

Conditioning Conditioning No. pixels Percentage No. of flood Percentage  SI(Wi) TSI WF
factors classes of area pixels of flood
Elevation (m) 239-295 91,113 472764 21,527 51.3305 0.0823 1,771  75.77
295-317 71,637 37.1708 18,885 45.0308 0.1918 3,623
317-354 13,411 6.9587 1,194 2.8471 -0.8937  -1067
354-404 9,366 4.8598 332 0.7916 -1.8146  -602
404-479 5,467 2.8367 0 0.0000 0.0000 0
479-640 1,730 0.8977 0 0.0000 0.0000 0
Slope (degree) 0-3.0544 66,718 34.6184 16,253 38.7548 0.1129 1,834 2641
3.0544-5.5710 65,599 34.0378 15,426 36.7829 0.0776 1,196
5.5710-8.8112 37,982 19.7080 7,832 18.6752 -0.0538  -422
8.8112-13.8323 15,086 7.8278 2,181 5.2005 -0.4089  -892
13.8323-21.9126 5,310 2.7552 241 0.5747 -1.5675 378
21.9126 43.1662 2,029 1.0528 5 0.0119 44808 22
Aspect Flat 363 0.1884 93 0.2218 0.1633 15 1
(direction) North 23,113 11.9928 5,391 12.8547 0.0694 374
Northeast 21,506 11.1590 5,061 12.0678 0.0783 396
East 22,893 11.8786 5,237 12.4875 0.0500 262
Southeast 26,306 13.6496 5,771 13.7608 0.0081 47
South 27,207 14.1171 5,844 13.9349 00130  -76
Southwest 24,598 12.7633 4,925 11.7435 -0.0833  -410
West 22,754 11.8065 4,600 10.9686 00736 -339
Northwest 23,984 12.4447 5,016 11.9605 -0.0397  -199
Curvature -6.7778-(-)0.5312 41911 21.7466 8,731 20.8188 200436 -381 1
-0.5312-0.4449 109,325 56.7262 24,574 58.5960 0.0324 797
0.4449-5.6667 41,488 21.5272 8,633 20.5851 -0.0447  -386
Topographic 3.5241-6.6126 66,549 34,5307 11,639 27.7529 02185 2,543 1135
gs;;}‘;ss Index ¢ 6126-8.3604 54317 28.1838 12,026 28.6757 00173 208
8.3604-10.6028 28,472 14.7735 6,490 15.4752 0.0464 301
10.6028-12.9423 29,072 15.0848 7,742 18.4606 0.2020 1,564
12.9423-16.4148 11,321 5.8742 3,244 7.7352 02752 893
16.4148-23.8072 2,993 1.5530 797 1.9004 0.2019 161
Stream Power -6.1160-(-)1.6228 2,549 1.3226 103 0.2456 -1.6837  -173 8.85
Index (SPD) -1.6228-(-)0.6977 19,349 10.0397 3,441 8.2050 202018  -694
-0.6977-(-)0.1889 4,7245 245143 10,627 25.3398 0.0331 352
-0.1889-0.1918 91,143 47.2920 21,136 50.3982 0.0636 1,345
0.1918-0.6709 28,111 14.5861 6,003 143140 -0.0188  -113
0.6709-5.6373 4,327 2.2452 628 1.4974 04050  -254
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Table 1. Calculation of weight values of SI and WF models (cont.)

Conditioning Conditioning No. pixels Percentage No. of flood  Percentage  SI(Wj) TSI WF
factors classes of area pixels of flood
Rainfall (mm)  1,233-1,267 18,887 9.8000 4,152 9.9003 0.0102 2 127
1,267-1,285 25,591 13.2786 5,501 13.1170  -00122  -67
1,285-1,301 29,372 15.2404 6,946 165625 0.0832 578
1,301-1,317 34,939 18.1290 6,864 163670  -0.1022  -702
1,317-1,333 41,908 21.7451 9,747 232415 0.0665 649
1,333-1,353 42,027 21.8068 8,728 208117 -0.0467  -408
Distance from __ 0-400 101,742 52.7916 23,400 557967 0.0554 1295 1382
rivers (m) 400-800 43241 224367 9,238 220278 -00184  -170
800-1,200 23,561 12.2253 5,127 122252 0.0000 0
1,200-1,600 13,067 6.7802 2,895 6.9030 0.0180 52
1,600-2,000 6,466 3.3551 1,162 2.7708 -0.1913 222
2,000 4,647 24112 116 0.2766 2.1653 251
Stream density  0-0.8490 24481 12.7026 6,208 148028 0.1530 950 5.66
(kan/kr?) 0.8490-1.4270 44,644 23.1647 8,726 208069  -0.1073 -937
1.4270-1.9870 48,047 25.3975 9,299 221732 -0.1358 1262
1.9870-2.6192 38,946 20.2082 9,571 28218 0.1216 1,164
2.6192-3.3417 22452 11.6498 4,847 115575 -0.0080 -39
3.3417-4.6242 13,254 6.8772 3,287 7.8378 0.1307 430
Soil drainage Well drained 40,767 21.1530 4,632 11.0429  -0.6498 3,010 8261
Moderately well 8,301 43072 4 0.0095 -6.1128 24
drained
Somewhat poorly 32,827 17.0332 9,324 22.2328 0.2664 2,484
drained
Poorly drained 81,629 42,3554 22,746 542372 0.2473 5,624
No survey/builtup 29,200 15.1512 5,232 124756 -0.1943 1,017
Land use Forest Tand 18,150 9.4176 592 14116 18979 1,124 100
Paddy field/ 48414 25.1209 18,062 430683  0.5391 9,737
field crop
Orchard 64,831 33.6393 10,908 260098  -02572  -2,806
Other agricultural 741 0.3845 120 0.2861 02954 35
B?San and built-up 46,179 23.9612 9,502 226573 -00560  -532
i:’lﬁer body 4,191 2.1746 646 15404 203448 223
Miscellancous land 10,218 53019 2,108 5.0265 -0.0533 112
Road density 0-1.7395 18,578 9.6397 1,025 2.4441 13722 1,407 3928
(k/km?) 17395-3.8268 35,663 18.5047 9,959 237470 0.2494 2,484
3.8268-5.4503 57,787 29.9843 13,429 320211 0.0657 883
5.4503-7.1898 43,113 22.3703 8,985 214245 00432 -388
7.1898-9.2771 27,452 14.2442 6,344 151271 0.0601 382
9.2771-14.8434 10,131 52567 2,196 5.2363 00039 9

The FSI from the WF model was calculated
using both SI and WF weights, as shown in equation
(7), and was categorized into five classes using the
geometrical interval classifier method (Figure 5 (b)).
Land classified as very highly susceptible occupies
51.74% of the study area, followed by 26.18%,
18.54%, 2.87%, and 0.66% of the area classified as
high, moderate, low, and very low susceptibility,
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respectively. The WF model yields a greater area
classified as very high or high susceptibility,
accounting for 78.92% of the study area, compared to
72.84% according to the SI model (Table 1).

As Figures 5 (a) and (b) show, low and very low
susceptibility areas are mainly in areas of high
elevation. However, the very high and high
susceptibility areas from the SI and WF models are
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partly different. The high susceptibility areas of the
WF map cover a greater extent than those in the SI
map and mainly dominate the southeast of the study
area located in low elevations with poor drainage
conditions. The results indicate that the weighting
values of the conditioning factors play an important
role in obtaining the flood susceptibility mapping
while the SI model relies on a calculation with the
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Figure 5. Flood susceptibility mapping: (a) SI model, (b) WF model

3.3 Validation of the models

The results from the SI and WF models were
compared with the training data (70%) and testing data
(30%) using the ROC curve and the AUC value
methods. Figures 6 (a) and (b) show the ROC curves
of the success and prediction rates of both results. The
success rates of the SI and WF models were 91.80%
and 93.06%, respectively. The prediction rate is
widely used to clarify the predictability of future flood
occurrences (Paul et al., 2019); the prediction rate
values were 93.53% for the WF model and 92.05% for
the SI model. Therefore, the results show that the WF
model performed slightly better than the SI model for
mapping flood-susceptible areas in San Pa Tong.
However, both models provided excellent outcomes,
with AUC values higher than 90% (Khosravi et al.,
2016; Yesilnacar, 2005). A similar pattern of results
was obtained by Khosravi et al. (2016), who found
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equal weight of the conditioning factors (Khosravi et
al., 2016).

FSIwr = (Slelevation X 75.77) + (Slslope Xx26.41) + (7
(Slaspect X 1) + (Slcurvature X 1) + (SITWI X 11-35) +
(Slspr x 8.85) + (Slrainfan x 1.27) +
(Sldist. from river X 13-82) + (SIstream density X 5-66) +
(Slsoil drainage X 82-61) + (Slland use X 100) +

(Slroad density X 39.28)
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excellent results with SI and WF, and Cao et al. (2016),
who also obtained a high prediction rate result using
the SI model.

Additionally, the recurring flood data were
utilized and compared with the results from SI and WF
models. Figures 7 (a) and (b) show an excellent
correlation between the recurring flood areas and the
results from both SI and WF models. Comparatively,
the WF model performed more accurately with
82.12% of the recurring flood areas falling into the
very high susceptibility class, compared to
77.06% from the SI model (Table 2). The results also
revealed that no recurring flood area was in the
very low susceptibility class for either the SI or
WI model. Based on the validation results, both
models can be considered effective approaches for
mapping flood susceptibility in other geographic
areas.
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Figure 7. Flood susceptibility mapping using SI (a) and WF (b) models and recurring flood areas from 2005 to 2019

Table 2. Computation of the recurring flood area and flood susceptibility class

Model Susceptibility class Recurring flood area (km?) Percentage (%)
2 times 3 times 4 times Total

SI Very low 0.00 0.00 0.00 0.00 0.00
Low 0.11 0.01 0.00 0.12 0.70
Moderate 1.42 0.55 0.08 2.06 11.93
High 1.40 0.32 0.06 1.78 10.30
Very High 8.18 4.05 1.06 13.29 77.06
Total 11.11 4.94 1.20 17.24 100.00

WF Very low 0.00 0.00 0.00 0.00 0.00
Low 0.06 0.01 0.00 0.07 0.39
Moderate 0.96 0.17 0.01 1.14 6.62
High 1.43 0.36 0.08 1.87 10.87
Very High 8.65 4.40 1.10 14.16 82.12
Total 11.11 4.94 1.20 17.24 100.00
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3.4 Suggestion for further research

In terms of the results of this study, each
conditioning factor has a different impact on flood
occurrence, depending on the geographic context of
the area. Thus, statistical models comparing the
influencing factor are highly important (Kia et al.,
2012). The DEM is also an essential component of
these models and plays an important role in flood
hazard research (Cabrera et al., 2019); the effects of
flood susceptibility mapping using a different spatial
resolution of DEM data might also therefore be
investigated. Although both SI and WF results showed
excellent and effective outcomes, there are some
limitations in this study to be considered. Socio-
economic factors could be integrated into the method
as demonstrated by Hoang et al. (2020) and Khaing et
al. (2021). Further conditioning factors could also be
investigated, such as the Normalized difference
vegetation index (NDVI), lithology, and land-use
changes. For further research, FSM using statistical
and machine learning models such as weight of
evidence, artificial neural networks, logistic
regression, and support vector machines could be
considered (Anucharn, 2019; Paul et al.,, 2019;
Tehrany et al., 2017; Tehrany et al., 2019). Moreover,
integrating hydrological models and GIS-based
technique is also a suggested point for further study
(Khaing et al., 2021; Rahmati et al., 2016).

4. CONCLUSION

Flood susceptibility mapping is an essential tool
for flood preparation. Identification of susceptible
areas using reliable methods can help to reduce flood
damage. This research applied SI and WF models for
flood susceptibility mapping in the San Pa Tong
District, Chiang Mai, Thailand, and compared their
performance, in addition to investigating the most
influential factors for flood occurrence in the study
area. Flood data were randomly divided into training
and testing data. Then, 12 conditioning factors,
namely elevation, slope, aspect, curvature, TWI, SPI,
rainfall, distance from rivers, stream density, soil
drainage, land use, and road density were used to
compare with training data and calculate the
correlation with flood occurrence. The results from the
SI and WF models revealed that very highly
susceptible areas covered an estimated 49.49% and
51.74% of the study area, respectively. Regarding the
WEF results, the most influential factors were land use,
soil drainage, and elevation, while the aspect and
curvature were the least significant factors in
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determining flood susceptibility. ROC and AUC were
then used to evaluate the success rate and the
prediction rate of the SI and WF models. The results
revealed that WF shows a better success rate than the
SI model, with AUC values of 93.06% and 91.80%,
respectively. WF also performed better, with a
prediction rate of 93.52% compared to 92.05% for SI.
In summary, both WF and SI results were shown as
acceptable and reliable methods, with excellent
performance rates for flood susceptibility mapping.
The results of this research can be used to help
planners implement flood preparedness and to
minimize the impacts of future floods.
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