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Floods are one of the most devastating natural hazards, causing deaths, economic 
losses, and destruction of property. Flood susceptibility maps are an essential tool 
for flood mitigation and preparedness planning. This study mapped flood 
susceptibility using statistical index (SI) and weighting factor (WF) models in 
San Pa Tong District, Chiang Mai Province, Thailand. The conditioning factors 
used to perform flood susceptibility mapping were elevation, slope, aspect, 
curvature, topographic wetness index, stream power index, rainfall, distance from 
rivers, stream density, soil drainage, land use, and road density. The flood data 
were randomly classified as training data for mapping (70% of data) and testing 
data for model validation (30% of data). The results revealed that the SI and WF 
models classified 49.49% and 51.74% of the study area, respectively, as very 
highly susceptible to flooding. In the WF model, the factors with the greatest 
influence were land use, soil drainage, and elevation. The validation of the 
models using the area under the curve revealed that the success rates of the SI 
and WF models were 91.80% and 93.06%, while the prediction rates were 
92.05% and 93.52%, respectively. The results from this study can be useful for 
local authorities in San Pa Tong District for flood preparedness and mitigation.  
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1. INTRODUCTION

Flooding is the most devastating category of 
natural disaster, affecting people and properties 
around the world (Paul et al., 2019; Samanta et al., 
2018), with an average of 71.9 million people reported 
as affected by flooding annually (CRED, 2020). In the 
monsoon-dominated tropical and subtropical regions 
of the world, flooding occurs frequently and across 
wide areas (Khaing et al., 2021). In Asia, flooding is 
one of the most destructive natural disasters, with the 
highest proportion (79.9%) of the total population 
affected by floods globally (CRED, 2020). In 
Thailand, floods are one of the most destructive 
natural disasters. In 2011, the country suffered the 
worst floods in more than half a century; these floods 
inundated more than six million hectares of land in 66 
provinces and affected more than 13 million people. 
The estimated damage and losses totaled 
approximately USD 46.5 billion (World Bank, 2012). 

Flood occurrence is affected by various factors. 
Heavy rainfall is one of the main factors, leading to the 

rapid accumulation and release of runoff waters from 
upstream to downstream areas (Kongmuang et al., 
2020). Climate change also causes flood occurrences 
with rising frequency and magnitude (Khaing et al., 
2021; Tehrany et al., 2019), while human activities 
such as urbanization and deforestation can also 
increase flooding incidence rates (Cabrera et al., 2019; 
Paul et al., 2019). In flood-prone areas, flood risk can 
be assessed to prevent damage to residential areas, 
agriculture, public properties, etc. (Paul et al., 2019; 
Samanta et al., 2018). Flood susceptibility mapping is 
an essential tool for flood preparedness and mitigation, 
in particular, planning using reliable information can 
help support communities and government authorities 
to precisely implement flood protection strategies.  

Various approaches have been applied for flood 
susceptibility   mapping.   Hydrological   models   have 
been developed by various researchers such as SWAT 
(Igarashi et al., 2019) and HEC-RAS (Khaing et al., 
2021; Rahmati et al., 2016). Although hydrological 
model can predict and simulate flood hazard, there are 
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some limitations such as the requirement of vast data 
budget, unavailability of large-scale data and time 
consuming for preparation and calibration of 
parameters (Cabrera et al., 2019; Hoang et al., 2020). In 
the few past decades, geographic information system 
(GIS) and remote sensing (RS) have made remarkable 
contributions in flood hazard mapping (Rahmati et al., 
2016; Samanta et al., 2018). Several techniques have 
been applied with GIS and RS, including analytical 
hierarchy process (AHP) (Hoang et al., 2020; Khaing et 
al., 2021; Rahmati et al., 2016), frequency ratio (FR) 
(Anucharn, 2019; Cao et al., 2016; Samanta et al., 2018; 
Tehrany et al., 2019), logistic regression (LR) (Tehrany 
et al., 2019), weight of evidence (WoE) (Tehrany et al., 
2017), statistical index (SI) (Cao et al., 2016; Khosravi 
et al., 2016; Tehrany et al., 2019), and artificial neural 
network (ANN) (Anucharn, 2019; Kia et al., 2012). The 
results of the research mentioned above, demonstrate 
slightly variance from place to place and each type of 
model is still necessary to be examined. Thus, testing 
and valuation of these models can provide optimal and 
more reliable results.  

Statistical index (SI) modeling has been applied 
to various hazard mapping efforts and has performed 
efficiently with acceptable results (Khosravi et al., 
2016). It has been widely used in mapping landslide 
susceptibility (Budha et al., 2016; Pourghasemi et al., 
2013) and has also been applied to flood susceptibility 
mapping (Khosravi et al., 2016; Tehrany et al., 2019). 
However, the main limitation of SI is the lack of 
consideration of the relationship between the causative 
factors themselves which needs further research. The 
weighting factor (WF) method has been applied widely 
in the field of landslide studies (Yalcin, 2008), however, 
its use is still lacking in the field of flood susceptibility 
mapping (Khosravi et al., 2016). Additionally, some 
causative factors have not been applied to the WF 
model to measure their impact on flood occurrence such 
as aspect and road density. Given this context, a 
comparative study of the SI and WF models may 
contribute to the assessment of flood susceptibility. 

This research, therefore, aimed to perform flood 
susceptibility mapping of the San Pa Tong District, 
Chiang Mai, which suffered from flooding in 2005, 
2009, 2010, and 2011, by applying SI and WF models 
and to examine the performance of these two models. 
This research also aimed to find the most influential 
factors for flood occurrence in the study area. The 
study results can be useful for local administrators to 
minimize the consequences of future floods, and, 

furthermore, these research methods can provide 
guidelines for further research. 

2. METHODOLOGY

2.1 Study area

The study area is the San Pa Tong District, 
Chiang Mai Province, in northern Thailand. It is located 
between latitudes 18°30´ and 18°43´ N and longitudes 
98°48´ and 98°57´E, covering an area of approximately 
173.45 km2 (Figure 1). The altitude ranges between 239 
m and 640 m above sea level, with a mountainous area 
in the north and lowlands covering the central and the 
southern parts of the area. There are three main rivers in 
San Pa Tong, namely the Ping River, Khan River, and 
Mae Wang River. Due to the area’s topographic and 
hydrological characteristics, San Pa Tong is flood-
prone and has been frequently affected by floods. The 
main causes of flooding in the area are the high intensity 
of rainfall and runoff from the upper catchments 
flowing to the lower areas in the south. Regarding the 
flood data of 2005, 2009, 2010, and 2011, 59.49 km2 of 
San Pa Tong has been recorded as a flooded area 
(Suppawimut, 2020). In this context, the San Pa Tong 
District was, therefore, selected as the study area. 

2.2 Data collection 

The historic flood data was collected from 
multi-source satellite imagery from 2005 to 2019 
including RADARSAT, COSMO, and THAICHOTE, 
operated by the Geo-Informatics and Space 
Technology Development Agency (GISTDA). In this 
study, the flood inventory was prepared based on the 
floods that occurred in 2005, 2009, 2010, and 2011. 
Flood raster data were randomly classified as training 
data (70%) and testing data (30%) (Figures 2 and 3). 
The conditioning factor data were acquired from 
secondary data sources and government organizations. 
The digital elevation model (DEM) data were derived 
from the Advanced Spaceborne Thermal Emission and 
Reflection Radiometer (ASTER) with 30 m × 30 m 
resolution and was obtained from the Earthdata 
website (https://earthdata.nasa.gov). The DEM was 
used to extract the topographic factors, namely slope, 
aspect, curvature, topographic wetness index (TWI), 
and stream power index (SPI). The other sources of 
data were as follows: rainfall data from the Upper 
Northern Region Irrigation Hydrology Center; land 
use data of 2018 and soil drainage data from the Land 
Development Department; road data from Nostra 
Map; and river and stream data derived from 1:50,000 
topographic maps. 
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Figure 1. Map of the study area 

Figure 2. Map of the study area with training and testing data
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Figure 3. Flow chart of the research methodology

2.3 Flood conditioning factors 

Flood conditioning factor data is essential for 
examining the relationships between the causative 
factors and flood occurrence (Khosravi et al., 2016). 
In this study, 12 conditioning factors were considered 
for flood susceptibility mapping based on the literature 
(Anucharn, 2019; Khosravi et al., 2016; Kongmuang 
et al., 2020; Paul et al., 2019; Tehrany et al., 2017; 
Tehrany et al., 2019), namely elevation, slope, aspect, 
curvature, TWI, SPI, rainfall, distance from rivers, 
stream density, soil drainage, land use, and road 
density (Figures 3 and 4). All conditioning factors 
were used to perform the flood susceptibility 
mapping. Each factor was prepared in raster format 
at a spatial resolution of 30 m × 30 m and was 
classified using the natural breaks method. Figure 3 
shows a flowchart of the research methodology, and 
Table 1 shows the class values and the characteristics 
of the conditioning factors. 

2.4 Flood susceptibility mapping 

2.4.1 Statistical index model 

The SI model is a bivariate statistical analysis 
(BSA) introduced by van Westen et al. (1997). It has 
been applied to various natural hazard studies, 
including landslides (Budha et al., 2016; Pourghasemi 
et al., 2013), floods (Khosravi et al., 2016; Tehrany et 
al., 2019), and flash floods (Cao et al., 2016) . For SI, 
the weighted value of a conditioning class is calculated 
as the natural logarithm of flood existence in each 
class of a conditioning factor divided by the total flood 
density for the study as expressed in Equation 1 
(Tehrany et al., 2019): 

Wij = ln (
Dij

D
) = ln [ (

Nij

Sij
/

N

S
)]  (1) 

Where; Wij is the weight given to class i of the 
factor j, Dij is the flood density in class i of the factor 
j, D is the total flood density of the study area, Nij is 
the number of flood pixels in class i of the factor j, Sij 
is the total number of pixels in class i of the factor j, N 
is the total number of flood pixels, and S is the total 
number of pixels in the study area. 

The conditioning factors were reclassified using 
the Wij values. Then, the classified factors were 
combined using the raster calculator to calculate the 
flood susceptibility index (FSI). The FSI can be 
described by the following equation:  

FSISI = ∑ Wij
n
j=1   (2) 

Where; FSISI is the flood susceptibility index of 
the SI model, Wij is the weight given to class i of the 
factor j, and n represents the number of conditioning 
factors. 

2.4.2 Weighting factor model 

The weighting factor model is a modified 
version of the SI model (Oztekin and Topal, 2005; 
Yalcin, 2008; Khosravi et al., 2016) . Weights are 
derived for the conditioning factors to determine their 
influence on flood occurrence. TSI values are 
calculated by multiplying the SI values by the number 
of flood pixels in the same conditioning class, then, 
the values of all conditioning classes for a particular 
factor  are  summed  (Oztekin  and  Topal,  2005).  The 
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weighting factor values for each conditioning factor 
are calculated, ranging from 1 to 100, using the 
following equations (Yalcin, 2008; Khosravi et al., 
2016):  

TSIvalue  = ∑ SI ×  S. pixeln
i=1  (3) 

Wwf =
(TSIvalue)−(MinTSIvalue)

(MaxTSIvalue)−(MinTSIvalue)
×  100  (4) 

Where; TSI is the total weighting index value of 
pixels in the conditioning class for each factor, 
MinTSIvalue and MaxTSIvalue are the minimum and 
maximum values of the total weighting index value 
among all conditioning factors, respectively, and  
Wwf  is the weighting factor value for each
conditioning factor. 

To calculate the flood susceptibility index value 
using the WF model, the Wij weighting value (i.e., Wij

of the SI method) of the conditioning class is 
multiplied by the weighting factor value. The FSI of 
the WF model is then calculated using the following 
equation: 

FSIWF = ∑ SIn
i=1 ×  WF   (5) 

Where; FSIWF is the flood susceptibility index 
of the WF model, SI is the weighting value of the 
conditioning class, and WF is the weighting factor 
value of each conditioning factor. 

2.4.3 Validation of the model

The receiver operating characteristic (ROC) 
and the area under the curve (AUC) metrics were 
used to evaluate the performance of the results of the 
SI and WF methods. ROC and AUC methods are 
widely used in natural hazard research (Khosravi et 
al., 2016; Tehrany et al., 2019). Both susceptibility 
map results were compared with training data and 
testing data. The calculated AUC values represent the 
success rate and prediction rate performance for 
training data and testing data, respectively. The AUC 
has a value range from 0-1, where 1 indicates the 
highest accuracy; if the AUC is closer to 1, the map 
results are considered more precise and reliable 
(Tehrany et al., 2019). The AUC value can be 
classified as follows: weak (0.5-0.6), moderate (0.6-
0.7), good (0.7-0.8), very good (0.8-0.9), or excellent 
(0.9-1.0) (Pourghasemi et al., 2013; Yesilnacar, 
2005). 

Figure 4. Conditioning factors: (a) elevation, (b) slope, (c) aspect, (d) curvature, (e) TWI, (f) SPI, (g) rainfall, (h) distance from rivers, (i) 
stream density, (j) soil drainage, (k) land use, and (l) road density 
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Figure 4. Conditioning factors: (a) elevation, (b) slope, (c) aspect, (d) curvature, (e) TWI, (f) SPI, (g) rainfall, (h) distance from rivers, (i) 
stream density, (j) soil drainage, (k) land use, and (l) road density (cont.) 
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Figure 4. Conditioning factors: (a) elevation, (b) slope, (c) aspect, (d) curvature, (e) TWI, (f) SPI, (g) rainfall, (h) distance from rivers, (i) 
stream density, (j) soil drainage, (k) land use, and (l) road density (cont.) 

3. RESULTS AND DISCUSSION

3.1 Flood susceptibility mapping using SI model

The results of using the SI model to calculate 
the weight of each flood conditioning factor class 
represent the correlation with flood occurrence and are 
presented in Table 1. A positive weight for the 
conditioning class indicates a high correlation with 
flood occurrence, whereas a negative weight means a 
low correlation. Each conditioning class of 12 factors 
was reclassified using its SI weight (Wij) and was used
to calculate the flood susceptibility index (FSI), as 
expressed in Equation (6). FSI values from the SI 
model were reclassified into five susceptibility classes 
(very low, low, moderate, high, and very high) using 

the geometrical interval classifier in ESRI ArcGIS 
10.5 software. 

FSISI =  SIelevation + SIslope + SIaspect + SIcurvature +      (6)
  SITWI + SISPI + SIrainfall + SIdistance to river +

  SIstream density + SIsoil drainage + SIland use +

  SIroad density

The SI results presented in Figure 5 (a) show 
that about 49.49% of the study area is classified as 
very high susceptibility. The proportions of the study 
area classified as high, moderate, low, and very low 
susceptibility are 23.35%, 23.21%, 3.71%, and 0.24%, 
respectively (Table 1). The very highly susceptible 
areas are found in the west, the east, and the south, 
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while the very low susceptibility regions are mostly 
found in the northern area.  

3.2 Flood susceptibility mapping using WF model 

The WF model showed the weight of each 
conditioning factor as an influence on flooding, as 
shown in Table 1. The advantage of the WF approach 
is its consideration of the different weights among the 
factors. The results showed that land use, soil 
drainage, and elevation are the most influential 

factors, with WF weights of 100, 82.61, and 75.77, 
respectively (Table 1). This indicates the importance 
of these factors and their necessity for flood 
susceptibility mapping research. The remaining 
conditioning factors are, in order of influence: road 
density, slope, distance from rivers, TWI, SPI, stream 
density, rainfall, aspect, and curvature. In contrast, the 
study of Khosravi et al. (2016) in the Haraz watershed 
of Iran found that the most influential factors were 
distance from rivers, elevation, and TWI. 

Table 1. Calculation of weight values of SI and WF models 

Conditioning 
factors 

Conditioning 
classes 

No. pixels Percentage 
of area 

No. of flood 
pixels 

Percentage 
of flood 

SI(Wij) TSI WF 

Elevation (m) 239-295 91,113 47.2764 21,527 51.3305 0.0823 1,771 75.77 

295-317 71,637 37.1708 18,885 45.0308 0.1918 3,623 

317-354 13,411 6.9587 1,194 2.8471 -0.8937 -1067

354-404 9,366 4.8598 332 0.7916 -1.8146 -602

404-479 5,467 2.8367 0 0.0000 0.0000 0

479-640 1,730 0.8977 0 0.0000 0.0000 0

Slope (degree) 0-3.0544 66,718 34.6184 16,253 38.7548 0.1129 1,834 26.41 

3.0544-5.5710 65,599 34.0378 15,426 36.7829 0.0776 1,196 

5.5710-8.8112 37,982 19.7080 7,832 18.6752 -0.0538 -422

8.8112-13.8323 15,086 7.8278 2,181 5.2005 -0.4089 -892
13.8323-21.9126 5,310 2.7552 241 0.5747 -1.5675 -378

21.9126 43.1662 2,029 1.0528 5 0.0119 -4.4808 -22

Aspect Flat 363 0.1884 93 0.2218 0.1633 15 1 

(direction) North 23,113 11.9928 5,391 12.8547 0.0694 374 

Northeast 21,506 11.1590 5,061 12.0678 0.0783 396 

East 22,893 11.8786 5,237 12.4875 0.0500 262 

Southeast 26,306 13.6496 5,771 13.7608 0.0081 47 

South 27,207 14.1171 5,844 13.9349 -0.0130 -76

Southwest 24,598 12.7633 4,925 11.7435 -0.0833 -410

West 22,754 11.8065 4,600 10.9686 -0.0736 -339

Northwest 23,984 12.4447 5,016 11.9605 -0.0397 -199

Curvature -6.7778-(-)0.5312 41,911 21.7466 8,731 20.8188 -0.0436 -381 1 

-0.5312-0.4449 109,325 56.7262 24,574 58.5960 0.0324 797

0.4449-5.6667 41,488 21.5272 8,633 20.5851 -0.0447 -386

Topographic 
Wetness Index 
(TWI) 

3.5241-6.6126 66,549 34.5307 11,639 27.7529 -0.2185 -2,543 11.35

6.6126-8.3604 54,317 28.1838 12,026 28.6757 0.0173 208

8.3604-10.6028 28,472 14.7735 6,490 15.4752 0.0464 301

10.6028-12.9423 29,072 15.0848 7,742 18.4606 0.2020 1,564
12.9423-16.4148 11,321 5.8742 3,244 7.7352 0.2752 893

16.4148-23.8072 2,993 1.5530 797 1.9004 0.2019 161

Stream Power 
Index (SPI) 

-6.1160-(-)1.6228 2,549 1.3226 103 0.2456 -1.6837 -173 8.85 

-1.6228-(-)0.6977 19,349 10.0397 3,441 8.2050 -0.2018 -694

-0.6977-(-)0.1889 4,7245 24.5143 10,627 25.3398 0.0331 352

-0.1889-0.1918 91,143 47.2920 21,136 50.3982 0.0636 1,345

0.1918-0.6709 28,111 14.5861 6,003 14.3140 -0.0188 -113

0.6709-5.6373 4,327 2.2452 628 1.4974 -0.4050 -254
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Table 1. Calculation of weight values of SI and WF models (cont.) 

Conditioning 
factors 

Conditioning 
classes 

No. pixels Percentage 
of area 

No. of flood 
pixels 

Percentage 
of flood 

SI(Wij) TSI WF 

Rainfall (mm) 1,233-1,267 18,887 9.8000 4,152 9.9003 0.0102 42 1.27 

1,267-1,285 25,591 13.2786 5,501 13.1170 -0.0122 -67

1,285-1,301 29,372 15.2404 6,946 16.5625 0.0832 578

1,301-1,317 34,939 18.1290 6,864 16.3670 -0.1022 -702

1,317-1,333 41,908 21.7451 9,747 23.2415 0.0665 649

1,333-1,353 42,027 21.8068 8,728 20.8117 -0.0467 -408

Distance from 
rivers (m) 

0-400 101,742 52.7916 23,400 55.7967 0.0554 1,295 13.82 

400-800 43,241 22.4367 9,238 22.0278 -0.0184 -170

800-1,200 23,561 12.2253 5,127 12.2252 0.0000 0

1,200-1,600 13,067 6.7802 2,895 6.9030 0.0180 52

1,600-2,000 6,466 3.3551 1,162 2.7708 -0.1913 -222

>2,000 4,647 2.4112 116 0.2766 -2.1653 -251

Stream density 
(km/km2) 

0-0.8490 24,481 12.7026 6,208 14.8028 0.1530 950 5.66 
0.8490-1.4270 44,644 23.1647 8,726 20.8069 -0.1073 -937

1.4270-1.9870 48,947 25.3975 9,299 22.1732 -0.1358 -1,262

1.9870-2.6192 38,946 20.2082 9,571 22.8218 0.1216 1,164

2.6192-3.3417 22,452 11.6498 4,847 11.5575 -0.0080 -39

3.3417-4.6242 13,254 6.8772 3,287 7.8378 0.1307 430

Soil drainage Well drained 40,767 21.1530 4,632 11.0449 -0.6498 -3,010 82.61

Moderately well 
drained 

8,301 4.3072 4 0.0095 -6.1128 -24

Somewhat poorly 
drained 

32,827 17.0332 9,324 22.2328 0.2664 2,484 

Poorly drained 81,629 42.3554 22,746 54.2372 0.2473 5,624 

No survey/built up 
area 

29,200 15.1512 5,232 12.4756 -0.1943 -1,017

Land use Forest land 18,150 9.4176 592 1.4116 -1.8979 -1,124 100

Paddy field/ 
field crop 

48,414 25.1209 18,062 43.0683 0.5391 9,737

Orchard 64,831 33.6393 10,908 26.0098 -0.2572 -2,806

Other agricultural 
land 

741 0.3845 120 0.2861 -0.2954 -35

Urban and built-up 
land 

46,179 23.9612 9,502 22.6573 -0.0560 -532

Water body 4,191 2.1746 646 1.5404 -0.3448 -223

Miscellaneous land 10,218 5.3019 2,108 5.0265 -0.0533 -112

Road density 
(km/km2) 

0-1.7395 18,578 9.6397 1,025 2.4441 -1.3722 -1,407 39.28

1.7395-3.8268 35,663 18.5047 9,959 23.7470 0.2494 2,484

3.8268-5.4503 57,787 29.9843 13,429 32.0211 0.0657 883

5.4503-7.1898 43,113 22.3703 8,985 21.4245 -0.0432 -388

7.1898-9.2771 27,452 14.2442 6,344 15.1271 0.0601 382

9.2771-14.8434 10,131 5.2567 2,196 5.2363 -0.0039 -9

The FSI from the WF model was calculated 
using both SI and WF weights, as shown in equation 
(7), and was categorized into five classes using the 
geometrical interval classifier method (Figure 5 (b)). 
Land classified as very highly susceptible occupies 
51.74% of the study area, followed by 26.18%, 
18.54%, 2.87%, and 0.66% of the area classified as 
high, moderate, low, and very low susceptibility, 

respectively. The WF model yields a greater area 
classified as very high or high susceptibility, 
accounting for 78.92% of the study area, compared to 
72.84% according to the SI model (Table 1).  

As Figures 5 (a) and (b) show, low and very low 
susceptibility areas are mainly in areas of high 
elevation. However, the very high and high 
susceptibility areas from the SI and WF models are 
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partly different. The high susceptibility areas of the 
WF map cover a greater extent than those in the SI 
map and mainly dominate the southeast of the study 
area located in low elevations with poor drainage 
conditions. The results indicate that the weighting 
values of the conditioning factors play an important 
role in obtaining the flood susceptibility mapping 
while the SI model relies on a calculation with the 

equal weight of the conditioning factors (Khosravi et 
al., 2016). 

FSIWF = (SIelevation x 75.77) + (SIslope x 26.41) +   (7) 
  (SIaspect x 1) + (SIcurvature x 1) + (SITWI x 11.35) + 
  (SISPI x 8.85) + (SIrainfall x 1.27) + 
  (SIdist.  from river x 13.82) + (SIstream density x 5.66) + 
  (SIsoil drainage x 82.61) + (SIland use x 100) + 
  (SIroad density x 39.28) 

Figure 5. Flood susceptibility mapping: (a) SI model, (b) WF model 

3.3 Validation of the models 

The results from the SI and WF models were 
compared with the training data (70%) and testing data 
(30%) using the ROC curve and the AUC value 
methods. Figures 6 (a) and (b) show the ROC curves 
of the success and prediction rates of both results. The 
success rates of the SI and WF models were 91.80% 
and 93.06%, respectively. The prediction rate is 
widely used to clarify the predictability of future flood 
occurrences (Paul et al., 2019); the prediction rate 
values were 93.53% for the WF model and 92.05% for 
the SI model. Therefore, the results show that the WF 
model performed slightly better than the SI model for 
mapping flood-susceptible areas in San Pa Tong. 
However, both models provided excellent outcomes, 
with AUC values higher than 90% (Khosravi et al., 
2016; Yesilnacar, 2005). A similar pattern of results 
was obtained by Khosravi et al. (2016), who found 

excellent results with SI and WF, and Cao et al. (2016), 
who also obtained a high prediction rate result using 
the SI model.  

Additionally, the recurring flood data were 
utilized and compared with the results from SI and WF 
models. Figures 7 (a) and (b) show an excellent 
correlation between the recurring flood areas and the 
results from both SI and WF models. Comparatively, 
the WF model performed more accurately with 
82.12% of the recurring flood areas falling into the 
very high susceptibility class, compared to 
77.06% from the SI model (Table 2). The results also 
revealed that no recurring flood area was in the 
very low susceptibility class for either the SI or 
WI model. Based on the validation results, both 
models can be considered effective approaches for 
mapping flood susceptibility in other geographic 
areas. 
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Figure 6. Validation using ROC and AUC: (a) success rate and (b) prediction rate 

Figure 7. Flood susceptibility mapping using SI (a) and WF (b) models and recurring flood areas from 2005 to 2019 

Table 2. Computation of the recurring flood area and flood susceptibility class  

Model Susceptibility class Recurring flood area (km2) Percentage (%) 
2 times 3 times 4 times Total 

SI Very low 0.00 0.00 0.00 0.00 0.00 
Low 0.11 0.01 0.00 0.12 0.70 
Moderate 1.42 0.55 0.08 2.06 11.93 
High 1.40 0.32 0.06 1.78 10.30 
Very High 8.18 4.05 1.06 13.29 77.06 
Total 11.11 4.94 1.20 17.24 100.00 

WF Very low 0.00 0.00 0.00 0.00 0.00 
Low 0.06 0.01 0.00 0.07 0.39 
Moderate 0.96 0.17 0.01 1.14 6.62 
High 1.43 0.36 0.08 1.87 10.87 
Very High 8.65 4.40 1.10 14.16 82.12 
Total 11.11 4.94 1.20 17.24 100.00 
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(a) Success rate

Success rate (SI) AUC = 91.80%
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(b) Prediction rate

Prediction rate (SI) AUC = 92.05%

Prediction rate (WF) AUC = 93.52%
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3.4 Suggestion for further research 

In terms of the results of this study, each 
conditioning factor has a different impact on flood 
occurrence, depending on the geographic context of 
the area. Thus, statistical models comparing the 
influencing factor are highly important (Kia et al., 
2012). The DEM is also an essential component of 
these models and plays an important role in flood 
hazard research (Cabrera et al., 2019); the effects of 
flood susceptibility mapping using a different spatial 
resolution of DEM data might also therefore be 
investigated. Although both SI and WF results showed 
excellent and effective outcomes, there are some 
limitations in this study to be considered. Socio-
economic factors could be integrated into the method 
as demonstrated by Hoang et al. (2020) and Khaing et 
al. (2021). Further conditioning factors could also be 
investigated, such as the Normalized difference 
vegetation index (NDVI), lithology, and land-use 
changes. For further research, FSM using statistical 
and machine learning models such as weight of 
evidence, artificial neural networks, logistic 
regression, and support vector machines could be 
considered (Anucharn, 2019; Paul et al., 2019; 
Tehrany et al., 2017; Tehrany et al., 2019). Moreover, 
integrating hydrological models and GIS-based 
technique is also a suggested point for further study 
(Khaing et al., 2021; Rahmati et al., 2016). 

4. CONCLUSION

Flood susceptibility mapping is an essential tool 
for flood preparation. Identification of susceptible 
areas using reliable methods can help to reduce flood 
damage. This research applied SI and WF models for 
flood susceptibility mapping in the San Pa Tong 
District, Chiang Mai, Thailand, and compared their 
performance, in addition to investigating the most 
influential factors for flood occurrence in the study 
area. Flood data were randomly divided into training 
and testing data. Then, 12 conditioning factors, 
namely elevation, slope, aspect, curvature, TWI, SPI, 
rainfall, distance from rivers, stream density, soil 
drainage, land use, and road density were used to 
compare with training data and calculate the 
correlation with flood occurrence. The results from the 
SI and WF models revealed that very highly 
susceptible areas covered an estimated 49.49% and 
51.74% of the study area, respectively. Regarding the 
WF results, the most influential factors were land use, 
soil drainage, and elevation, while the aspect and 
curvature were the least significant factors in 

determining flood susceptibility. ROC and AUC were 
then used to evaluate the success rate and the 
prediction rate of the SI and WF models. The results 
revealed that WF shows a better success rate than the 
SI model, with AUC values of 93.06% and 91.80%, 
respectively. WF also performed better, with a 
prediction rate of 93.52% compared to 92.05% for SI. 
In summary, both WF and SI results were shown as 
acceptable and reliable methods, with excellent 
performance rates for flood susceptibility mapping. 
The results of this research can be used to help 
planners implement flood preparedness and to 
minimize the impacts of future floods. 
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