

Diversity and Antimicrobial Activity of Plant Growth Promoting Endophytic Actinomycetes Isolated from Thai Orchids

Nisachon Tedsree¹, Kittisak Likhitwitayawuid², Boonchoo Sritularak², and Somboon Tanasupawat^{1*}

¹Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand

²Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand

ARTICLE INFO

Received: 10 Feb 2022

Received in revised: 31 Mar 2022

Accepted: 7 Apr 2022

Published online: 12 May 2022

DOI: 10.32526/ennrj/20/202200039

Keywords:

Endophytic actinomycetes/
Antimicrobial activity/ Plant growth-
promoting bacteria/ Indole-3-acetic
acid/ Thai orchid

* Corresponding author:

E-mail: Somboon.T@chula.ac.th

ABSTRACT

Thirty-two endophytic actinomycetes isolated from 15 Thai orchids were taxonomically studied based on their phenotypic characteristics and 16S rRNA gene sequence analyses (98.97-100.00%). The isolates were identified as *Streptomyces* including *S. parvulus* (3 isolates), *S. tendae* (2 isolates), *S. ardesiacus* (2 isolates), *S. heilongjiangensis* (2 isolates), and each of *S. daghestanicus*, *S. antibioticus*, *S. malaysiensis*, *S. deserti*, *S. spiralis*, *S. thermophilus* subsp. *apingens*, *S. globosus*, *S. collinus*, *S. olivaceus*, and *S. zaomyceticus*. *Micromonospora* including *M. humi* (2 isolates), *M. maritima* (2 isolates), and each of *M. tulbaghiae*, *M. schwarzwaldensis*, *M. chersina*, *M. chalcea*, *M. citrea*, and *M. aurantiaca*; *Streptosporangium* (2 isolates) including *S. sandarakinum* and *S. pseudovulgare* and an isolate of *Actinomadura hibisca*. *Streptomyces* (7 isolates), *Micromonospora* (7 isolates), and *Streptosporangium* (1 isolate) exhibited antimicrobial activity against *Bacillus subtilis* ATCC 6633, *Kocuria rhizophila* ATCC 9341, *Staphylococcus aureus* ATCC 25923, *Escherichia coli* ATCC 25922, *Pseudomonas aeruginosa* ATCC 27853, and *Candida albicans* ATCC 10231. Indole-3-acetic acid (IAA) production of the isolates ranged from 0.04 to 67.30 µg/mL. Isolates DR10-1 and DR9-7 produced high amounts of IAA (58.03 and 67.30 µg/mL) and were selected for optimization. Maximum IAA values obtained were 284.87 and 132.35 µg/mL, using 0.4% L-tryptophan and pH 7 with incubation at 30°C for 13 days. These two isolates enhanced root length, shoot length, number of roots, and fresh weight of rice seedlings (*Oryza sativa* L. cv. RD49) compared to the control. Results indicated that actinomycetes from Thai orchids were promising sources of antimicrobial compounds and plant hormones for agricultural applications.

1. INTRODUCTION

Actinomycetes are Gram-positive filamentous bacteria having a high guanine (G) and cytosine (C) content in their genomic DNA (Stackebrandt et al., 1997). Research has demonstrated that they are generally safe and beneficial microorganisms in the pharmaceutical and agricultural industries as antimicrobials, antimalarials, anticancer, enzymes, pesticides, and plant growth hormones (Berdy, 2005; Flores-Gallegos and Nava-Reyna, 2019). Plant-associated microbes create substances with significant medicinal potential (Wu et al., 2021), while endophytes are commonly distributed in nature and maintain

unique associations with host plants (Nair and Padmavathy, 2014), leading to the development of safer products for the environment and human health. Endophytic actinobacteria have been found in various plants, including the predominant *Streptomyces* and the genera *Micromonospora*, *Microbispora*, *Nocardia*, *Nocardioides*, and *Streptosporangium* (Shimizu, 2011), *Streptomyces platensis* 3-10 from healthy rice (Shakeel et al., 2016) and *Streptomyces* sp. KLBMP 5084 from healthy *Limonium sinense* (Qin et al., 2017).

Dendrobium, is the second largest genus of orchid in the family Orchidaceae (Puchaoa, 2004)

Citation: Tedsree N, Likhitwitayawuid K, Sritularak B, Tanasupawat S. Diversity and antimicrobial activity of plant growth promoting endophytic actinomycetes isolated from Thai orchids. Environ. Nat. Resour. J. 2022;20(4):379-392. (<https://doi.org/10.32526/ennrj/20/202200039>)

which contains approximately 1,100 species. They are mainly distributed in the subtropical and tropical regions of Asia and Oceania (Xiang et al., 2013). Since ancient times, many *Dendrobium* plants have been used as ingredients for nutraceutical beverages and food products (Bao et al., 2001). Orchids have been shown to generate a wide range of bioactive substances including antibiotics, anticancer, antitumor, antioxidant, and anti-infection agents, demonstrating a crucial impact on drug discovery. The methanol extract from the whole plant of *Dendrobium harveyanum* had a high anti-lipase effect (Maitreesophone et al., 2022), while the crude extract from *D. venustum* showed antimalarial and anti-herpetic activities (Sukphan et al., 2014). The gigantol from *Dendrobium draconis* exhibited pharmacological activity (Charoenrungruang et al., 2014), while moscatilin, gigantol, lusianthridin, and dendroflorin from *D. brymerianum* (Klongkumnuankarn et al., 2015) showed cytotoxicity against human lung cancer cell lines. Dendroparishi, a new compound from *D. parishii*, has shown high antioxidant activities (Kongkatitham et al., 2018). Recently, orchid-associated microorganisms have been found on orchid roots. They assist plants to solubilize important nutrients, create a variety of metabolites and control phytopathogenic fungi (Herrera et al., 2022). The endophytic bacterium strain PVL1 isolated from the leaf of the orchid *Vanda cristata* promoted the growth of *Cymbidium aloifolium* by IAA (Shah et al., 2021), while fungal endophytes isolated from *Dendrobium officinale* (Wu et al., 2016) and *D. devonianum* (Xing et al., 2011) were great sources for the prevention and treatment of harmful fungi and bacteria.

Plant-microbial interactions have been extensively researched. However, the variety and functional activity of orchid-associated bacteria are little understood. In Thailand, orchid species rich in fungi and endophytic organisms established in the tissues of terrestrial orchids have been found to follow a seasonal rhythm (Chutima et al., 2011). Investigation of endophytic actinomycetes might lead to the discovery of new species, their biological activity and secondary metabolites. In this study, endophytic actinomycetes were isolated from selected Thai orchids and characterized based on their phenotypic, chemotaxonomic and genetic characteristics. Their antibacterial activity and the plant growth promoting IAA production were also evaluated.

2. METHODOLOGY

2.1 Sampling and isolation

Endophytic actinomycetes were isolated from the roots of fifteen species of Thai orchids: *Dendrobium chrysanthum*, *D. formosum*, *D. kentrophylum*, *D. findlayanum*, *D. chrysanthum*, *Calanthe cardioglossa*, *D. friedericianum*, *D. chrysotoxum*, *D. crumenatum*, *D. heterocarpum*, *Coelogyne lawrenceana*, *Eria ornata*, *Cleisostoma rostratum*, *Coelogyne assamica*, and *Pinalia globulifera*. All endophytic actinomycete isolates were characterized based on their phenotypic, chemotaxonomic, and genetic characteristics, as well as their antibacterial activity and indole-3-acetic acid (IAA) production. The orchid roots were prepared according to Tedsree et al. (2021). The suspension of bacteria was serially diluted ten times. Each diluted suspension was applied to a different medium including gellan gum, Gause synthetic No.1 (Gause et al., 1983), glycerol arginine (Arai, 1975), and starch casein (Küster and Williams, 1964) supplemented with nalidixic acid (25 µg/mL) and cycloheximide (50 µg/mL). All the plates were incubated at 30°C for 20 to 30 days. The purified isolates were preserved on ISP 2 and freeze-dried for long-term preservation.

2.2 Characterization of endophytic actinomycetes

Morphological and cultural characteristics of isolates were observed on ISP 2 agar as described previously (Shirling and Gottlieb, 1966). The NBS/IBCC color system was used to determine the colors of aerial mycelia, substrate mycelia and diffusible pigment (Kelly, 1964). Physiological characteristics, including growth at different temperatures (20-45°C), NaCl concentrations (0-10%, w/v), and pH range 4-12 (at intervals of 1 pH unit) were evaluated in ISP 2 broth at 30°C for 14 days. Carbon utilization on ISP 9 supplemented with 1% (w/v) carbon sources, starch hydrolysis, nitrate reduction, milk coagulation and peptonization, and gelatin liquefaction were examined as described by Arai (1975). The method of Staneck and Roberts (1974) was used to analyze the isomers of diaminopimelic acid.

Genomic DNAs of the isolates were generated following the technique of Kudo et al. (1998). The 16S rRNA gene sequence was amplified as reported by Suriyachadkun et al. (2009) and sequenced on a DNA sequencer (Macrogen) using universal primers, 27F forward (5'-AGAGTTGATCMTGGCTCAG-3') and 1492R reverse (5'-TACGGYTACCTTGTAC

GA_{CTT}-3'). Sequence similarity values between the isolates and their related neighbors were calculated using the EzBioCloud service (Yoon et al., 2017) and the Kimura-2-parameter (Kimura, 1980) was used to create a phylogenetic distance matrix. A phylogenetic tree was constructed through the neighbor-joining (NJ) technique (Saitou and Nei, 1987) using MEGA 7.0 (Kumar et al., 2016) based on 1000 replications of bootstrap value.

2.3 Evaluation of antimicrobial activity

The culture was cultivated in 10 mL of seed medium No. 301 (2.4% starch, 0.3% peptone, 0.1% glucose, 0.5% yeast extract, 0.3% meat extract, and 0.3% CaCO₃, pH 7.0), on a shaker (180 rpm) incubated at 30°C for 3 days. The seed culture of each isolate was inoculated into 10 mL of three production media as ISP 2 (0.4% yeast extract, 1.0% malt extract, 0.4% glucose), medium No. 30 (0.3% peptone, 0.1% glucose, 0.5% yeast extract, 0.3% meat extract, 0.3% CaCO₃, 2.4% starch), and 5 mL/L of trace elements containing 1.0 g/L of FeSO₄·7H₂O, MnCl₂·4H₂O, ZnSO₄·7H₂O, CuSO₄·5H₂O, and CoCl₂·6H₂O, and medium No. 57 (0.5% peptone, 2% glucose, 0.5% meat extract, 0.3% dry yeast, 0.5% NaCl, and 0.3% CaCO₃). After 14 days, each fermentation broth was extracted with 10 mL of 95% ethanol and shaken at 180 rpm for 2 h before centrifugation at 7,000 rpm for 10 min. The supernatant was collected and 50 µL was applied to each paper disk (6 mm).

A paper disk diffusion technique was used to determine antimicrobial activity (Mearns-Spragg et al., 1998) against *Staphylococcus aureus* ATCC 25923, *Kocuria rhizophila* ATCC 9341, *Bacillus subtilis* ATCC 6633, *Escherichia coli* ATCC 25922, *Pseudomonas aeruginosa* ATCC 27853, and *Candida albicans* ATCC 10231. Muller-Hinton agar (MHA) and potato dextrose agar (PDA) were used to cultivate the tested bacteria (1×10⁸ cells/mL) and yeast (1×10⁶ cells/mL), which were incubated for 24 h at 37°C and 30°C, respectively. The inhibition zone (mm) was measured and reported as an antibacterial activity index. All experiments were carried out in triplicate.

2.4 Evaluation of IAA production

All isolates were streaked on ISP 2 agar plates and incubated at 30°C. After seven days, the agar discs containing actinomycete mycelia were transferred to ISP 2 broth (0.2% L-tryptophan, pH 7.0) and incubated at 30°C for seven days with 180 rpm shaking. The culture was centrifuged at 6,500 rpm for

five minutes, and the supernatant was used to determine the amount of IAA production. One mL of supernatant was added to two mL of Salkowski reagent (0.5 M of FeCl₃ in 35% HClO₄ in a proportion of 1:50 (v/v)) and kept in the dark for 30 min (Sameera et al., 2018). A UV-Vis spectrophotometer was used to detect IAA at absorbance 530 nm. The uninoculated medium with reagent was used as a control. The amount of IAA produced per milliliter of culture broth was calculated based on the calibration curve of IAA obtained from standard IAA at different concentrations (0-100 µg/mL). The amount of IAA in the culture was expressed as µg/mL.

2.5 Optimization of IAA production

The potent isolates of IAA production were optimized based on the effects of incubation time, temperature, pH, and L-tryptophan level. Isolates that produced high amounts of IAA were chosen for optimization. The chosen isolates were grown in a 500 mL flask with 100 mL of ISP 2 medium plus 0.2% L-tryptophan with shaking at 180 rpm. Salkowski's method was used to evaluate IAA production. The same cultural conditions as mentioned before were employed. The influence of incubation period on IAA production was investigated at 48 h intervals for 15 days. Results of the concentration of L-tryptophan (0.1, 0.2, 0.3, 0.4, 0.5, 1.0, and 1.5%), pH (4, 5, 6, 7, 8, 9, and 10), temperature (25, 30, 35, 37, and 40°C) were performed for seven days. The one-factor-at-a-time (OFAT) method was used to optimize all experiments (Czitrom, 1999).

2.6 Plant growth-promoting activity of the isolates

To investigate the impact of IAA produced by the isolates DR9-7 and DR10-1 on seed germination and root elongation in rice (*Oryza sativa* L. cv. RD49), surface sterilization of rice seeds was performed by soaking in 10% sodium hypochlorite (NaOCl) for one minute and 95% ethanol for three minutes, followed by thorough washing in sterile distilled water. The treatment was carried out by soaking rice seeds in a standard IAA solution containing 50 µg/mL and supernatant culture of DR9-7 and DR10-1 with an IAA concentration of 50 µg/mL. The control group was soaked in sterile distilled water. Seeds were placed in sterilized Petri dishes coated with two sheets of filter paper and soaked with 10 mL of sterile distilled water (three replicates, ten seeds/plate). All the Petri dishes were incubated in a chamber with light at 30°C for 16 h daily. Seed germination, root length,

shoot length, number of roots, fresh weight, and dry weight were measured after 7 days.

2.7 Statistical analysis

Data were statistically analyzed by one-way analysis of variance (ANOVA) using the SPSS software package (SPSS 28 for Windows). The grouping was performed by Duncan's multiple range tests at $p<0.05$ on each of the significant variables measured. Data were expressed as mean values of triplicates \pm standard deviation.

3. RESULTS AND DISCUSSION

3.1 Isolation and identification of isolates

Thirty-two endophytic actinomycetes were recovered from the roots of Thai orchids. All isolated actinomycetes revealed 4, 12, 8, and 8 isolates from gellan gum, starch casein, glycerol arginine, and Gause No. 1, respectively (Table 1). Based on 16S rRNA gene sequence analysis and phenotypic characteristics, the isolates were classified into four taxa (Table 2) including, *Streptomyces* (Group I, 19 isolates), *Micromonospora* (Group II, 10 isolates), *Streptosporangium* (Group III, 2 isolates), and *Actinomadura* (Group IV, 1 isolate). Most of the Group I isolates (59.5%) had LL-DAP, whereas the remaining 13 isolates (40.6%) carried meso-DAP (Williams and Cross, 1971). Similarities of all isolates and closely related isolates ranged between 98.97 and 100%. The NJ-phylogenetic tree based on 16S rRNA gene sequences is shown in Figure 1. The 16S rRNA gene sequences of the isolates were deposited at the NCBI database, with accession numbers listed in Table 1.

Group I contained 19 isolates. The isolates produced spiral spore chains with pale blue to greenish gray on ISP 2 agar after 7 days of incubation (Table 1). The isolates, DR2-3, DR5-2, and DR7-6 were closely related to *S. parvulus* NBRC 13193^T (99.40-99.85% similarity); DR3-5 and CC1-3 were closely related to *S. tendae* ATCC 19812^T (99.93-99.70%); CC1-1 and DR9-7 were closely related to *S. ardesiacus* NRRL B-1773^T (99.92-99.93%); CL1-6 and EO1-13 were closely related to *S. heilongjiangensis* NEAU-W2^T (99.78-99.93%). The isolates DR1-1, DR2-2, DR8-9, DR9-4, DR9-5, DR10-1, DR10-6, DR10-8, CL1-8, and EO1-10 were closely related to *S. daghestanicus* NRRL B-5418^T (99.32%), *S. antibioticus* NBRC 12838^T (99.70%), *S. malaysiensis* NBRC 16446^T (99.92%), *S. deserti* C63^T (99.41%), *S. spiralis* NBRC 14215^T (99.98%), *S. thermoviolaceus*

subsp. *apingens* DSM 41392^T (98.97%), *S. globosus* LMG 19896^T (99.93%), *S. collinus* NBRC 12759^T (99.93%), and *S. olivaceus* NRRL B-3009^T (99.85%), *S. zaomyceticus* NBRC 13348^T (99.48%), respectively (Table 1).

Group II contained ten isolates. They produced single spores on mycelium substrate. Colonies on ISP 2 agar were dark purplish red to greenish black. Based on the 16S rRNA gene sequences, the two isolates DR4-1 and CA1-5 were closely related to *M. humi* DSM 45647^T (99.33-99.47%); two isolates, CR1-1 and CA1-9 were closely related to *M. maritima* D10-9-5^T (99.93-100.00%); and isolates DR6-8, CA1-1, YG1-1, YG1-7, YG1-8, and EO1-8 were closely related to *M. tulbaghiae* DSM 45142^T (99.75%), *M. schwarzwaldensis* HKI0641^T (99.92%), *M. chersina* DSM 44151^T (99.85%), *M. chalcea* DSM 43026^T (99.85%), *M. citrea* DSM 43903^T (99.77%), and *M. aurantiaca* ATCC 27029^T (99.49%), respectively (Table 1).

Group III consisted of two isolates, DR9-9 and YG1-5. They produced spherical sporangia in the aerial mycelium. On ISP 2 agar, the isolates were pale purple-pink (Table 1). The isolates DR9-9 and YG1-5 were closely related to *S. sandarakinum* GW-12028^T and *S. pseudovulgare* DSM 4318^T, based on 16S rRNA gene sequence similarity (99.32 and 99.93%), respectively (Table 1).

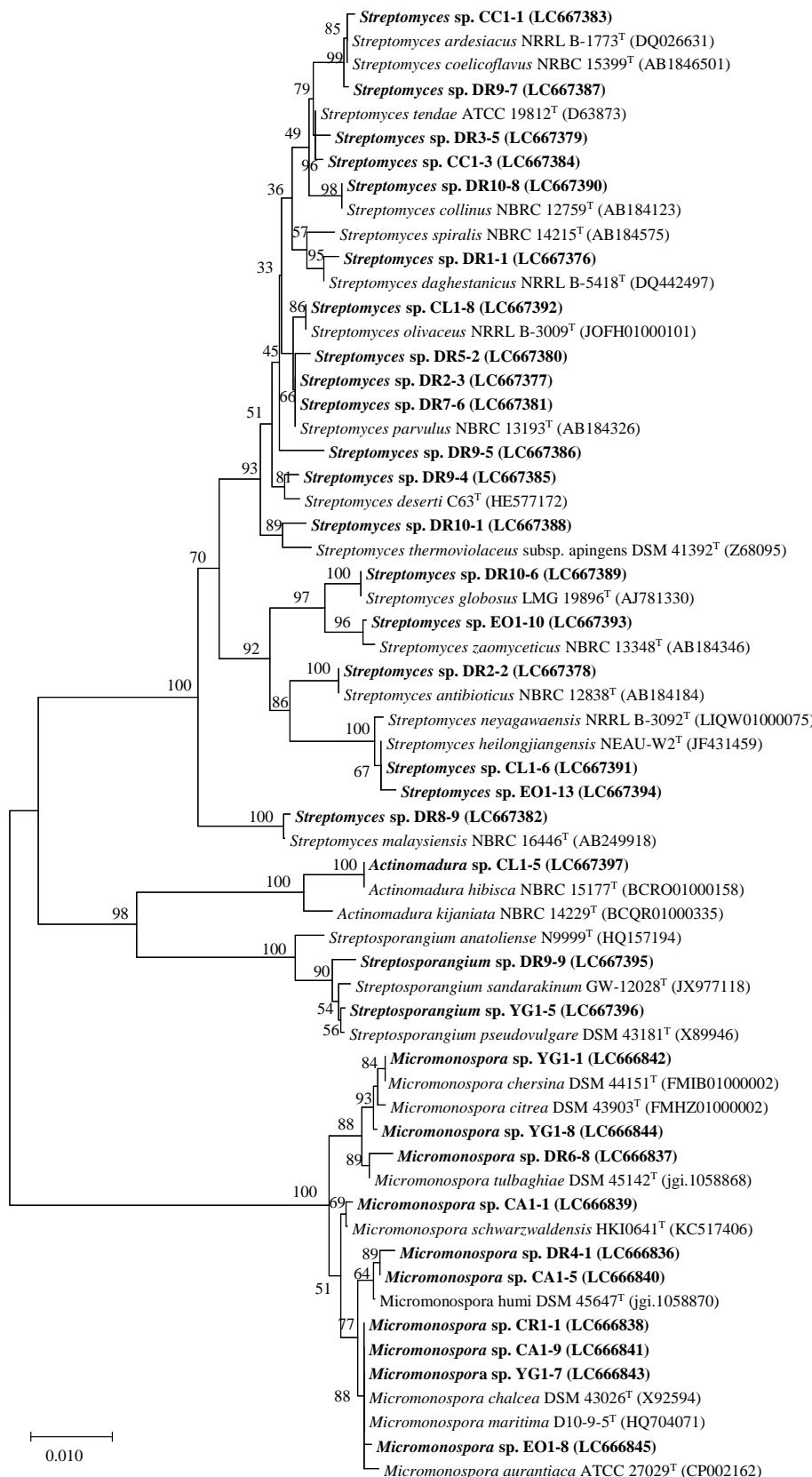
Group IV contained one isolate, CL1-5. This isolate formed straight chain spores on the tip of aerial mycelium and colonies and was vivid reddish-orange on ISP2 agar plate. Based on 16S rRNA gene sequence analysis, the isolate CL1-5 was 99.85% closely related to *A. hibisca* NBRC 15177^T (Table 1).

In this study, nineteen *Streptomyces* isolates were associated with the eleven orchids *D. christyanum*, *D. polyanthum*, *D. formosum*, *D. kentrophylum*, *D. findlayanum*, *D. chrysanthum*, *C. cardioglossa*, *D. friedricksianum*, *D. chrysotoxum*, *C. lawrenceana*, and *E. ornata*. Ten *Micromonospora* isolates were found in the six orchids, *D. crumenatum*, *D. heterocarpum*, *C. rostratum*, *C. assamica*, *P. globulifera*, and *E. ornata*. Two *Streptosporangium* isolates were distributed in the two orchids *D. friedricksianum* and *P. globulifera*, and one *Actinomadura* isolate was found in *Coelogyne lawrenceana*. The isolates DR2-3, DR5-2, and DR6-6, all closely related to *S. parvulus* NBRC 13193^T, were found in *D. polyanthum*, *D. kentrophylum*, and *D. findlayanum*, while the isolates DR3-5 and CC1-3

Table 1. Source, isolate number, cultural characteristics, and the nearest isolate species based on 16S rRNA gene sequence similarity (%)

Group	Plant	Isolate No.	Cultural characteristics		% Similarity	Accession No.	Nearest species
			Upper color	Reverse color			
I	<i>Dendrobium chrysanthum</i>	DR1-1 ^b	Greenish gray	Light yellow	99.32	LC667376	<i>S. daghestanicus</i> NRRL B-5418 ^T
	<i>Dendrobium polyanthum</i>	DR2-3 ^b	Pale blue	Light yellow	99.84	LC667377	<i>S. parvulus</i> NBRC 13193 ^T
	<i>Dendrobium polyanthum</i>	DR2-2 ^b	Brilliant greenish blue	Light yellow	99.70	LC667378	<i>S. antibioticus</i> NBRC 12838 ^T
	<i>Dendrobium formosum</i>	DR3-5 ^b	Greenish gray	Moderate olive brown	99.70	LC667379	<i>S. tendae</i> ATCC 19812 ^T
	<i>Dendrobium kentrophylum</i>	DR5-2 ^b	Pale blue	Light yellow	99.40	LC667380	<i>S. parvulus</i> NBRC 13193 ^T
	<i>Dendrobium findlayanum</i>	DR7-6 ^b	Pale blue	Light yellow	99.85	LC667381	<i>S. parvulus</i> NBRC 13193 ^T
	<i>Dendrobium chrysanthum</i>	DR8-9 ^b	Bluish gray	Light yellow	99.92	LC667382	<i>S. malaysiensis</i> NBRC 16446 ^T
	<i>Calanthe cardioglossa</i>	CC1-1 ^b	Olive gray	Light olive brown	99.93	LC667383	<i>S. ardesiacus</i> NRRL B-1773 ^T
	<i>Calanthe cardioglossa</i>	CC1-3 ^b	Greenish gray	Moderate olive brown	99.93	LC667384	<i>S. tendae</i> ATCC 19812 ^T
	<i>Dendrobium friedrichsianum</i>	DR9-4 ^b	Greenish gray	Yellowish gray	99.41	LC667385	<i>S. deserti</i> C63 ^T
	<i>Dendrobium friedrichsianum</i>	DR9-5 ^a	Light olive gray	Yellowish gray	98.98	LC667386	<i>S. spiralis</i> NBRC 14215 ^T
	<i>Dendrobium friedrichsianum</i>	DR9-7 ^a	Olive gray	Light olive brown	99.92	LC667387	<i>S. ardesiacus</i> NRRL B-1773 ^T
	<i>Dendrobium chrysotoxum</i>	DR10-1 ^a	Grayish olive green	Light olive gray	98.97	LC667388	<i>S. thermoviolaceus</i> subsp. <i>apingenii</i> DSM 41392 ^T
	<i>Dendrobium chrysotoxum</i>	DR10-6 ^d	Moderate yellow	Light yellow	99.93	LC667389	<i>S. globosus</i> LMG 19896 ^T
	<i>Dendrobium chrysotoxum</i>	DR10-8 ^d	Bluish white	Brownish gray	99.93	LC667390	<i>S. collinus</i> NBRC 12759 ^T
	<i>Coelogyne lawrenceana</i>	CL1-6 ^c	Bluish gray	Dark bluish gray	99.93	LC667391	<i>S. hellongjiangensis</i> NEAU-W2 ^T
	<i>Coelogyne lawrenceana</i>	CL1-8 ^c	Greenish gray	Moderate olive	99.85	LC667392	<i>S. olivaceus</i> NRRL B-3009 ^T
	<i>Eria ornata</i>	EO1-10 ^b	Pale blue	Grayish greenish yellow	99.48	LC667393	<i>S. zaomycticus</i> NBRC 13348 ^T
	<i>Eria ornata</i>	EO1-13 ^b	Greenish gray	Moderate olive brown	99.78	LC667394	<i>S. hellongjiangensis</i> NEAU-W2 ^T
II	<i>Dendrobium crumenatum</i>	DR4-1 ^c	Greenish black	Greenish black	99.33	LC666836	<i>M. humi</i> DSM 45647 ^T
	<i>Dendrobium heterocarpum</i>	DR6-8 ^c	Moderate olive brown	Moderate olive brown	99.75	LC666837	<i>M. tulbaghiae</i> DSM 45142 ^T
	<i>Cleisostoma rostratum</i>	CR1-1 ^c	Grayish red	Grayish red	100.00	LC666838	<i>M. maritima</i> D10-9-5 ^T
	<i>Coelogyne assamica</i>	CA1-1 ^c	Dark olive brown	Dark olive brown	99.92	LC666839	<i>M. schwarzwaldensis</i> HK0641 ^T
	<i>Coelogyne assamica</i>	CA1-5 ^c	Greenish black	Greenish black	99.47	LC666840	<i>M. humi</i> DSM 45647 ^T
	<i>Coelogyne assamica</i>	CA1-9 ^a	Dark grayish red	Dark grayish red	99.93	LC666841	<i>M. maritima</i> D10-9-5 ^T
	<i>Pinalia globulifera</i>	YG1-1 ^d	Greenish black	Greenish black	99.85	LC666842	<i>M. chersina</i> DSM 44151 ^T
	<i>Pinalia globulifera</i>	YG1-7 ^d	Very dark purplish red	Very dark purplish red	99.85	LC666843	<i>M. chalcea</i> DSM 43026 ^T
	<i>Pinalia globulifera</i>	YG1-8 ^d	Brownish black	Brownish black	99.77	LC666844	<i>M. cirea</i> DSM 43903 ^T
	<i>Eria ornata</i>	EO1-8 ^d	Deep reddish brown	Deep reddish brown	99.49	LC666845	<i>M. aurantiaca</i> ATCC 27029 ^T

All isolates grew well on ISP 2 agar medium. ^bgellan gum; ^cstarch casein gellan gum; ^dgauze synthetic No.1.


Table 1. Source, isolate number, cultural characteristics, and the nearest isolate species based on 16S rRNA gene sequence similarity (%) (cont.)

Group	Plant	Isolate No.	Cultural characteristics		% Similarity	Accession No.	Nearest species
			Upper color	Reverse color			
III	<i>Dendrobium fiedericssianum</i>	DR9-9 ^d	Pale pink	Pinkish gray	99.32	LC667395	<i>S. standardinum</i> GW-12028 ^T
	<i>Pinalia globulifera</i>	YG1-5 ^d	Pale purple pink	Pale purple pink	99.93	LC667396	<i>S. pseudovulgaris</i> DSM 4318 ^T
IV	<i>Coelogyne lawrenceana</i>	CL1-5 ^c	Very deep red	Very deep red	99.85	LC667397	<i>A. hibisca</i> NBRC 15177 ^T

All isolates grew well on ISP 2 agar medium. ^agellan gum; ^bstarch casein gellan gum; ^cglycerol arginine gellan gum; ^dgauze synthetic No.1,**Table 2.** Differential phenotypic characteristics of the isolates

Characteristic	<i>Streptomyces</i>	<i>Micromonospora</i>	<i>Streptosporangium</i>	<i>Actinomadura</i>
	I	II	III	IV
No. of isolates	19	10	2	1
Temperature range, °C	20-37	20-37	25-37	25-37
pH range	5-10	5-8	5-10	5-10
NaCl tolerance				
• 4%	+	-(+4)	w	+
• 6%	+(-3)	-(+2)	-	-
• 8%	-(+8)	-	-	-
Starch hydrolysis				
• Coagulation	-(+3)	-	-	-
• Peptonization	-(+4)	-(+3)	-	-
• Nitrate reduction	-(+5)	-(+4)	+	+
• Gelatin liquefaction	-(+5)	-(+4)	-	-
Utilization of				
• D-Glucose	+(w1)	+(+1)	+	+
• Sucrose	+(w5)	+(-1, w1)	+	+
• Lactose	+	+(-1, w1)	+	+
• Dextrose	+	+(-1, w2)	+	+
• Maltose	+	+(w5)	+	+
• D-Mannitol	+	-(+2, w3)	+	+
• D-Xylose	+	+(-1, w3)	+	w
• Sorbitol	-(+4, w3)	+(-1)	w	+

Note: + positive reaction; w weakly positive reaction; - negative reaction. Numbers in parentheses indicate numbers of isolates showing positive, weak and negative reactions.

Figure 1. Neighbor-joining phylogenetic tree based on 16S rRNA gene sequences showing relationships between the 32 isolates and related type strains. Numbers at branch nodes indicate bootstrap percentages derived from 1000 replications. Bar, 0.01 substitutions per nucleotide position.

closely related to *S. tendae* ATCC 19812^T were presented in *Dendrobium* and *Calanthe*. *Streptomyces* and *Micromonospora* isolates were found in *E. ornata*, while *Streptomyces* and *Streptosporangium* isolates were found in *D. friedericssianum*. These results indicated that various associated bacteria were extensively distributed among the host plants.

Most of the isolates (59.38%) belonged to the genus *Streptomyces*, previously identified as a dominating organism in sugar cane roots (Sinma et al., 2015), *Citrus reticulata* L. (Shutsirung et al., 2013), and *Acacia auriculiformis* (Bunyoo et al., 2009) in Thailand. Our result was similar to previous research that found *Streptomyces* strains in plant roots (Taechowisan and Lumyong, 2003; Gangwar et al., 2012; Shan et al., 2018). Actinobacteria were prominent in the roots and stems of *Neottia ovata* (50.02 and 48.47%, respectively) and in the seeds of *Spiranthes spiralis* (48.95%) (Alibrandi et al., 2020). Endophytic actinomycetes were distributed in plant roots, where water and nutrients were absorbed (Passari et al., 2015). Many plant species had diverse strains of *Microbispora* (Bunyoo et al., 2009) and *Micromonospora* (Kuncharoen et al., 2019), including novel species of *Amycolatopsis dendrobii* from the root of *Dendrobium heterocarpum* Lindl. (Tedsree et al., 2021) and *Streptomyces radicis* from the roots of plants (Kuncharoen et al., 2022).

3.2 Antimicrobial activity

Fifteen isolates (46.87%) showed antimicrobial activity against at least one of the six tested bacteria (Table 3). Five isolates of *Streptomyces* and five isolates of *Micromonospora* inhibited *S. aureus* ATCC 25923 when cultivated in all production media. The isolate DR8-9 presented the highest antimicrobial activity against *S. aureus* ATCC 25923 (24.32±1.01 mm) when cultivated in 57 media. Four isolates of *Streptomyces*, five isolates of *Micromonospora*, and one isolate of *Streptosporangium* inhibited *K. rhizophila* ATCC 9341. Isolate DR6-8 showed the highest activity (24.91±0.94 mm), while isolates DR2-2 and DR4-1 showed 22.76±0.58 and 19.65±0.58 mm, respectively. Five isolates of *Streptomyces* and four of *Micromonospora* were active against *B. subtilis* ATCC 6633 when grown in all media. Isolate DR7-6, which was closely related to *S. parvulus* NBRC 13193^T, showed the highest activity (20.00±0.58 mm) in medium No. 30. Isolates DR8-9 and DR1-1 inhibited *C. albicans* ATCC 10231 in all production

media, including DR2-2 in ISP 2 medium. The isolate DR1-1 was closely related to *S. daghestanicus* NRRL B-5418^T and showed the highest activity against *C. albicans* ATCC 10231 (21.90±0.77 mm) on medium no.30. Three isolates DR1-1, DR2-2, and DR8-9 were active against the gram-negative bacteria *P. aeruginosa* ATCC 27853, while isolate DR2-2 inhibited this bacterium when cultivated on all production media. Interestingly, DR2-2 was closely related to *S. antibioticus* NBRC 12838^T and inhibited all indicator organisms, including *Escherichia coli* ATCC 25922 (Table 3).

Endophytic actinomycetes have been reported for their antibacterial activity against pathogenic bacteria (Taechowisan and Lumyong, 2003; Passari et al., 2015). In this study, both *Streptomyces* and *Micromonospora* isolates inhibited *S. aureus*, *B. subtilis*, and *K. rhizophila*. Our results concurred with Musa et al. (2020) who discovered that 54 of 126 endophytic actinobacteria strains were resistant to at least one or more indicator species. Notably, the majority of *Streptomyces* strains exhibited antagonistic activities. Rao et al. (2015) found that all *Streptomyces* strains from *Combretum latifolium* showed significant antimicrobial activity against both bacterial and fungal pathogens. This study reported on the incidence of possible endophytic actinomycetes that suppress pathogenic bacteria.

3.3 Indole-3-acetic acid production

Twenty-two isolates (68.75%) were able to produce indole-3-acetic acid (IAA) (Table 4). In Group I *Streptomyces*, 15 isolates produced IAA ranging from 10.59±0.45 to 67.30±1.00 µg/mL. Isolate DR10-1 was closely related to *S. thermophilaceus* subsp. *apingens* DSM 41392^T and produced the highest IAA (67.30±1.00 µg/mL), followed by DR9-7 closely related to *S. ardesiacus* NRRL B-1773^T and DR2-2 closely related to *S. antibioticus* NBRC 12838^T at 58.03±0.16 and 52.39±0.89 µg/mL, respectively. Five of ten isolates of Group II *Micromonospora* produced between 18.22±0.84 and 44.77±0.54 µg/mL of IAA. Isolate CA1-5 closely related to *M. humi* DSM 45647^T showed the highest IAA production (44.77±0.54 µg/mL) followed by isolate YG1-7 closely related to *M. chalcea* DSM 43026^T (30.91±0.80 µg/mL). Only one Group III *Streptosporangium*, DR9-9, closely related to *S. sandarakinum* GW-12028^T produced maximum IAA of 43.97±0.30 µg/mL (Table 4).

Table 3. Antimicrobial activities (inhibition zone, mm in diameter) of Group I *Streptomyces*, Group II *Micromonospora*, and Group III *Streptosporangium* isolates cultivated in ISP 2, 30, and 57 media.

Isolate No.		<i>S. aureus</i> ATCC 25923			<i>K. rhizophila</i> ATCC 9341			<i>B. subtilis</i> ATCC 6633			<i>P. aeruginosa</i> ATCC 27853			<i>C. albicans</i> ATCC 10231		
Medium	ISP 2	30	57	ISP 2	30	57	ISP 2	30	57	ISP 2	30	57	ISP 2	30	57	
Group I																
DR1-1	-	-	-	-	-	-	-	-	-	-	-	-	18.79 ^a	20.60 ^a	21.90 ^a	20.37 ^a
DR2-2	16.98 ^a	16.43 ^a	17.98 ^a	21.18 ^a	21.43 ^a	22.76 ^a	16.66 ^a	18.47 ^a	18.25 ^a	9.57 ^a	10.08 ^a	0.56 ^a	0.58 ^a	0.77	1.00	-
DR5-2	0.57 ^c	1.00 ^c	0.58 ^b	1.00 ^b	1.01 ^b	0.58 ^b	1.00 ^b	0.57 ^b	0.58 ^a	1.00 ^c	0.67	0.66	17.23 ^a	0.61 ^b	-	-
DR7-6	15.24 ^a	14.98 ^a	9.84 ^a	11.23 ^a	15.89 ^a	16.95 ^a	16.51 ^a	17.84 ^a	13.85 ^a	-	-	-	-	-	-	-
DR8-9	1.00 ^d	1.00 ^c	0.50 ^{de}	1.01 ^f	1.00 ^d	1.01 ^d	0.79 ^b	0.86 ^b	1.00 ^c	-	-	-	-	-	-	-
DR9-5	21.22 ^a	19.11 ^a	18.01 ^a	-	-	-	19.87 ^a	20.00 ^a	18.80 ^a	-	-	-	-	-	-	-
DR10-1	-	-	1.00 ^b	1.00 ^b	24.32 ^a	15.66 ^a	15.35 ^a	18.52 ^a	14.53 ^a	1.01 ^a	0.58 ^a	0.57 ^a	-	-	-	-
DR4-1	8.39 ^a	9.54 ^a	9.79 ^a	19.65 ^a	19.11 ^a	17.77 ^a	9.90 ^a	11.68 ^a	11.68 ^a	1.01 ^d	0.99 ^d	0.99 ^d	8.28 ^a	-	-	-
DR6-8	9.67 ^a	9.90 ^a	10.42 ^a	24.91 ^a	24.91 ^a	24.24 ^a	10.36 ^a	10.78 ^a	11.29 ^a	-	-	-	-	-	-	-
CR1-1	0.58 ^f	0.58 ^d	0.62 ^{de}	0.94 ^a	1.53 ^a	0.99 ^a	0.58 ^d	0.85 ^{de}	0.72 ^d	-	-	-	14.55 ^a	-	-	-
CA1-1	-	-	-	11.20 ^a	10.45 ^a	11.36 ^a	12.34 ^a	-	-	-	-	-	1.02 ^b	-	-	-
CA1-5	7.88 ^a	8.63 ^a	9.39 ^a	15.79 ^a	16.60 ^a	16.75 ^a	9.06 ^a	8.84 ^a	9.06 ^a	-	-	-	9.72 ^a	-	-	-
YG1-1	0.99 ^g	0.75 ^d	0.60 ^e	0.99 ^d	0.79 ^d	0.73 ^d	0.58 ^d	0.56 ^f	0.56 ^f	-	-	-	0.53 ^c	-	-	-
YG1-8	17.91 ^a	17.92 ^a	18.87 ^a	13.86 ^a	13.91 ^a	14.68 ^a	7.32 ^a	8.23 ^a	7.84 ^a	-	-	-	-	-	-	-
DR9-9	-	-	-	7.85 ^a	7.46 ^a	-	0.57 ^e	1.00 ^e	1.00 ^e	-	-	-	-	-	-	-
Group II																
DR9-9	-	-	-	10.32 ^a	10.15 ^a	9.85 ^a	-	-	-	-	-	-	-	-	-	-
Group III																
DR9-9	-	-	-	0.57 ^f	0.58 ^f	1.01 ^g	-	-	-	-	-	-	-	-	-	-

Group IV *Actinomadura*, CL1-5, did not exhibit antimicrobial activity.All isolates exhibited no antimicrobial activity to *E. coli* ATCC 25922 except for isolate DR2-2 that showed 16.41±0.58, 17.26±0.53, and 18.52±0.52 when cultivated in ISP 2, 30, and 57 media, respectively.

Data are expressed as mean±standard deviation (SD), including the disc diameter (6 mm).

Different superscripts in the same row indicate significant differences (p<0.05).

Table 4. IAA production of Group I *Streptomyces*, Group II *Micromonospora*, Group III *Streptosporangium*, and IV *Actinomadura* isolates.

Group	Isolate No.	IAA ($\mu\text{g/mL}$)
I	DR1-1	22.04 \pm 0.89 ⁱ
	DR2-3	52.36 \pm 0.86 ^c
	DR2-2	52.39 \pm 0.89 ^c
	DR3-5	19.67 \pm 1.00 ^j
	DR5-2	51.54 \pm 0.84 ^c
	DR7-6	45.94 \pm 0.67 ^d
	DR8-9	6.95 \pm 0.65 ^q
	CC1-1	10.59 \pm 0.45 ^o
	CC1-3	11.92 \pm 0.79 ^m
	DR9-4	32.61 \pm 0.68 ^f
	DR9-5	15.62 \pm 0.72 ^l
	DR9-7	58.03 \pm 0.16 ^b
	DR10-1	67.30 \pm 1.00 ^a
	DR10-6	2.30 \pm 0.16 st
	DR10-8	6.47 \pm 0.16 ^q
	CL1-6	8.72 \pm 0.28 ^p
	CL1-8	0.78 \pm 0.24 ^{wx}
	EO1-10	14.17 \pm 0.33 ^m
	EO1-13	18.45 \pm 0.37 ^k
II	DR4-1	29.13 \pm 0.47 ^h
	DR6-8	0.04 \pm 0.36 ^x
	CR1-1	18.22 \pm 0.84 ^k
	CA1-1	7.33 \pm 0.84 ^q
	CA1-5	44.77 \pm 0.54 ^e
	CA1-9	21.54 \pm 0.78 ⁱ
	YG1-1	1.63 \pm 0.70 ^{tu}
	YG1-7	30.91 \pm 0.80 ^g
	YG1-8	2.84 \pm 0.73 ^s
	EO1-8	4.80 \pm 0.54 ^r
III	DR9-9	43.97 \pm 0.30 ^e
	YG1-5	1.13 \pm 0.90 ^v
IV	CL1-5	14.48 \pm 0.83 ^m

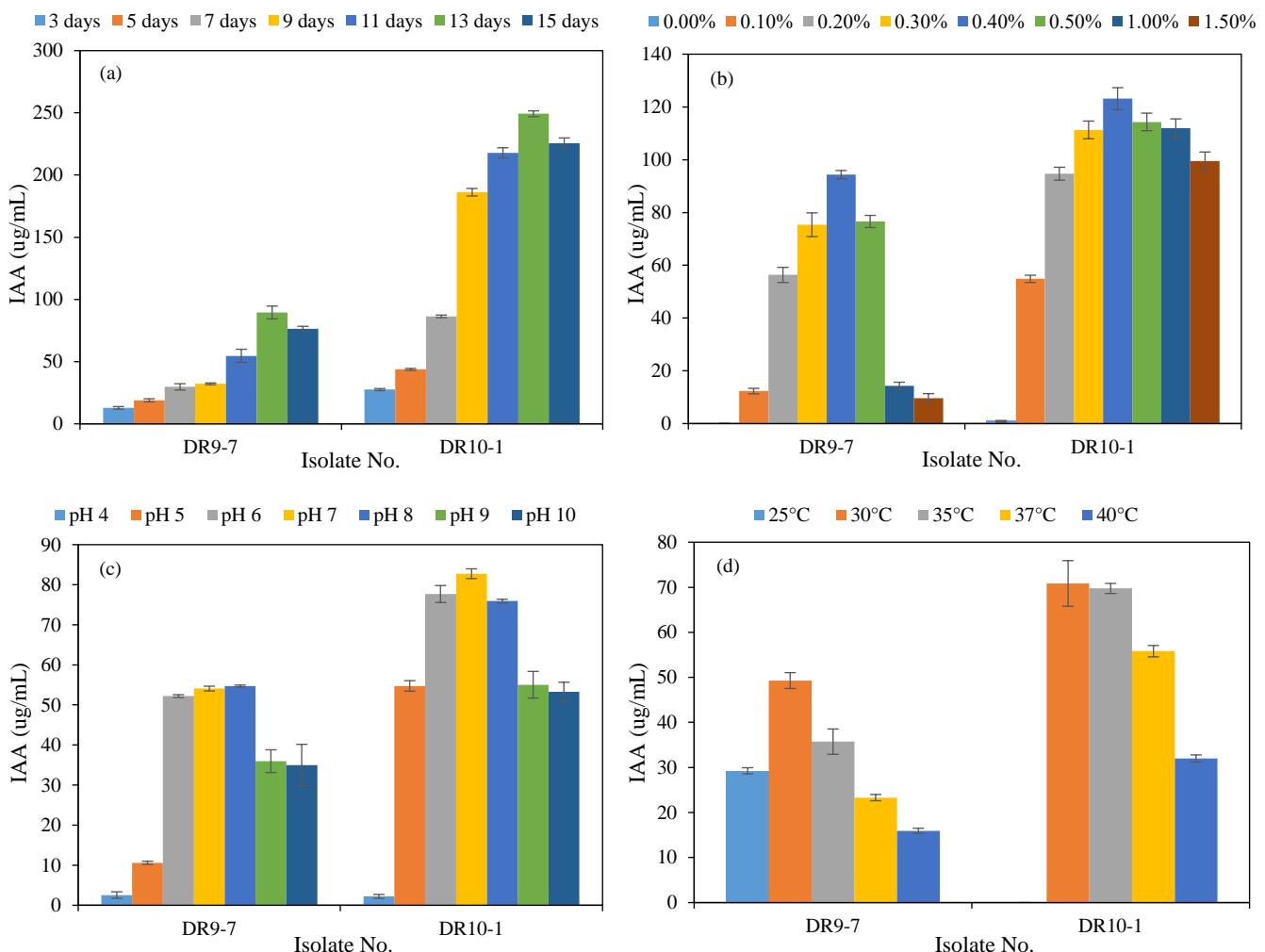
Different superscripts indicate significantly different ($p<0.05$) mean \pm SD.

In this study, *Streptomyces* showed the highest IAA production. Several previous studies demonstrated that IAA production of actinomycetes from different crops differed by species and strains. *Streptomyces* sp. En-1 from *Taxus chinensis* (Lin and Xu, 2013) and *S. rochei* ERY1 from *Eryngium foetidum* L. showed the ability to produce IAA (Suwitschayanon et al., 2018).

3.4 Optimization of IAA production

The two isolates DR9-7 and DR10-1 showed the highest IAA production after the screening was

optimized at different factors. IAA production of isolates DR9-7 and DR10-1 started after three days and peaked at 106.32 ± 2.04 and 298.12 ± 4.19 $\mu\text{g/mL}$ after 13 days (Figure 2 (a)). *S. atrovirens* ASU14 exhibited the maximum IAA value when optimization at 30°C for 13 days (Abd-Alla et al., 2013). Maximum IAA production of the two isolates was observed in medium containing 0.4% L-tryptophan (Figure 2 (b)). When the concentration of L-tryptophan increased from 0.1 to 0.4%, IAA production of DR9-7 and DR10-1 increased to maximum levels at 94.35 ± 1.56 and $123.14\pm4.17\%$, respectively. Results indicated that different amounts of L-tryptophan had variable influence on IAA production, with tryptophan as an important element in increasing IAA production.


Highest concentration of IAA was obtained from isolate DR10-1 at pH 7 (82.76 ± 1.22 $\mu\text{g/mL}$) and DR9-7 cultivated at pH 7 and 8 at 54.08 ± 0.59 and 54.71 ± 0.25 $\mu\text{g/mL}$, respectively. IAA levels of DR9-1 and DR10-1 decreased when the pH value was less than 6 and greater than 8, (Figure 2 (c)). *Streptomyces* and other actinomycete strains grew slowly in acidic or basic environments; therefore, pH levels are important for IAA synthesis (Shirokikh et al., 2007). Our findings concurred with Goudjal et al. (2013), who showed that pH 7 was optimal for IAA production of *Streptomyces* sp. PT2. Isolates DR9-7 and DR10-1 produced the highest IAA when grown at 30°C (Figure 2 (d)). However, there was no significant change in IAA generation of DR10-1 at 35°C compared to 30°C . When temperature exceeded 30°C , IAA production of DR9-7 and DR10-1 decreased. A temperature of 30°C was found to be optimal for this investigation. *Streptomyces* sp. CMU H009 produced the largest IAA when cultivated at 30°C (Khamna et al., 2010). Accordingly, OFAT optimization experiments showed that the highest IAA production required cultivation in ISP 2 broth with 0.4% L-tryptophan, pH 7 at 30°C for 13 days. Maximum IAA values of DR10-1 and DR9-7 were 284.87 ± 8.24 and 132.35 ± 9.39 $\mu\text{g/mL}$, respectively.

3.5 Plant growth-promoting activity of the isolates

The effects of IAA in DR9-7 and DR10-1 supernatant cultures on rice seed germination, root length, and shoot length were determined. Rice seeds soaked under various conditions exhibited significant differences in root lengths and quantity of roots compared to the controls (Table 5). Treatments with supernatant DR9-7 had the greatest influence on seedling root length, with no significant differences

identified between supernatant DR10-1 and standard IAA. Supernatant of isolate DR10-1 showed the highest number of roots, whereas other treatments showed no significant differences. Fresh and dry weight of seedlings after treatment with DR9-7, DR10-1 and standard IAA were significantly different compared to the control. However, all treatments had no effect on seed germination. Our study results related to root growth of the host plants, as reported by

Etesami et al. (2015). IAA-producing bacteria isolated from orchid rhizoplanes of *Dendrobium moschatum* (Tsavkelova et al., 2007) and *Cymbidium eburneum* (Faria et al., 2013) improved symbiotic seed germination. Our isolates indicated the presence of IAA production as a good option for use as plant growth enhancement in both economic and agricultural systems.

Figure 2. (a) Effect of incubation time (day), (b) Effect of L-tryptophan concentrations, (c) Effect of pH, and (d) Effect of temperature on IAA production by the selected isolates. Vertical bars represent standard deviation from triplicate experiments.

Table 5. Effect of isolates DR9-7 and DR10-1 on the growth of rice (*Oryza sativa*)

Isolate No.	Growth parameters of actinomycetes treated rice					
	Root length (cm)	Shoot length (cm)	Number of roots	Seedling fresh weight (g)	Seedling dry weight (g)	% Seed germination
DR9-7	6.90±0.52 ^a	3.55±0.96 ^c	3.00±1.05 ^b	0.93±0.07 ^a	0.33±0.03 ^a	100
DR10-1	4.85±0.34 ^b	6.25±0.81 ^a	4.30±0.82 ^a	0.81±0.07 ^a	0.30±0.05 ^{ab}	100
IAA	4.85±0.24 ^b	3.85±0.94 ^c	3.40±0.52 ^b	0.78±0.08 ^a	0.31±0.06 ^{ab}	100
Control	3.30±1.27 ^c	4.95±0.65 ^b	3.20±0.63 ^b	0.56±0.07 ^b	0.27±0.04 ^b	100

Different superscripts indicate significantly different ($p<0.05$) mean±SD.

4. CONCLUSION

Endophytic actinomycetes are mainly distributed in the root system and xylem tissues of host plants. The major role of these bacteria is to improve the health and growth of the host plant by producing beneficial metabolites to control plant infections from pathogens and promote the growth of host plants. This study concluded that 19 *Streptomyces* isolates were associated with the roots of the Thai orchid species *D. christyanum*, *D. polyanthum*, *D. formosum*, *D. kentrophylum*, *D. findlayanum*, *D. chrysanthum*, *C. cardioglossa*, *D. friedericianum*, *D. chrysotoxum*, *C. lawrenceana*, and *E. ornata*. Ten *Micromonospora* isolates were associated with *D. crumenatum*, *D. heterocarpum*, *C. rostratum*, *C. assamica*, *P. globulifera*, and *E. ornata*, while 2 *Streptosporangium* isolates were found in *D. friedericianum* and *P. globulifera* and an *Actinomadura* isolate was found in *C. lawrenceana*. Our *Streptomyces*, *Micromonospora* and *Streptosporangium* isolates exhibited significant antimicrobial activities against *Bacillus subtilis* ATCC 6633, *Kocuria rhizophila* ATCC 9341, *Staphylococcus aureus* ATCC 25923, *Escherichia coli* ATCC 25922, *Pseudomonas aeruginosa* ATCC 27853, and *Candida albicans* ATCC 10231. Only *Streptomyces antibioticus* DR2-2 inhibited all tested pathogens, while two endophyte isolates DR10-1 and DR9-7 showed high IAA activity that promoted the number of roots, shoot length, root length and fresh weight of rice seedlings. This is the first report on the diversity, antimicrobial and plant-growth-promoting properties of endophytic actinomycetes associated with the root of Thai orchids.

ACKNOWLEDGEMENTS

This study was financially supported by the 90th Anniversary of Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund), Graduate School, Chulalongkorn University and the Ministry of Higher Education, Science, Research and Innovation as a Ph.D. scholarship to Nisachon Tedsree. We thank the Pharmaceutical Research Instrument Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University for providing research facilities.

REFERENCES

Abd-Alla MH, El-Sayed E-SA, Rasmey A-HM. Indole-3-acetic acid (IAA) production by *Streptomyces atrovirens* isolated from rhizospheric soil in Egypt. Journal of Biology and Earth Sciences 2013;3(2):182-93.

Alibrandi P, Schnell S, Perotto S, Cardinale M. Diversity and structure of the endophytic bacterial communities associated with three terrestrial orchid species as revealed by 16S rRNA gene metabarcoding. Frontiers in Microbiology 2020;11: Article No. 604964.

Arai T. Culture Media for Actinomycetes. Tokyo, Japan: The Society for Actinomycetes Japan; 1975.

Bao X, Shun Q, Chen L. The Medicinal Plants of *Dendrobium* (Shi-Hu) in China. A Coloured Atlas. Shanghai, China: Press of Fudan University and Press of Shanghai Medical University; 2001.

Berdy J. Bioactive microbial metabolites. The Journal of Antibiotics 2005;58(1):1-26.

Bunyoo C, Duangmal K, Nuntagij A, Thamchaipenet A. Characterisation of endophytic actinomycetes isolated from wattle trees (*Acacia auriculiformis* A. Cunn. ex Benth.) in Thailand. Genomics and Genetics 2009;2(2):155-63.

Charoenrungruang S, Chanvorachote P, Sritularak B, Pongrakhananon V. Gigantol, a bibenzyl from *Dendrobium draconis*, inhibits the migratory behavior of non-small cell lung cancer cells. Journal of Natural Products 2014;77(6): 1359-66.

Chutima R, Dell B, Vessabutr S, Bussaban B, Lumyong S. Endophytic fungi from *Pecteilis susannae* (L.) Rafin (Orchidaceae), a threatened terrestrial orchid in Thailand. Mycorrhiza 2011;21(3):221-9.

Czitrom V. One-factor-at-a-time versus designed experiments. The American Statistician 1999;53(2):126-31.

Etesami H, Alikhani HA, Hosseini HM. Indole-3-acetic acid (IAA) production trait, a useful screening to select endophytic and rhizosphere competent bacteria for rice growth promoting agents. MethodsX 2015;2:72-8.

Faria DC, Dias ACF, Melo IS, de Carvalho Costa FE. Endophytic bacteria isolated from orchid and their potential to promote plant growth. World Journal of Microbiology and Biotechnology 2013;29(2):217-21.

Flores-Gallegos AC, Nava-Reyna E. Plant growth-promoting microbial enzymes. In: Kuddus M, editor. Enzymes in Food Biotechnology. Elsevier; 2019. p. 521-34.

Gangwar M, Rani S, Sharma N. Diversity of endophytic Actinomycetes from wheat and its potential as plant growth promoting and biocontrol agents. Journal of Advanced Laboratory Research in Biology 2012;3(1):13-9.

Gause GF, Preobrazhenskaya TP, Sveshnikova MA, Terekhova LP, Maximova TS. A Guide for the Determination of Actinomycetes. Genera *Streptomyces*, *Streptoverticillium*, and *Chainia*. Moscow, Russia: Nauka; 1983.

Goudjal Y, Toumatia O, Sabaou N, Barakate M, Mathieu F, Zitouni A. Endophytic actinomycetes from spontaneous plants of Algerian Sahara: Indole-3-acetic acid production and tomato plants growth promoting activity. World Journal of Microbiology and Biotechnology 2013;29(10):1821-9.

Herrera H, Fuentes A, Soto J, Valadares R, Arriagada C. Orchid-associated bacteria and their plant growth promotion capabilities. In: Mérillon JM, Kodja H, editors. Orchids Phytochemistry, Biology and Horticulture: Fundamentals and Applications. Switzerland: Springer; 2022. p. 175-200.

Kelly KL. Inter-Society Color Council-National Bureau of Standard Color Name Charts Illustrated with Centroid Colors. Washington DC, USA: Government Printing Office; 1964.

Khamna S, Yokota A, Peberdy JF, Lumyong S. Indole-3-acetic acid production by *Streptomyces* sp. isolated from some Thai

medicinal plant rhizosphere soils. *EurAsian Journal of BioSciences* 2010;4:23-32.

Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. *Journal of Molecular Evolution* 1980;16(2):111-20.

Klongkumnuankarn P, Busaranon K, Chanvorachote P, Sritularak B, Jongbunprasert V, Likhithwitayawuid K. Cytotoxic and antimigratory activities of phenolic compounds from *Dendrobium brymerianum*. *Evidence-Based Complementary and Alternative Medicine* 2015;2015:1-9.

Kongkatitham V, Muangnoi C, Kyokong N, Thaweesest W, Likhithwitayawuid K, Rojsithisak P, et al. Anti-oxidant and anti-inflammatory effects of new bibenzyl derivatives from *Dendrobium parishii* in hydrogen peroxide and lipopolysaccharide treated RAW264. 7 cells. *Phytochemistry Letters* 2018;24:31-8.

Kudo T, Matsushima K, Itoh T, Sasaki J, Suzuki K-I. Description of four new species of the genus *Kineosporia*: *Kineosporia succinea* sp. nov., *Kineosporia rhizophila* sp. nov., *Kineosporia mikuniensis* sp. nov., and *Kineosporia rhamnosa* sp. nov., isolated from plant samples, and amended description of the genus *Kineosporia*. *International Journal of Systematic and Evolutionary Microbiology* 1998;48(4):1245-55.

Kuncharoen N, Fukasawa W, Mori M, Shiomi K, Tanasupawat S. Diversity and antimicrobial activity of endophytic actinomycetes isolated from plant roots in Thailand. *Microbiology* 2019;88(4):479-88.

Kuncharoen N, Yuki M, Kudo T, Ohkuma M, Boonchareon A, Mhuantong W, et al. Comparative genomics and proposal of *Streptomyces radicis* sp. nov., an endophytic actinomycete from roots of plants in Thailand. *Microbiological Research* 2022;254:Article No. 126889.

Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. *Molecular Biology and Evolution* 2016;33(7):1870-4.

Küster E, Williams S. Selection of media for isolation of *Streptomyces*. *Nature* 1964;202(4935):928-9.

Lin L, Xu X. Indole-3-acetic acid production by endophytic *Streptomyces* sp. En-1 isolated from medicinal plants. *Current Microbiology* 2013;67(2):209-17.

Maitreesophone P, Khine HEE, Nealiga JQL, Kongkatitham V, Panuthai P, Chaotham C, et al. α -Glucosidase and pancreatic lipase inhibitory effects and anti-adipogenic activity of dendrofalconerol B, a bisbibenzyl from *Dendrobium harveyanum*. *South African Journal of Botany* 2022;146:187-95.

Mearns-Spragg A, Bregu M, Boyd K, Burgess J. Cross-species induction and enhancement of antimicrobial activity produced by epibiotic bacteria from marine algae and invertebrates, after exposure to terrestrial bacteria. *Letters in Applied Microbiology* 1998;27(3):142-6.

Musa Z, Ma J, Egamberdieva D, Mohamad OAA, Abaydulla G, Liu Y, et al. Diversity and antimicrobial potential of cultivable endophytic actinobacteria associated with the medicinal plant *Thymus roseus*. *Frontiers in Microbiology* 2020;11:Article No. 191.

Nair DN, Padmavathy S. Impact of endophytic microorganisms on plants, environment and humans. *The Scientific World Journal* 2014;2014:1-11.

Passari AK, Mishra VK, Saikia R, Gupta VK, Singh BP. Isolation, abundance and phylogenetic affiliation of endophytic actinomycetes associated with medicinal plants and screening for their in vitro antimicrobial biosynthetic potential. *Frontiers in Microbiology* 2015;7(6):Article No. 273.

Puchooa D. Comparison of different culture media for the *in vitro* culture of *Dendrobium* (Orchidaceae). *International Journal of Agriculture and Biology* 2004;6(5):884-8.

Qin S, Feng W-W, Wang T-T, Ding P, Xing K, Jiang J-H. Plant growth-promoting effect and genomic analysis of the beneficial endophyte *Streptomyces* sp. KLBMP 5084 isolated from halophyte *Limonium sinense*. *Plant and Soil* 2017;416(1):117-32.

Rao HY, Rakshit D, Satisch S. Antimicrobial properties of endophytic actinomycetes isolated from *Combretum latifolium* Blume, a medicinal shrub from Western Ghats of India. *Frontiers in Biology* 2015;10(6):528-36.

Saitou N, Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. *Molecular Biology and Evolution* 1987;4(4):406-25.

Sameera B, Prakash HS, Nalini MS. Actinomycetes from the coffee plantation soils of Western Ghats: diversity and enzymatic potentials. *International Journal of Current Microbiology and Applied Sciences* 2018;7(8):3599-611.

Shah S, Chand K, Rekadwad B, Shouche YS, Sharma J, Pant B. A prospectus of plant growth promoting endophytic bacterium from orchid (*Vanda cristata*). *BMC Biotechnology* 2021; 21(1):1-9.

Shakeel Q, Lyu A, Zhang J, Wu M, Chen S, Chen W, et al. Optimization of the cultural medium and conditions for production of antifungal substances by *Streptomyces platensis* 3-10 and evaluation of its efficacy in suppression of clubroot disease (*Plasmodiophora brassicae*) of oilseed rape. *Biological Control* 2016;101:59-68.

Shan W, Zhou Y, Liu H, Yu X. Endophytic actinomycetes from tea plants (*Camellia sinensis*): Isolation, abundance, antimicrobial, and plant-growth-promoting activities. *BioMed Research International* 2018;2018:1-12.

Shimizu M. Endophytic actinomycetes: Biocontrol agents and growth promoters. In: Maheshwari DK, editor. *Bacteria in Agrobiology: Plant Growth Responses*. Berlin Heidelberg, Germany: Springer; 2011. p. 201-20.

Shirling ET, Gottlieb D. Methods for characterization of *Streptomyces* species1. *International Journal of Systematic and Evolutionary Microbiology* 1966;16(3):313-40.

Shirokikh I, Zenova G, Merzaeva O, Lapygina E, Batalova G, Lysak L. Actinomycetes in the prokaryotic complex of the rhizosphere of oats in a soddy-podzolic soil. *Eurasian Soil Science* 2007;40(2):158-62.

Shutsrirung A, Chromkaew Y, Pathom-Aree W, Choonluchanon S, Boonkerd N. Diversity of endophytic actinomycetes in mandarin grown in northern Thailand, their phytohormone production potential and plant growth promoting activity. *Soil Science and Plant Nutrition* 2013;59(3):322-30.

Sinma K, Nurak T, Khucharoenphaisan K. Potentiality of endophytic actinomycetes isolated from sugar cane. *Current Applied Science and Technology* 2015;15(2):88-97.

Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. *Applied Microbiology* 1974;28(2):226-31.

Stackebrandt E, Rainey FA, Ward-Rainey NL. Proposal for a new hierarchic classification system, *Actinobacteria* classis nov. *International Journal of Systematic and Evolutionary Microbiology* 1997;47(2):479-91.

Sukphan P, Sritularak B, Mekboonsonglarp W, Lipipun V, Likhithwitayawuid K. Chemical constituents of *Dendrobium venustum* and their antimarial and anti-herpetic properties. *Natural Product Communications* 2014;9(6):825-7.

Suriyachadkun C, Chunhametha S, Thawai C, Tamura T, Potacharoen W, Kirtikara K, et al. *Planotetraspora thailandica* sp. nov., isolated from soil in Thailand. *International Journal of Systematic and Evolutionary Microbiology* 2009;59(5):992-7.

Suwitchayanon P, Chaipon S, Chaichom S, Kunasakdakul K. Potentials of *Streptomyces rochei* ERY1 as an endophytic actinobacterium inhibiting damping-off pathogenic fungi and growth promoting of cabbage seedling. *Chiang Mai Journal of Science* 2018;45:692-700.

Taechowisan T, Lumyong S. Activity of endophytic actinomycetes from roots of *Zingiber officinale* and *Alpinia galanga* against phytopathogenic fungi. *Annals of Microbiology* 2003;53(3):291-8.

Tedsree N, Tanasupawat S, Sritularak B, Kuncharoen N, Likhithwitayawuid K. *Amycolatopsis dendrobii* sp. nov., an endophytic actinomycete isolated from *Dendrobium heterocarpum* Lindl. *International Journal of Systematic and Evolutionary Microbiology* 2021;71(7):Article No. 004902.

Tsavkelova EA, Cherdynseva TA, Botina SG, Netrusov AI. Bacteria associated with orchid roots and microbial production of auxin. *Microbiological Research* 2007;162(1):69-76.

Williams ST, Cross T. *Actinomycetes*. In: Booth C, editor. *Methods in Microbiology*. London, UK: Academic Press; 1971. p. 295-334.

Wu LS, Jia M, Chen L, Zhu B, Dong HX, Si JP, et al. Cytotoxic and antifungal constituents isolated from the metabolites of endophytic fungus DO14 from *Dendrobium officinale*. *Molecules* 2016;21(1):Article No. 0014.

Wu W, Chen W, Liu S, Wu J, Zhu Y, Qin L, et al. Beneficial relationships between endophytic bacteria and medicinal plants. *Frontiers in Plant Science* 2021;12:Article No. 646146.

Xiang XG, Schuiteman A, Li DZ, Huang WC, Chung SW, Li JW, et al. Molecular systematics of *Dendrobium* (Orchidaceae, Dendrobieae) from mainland Asia based on plastid and nuclear sequences. *Molecular Phylogenetics and Evolution* 2013;69 (3):950-60.

Xing YM, Chen J, Cui JL, Chen, XM, Guo SX. Antimicrobial activity and biodiversity of endophytic fungi in *Dendrobium devonianum* and *Dendrobium thrysiflorum* from Vietnam. *Current Microbiology* 2011;62(4):1218-24.

Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y, Seo H, et al. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. *International Journal of Systematic and Evolutionary Microbiology* 2017;67(5):1613-7.