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Plant diversity is important for sustainable development, particularly in 

watershed areas. This study explored tree population and diversity in a lower 

montane forest (LMF). A 16-ha permanent plot was established in LMF at Huai 

Kogma sub-watershed, northern Thailand. All trees with a diameter at breast 

height ≥ 2 cm were tagged, measured, identified, and their coordinates were 

mapped. The results showed that 220 species in 139 genera from 63 plant families 

were found. The dominant families based on species numbers and tree density 

were Fagaceae, Lauraceae, and Theaceae. The most dominant species were 

Castanopsis acuminatissima, Schima wallichii, Castanopsis armata, and Styrax 

benzoides. Diameter classes for climax species frequently followed negative 

exponential distributions, indicating their populations could be maintained into 

the future. By contrast, pioneer species, such as Macaranga indica, Morus 

macroura, and Rhus javanica, had discontinuous distribution, and were mostly 

found in gap areas, indicating successful regeneration may require high light 

intensity. Spatial distribution patterns based on Morisita’s index showed that 

most of the selected species had clumped patterns, particularly those in the 

Fagaceae family, which were predominantly distributed along the mountain 

ridge. Tree distribution patterns can affect ecological dynamics, thus reinforcing 

patterns dependent on local interactions such as the abundance of and distance to 

available resources. Our finding can aid evaluations of forest sustainability, and 

support the biodiversity conservation plans. In particular, the selection of suitable 

species for LMF restoration programs where mixed plantings of pioneer and 

climax species are planned. 
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1. INTRODUCTION

Understanding how species are distributed, and 

how they assemble to form communities and 

ecosystems, is an important issue that has attracted 

considerable scientific interest. Its information is a 

very useful component of conservation and 

management decisions, including focused efforts to 

conserve rare species, habitat management and 

restoration, anticipation of problematic invasions, and 

delimit valued habitat types (Franklin, 2010). 
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Vegetation ecologists have engaged in an extended 

debate on the mechanisms governing species 

assemblage into complex vegetation communities 

(Ricklefs, 2008; Brooker et al., 2009). Ongoing global 

changes, including climate change, deforestation, 

pollution, and biological invasions, have increased 

rates of biodiversity loss (Cardinale et al., 2012; Chen 

et al., 2011; Pereira et al., 2010; Sala et al., 2000). 

These changes have also heightened the need for 

knowledge that could help us anticipate and prevent 

deleterious effects on biodiversity and ecosystem 

functioning. This is especially important for mountain 

ecosystems, which are particularly exposed to climate 

changes (Pepin et al., 2015), and life mainly 

temperature limited and vulnerable to climatic 

changes (Amdre et al., 2009).  

Mountain ecosystems are mainly defined in 

terms of their minimum altitude in meters above sea 

level (m.a.s.l.), which ranges from 300 m at 67N and 

55S to 1,000 m at the equator. Mountain ecosystems 

cover about 27% of the Earth’s surface (Kapos et al., 

2000). They maintain ecological processes and 

services for both mountain communities and those 

living in lowlands, wherein demand from population 

centers, agriculture and industry is high (Regato and 

Salman, 2008). Mountains are exposed to both natural 

and anthropogenic drivers of change (Kampmann et 

al., 2008). In particular, montane plant diversity can be 

reduced by certain types of land-use, including 

intensification and land abandonment (Spehn et al., 

2006). Mountain biota are adapted to extreme climatic 

conditions, temperatures, and precipitation (Rashid et 

al., 2005). Recovery of mountain ecosystems from 

disturbances is typically slow.  

The characteristics of montane forests differ 

from those of lowland forests due to changes in 

vegetation composition along the altitudinal gradient 

(Marod et al., 2014; Richards, 1996). It is now 

accepted that four forest zones exist for taller tropical 

mountains up to the tree line, namely lowland, lower 

montane, upper montane and subalpine forest zones 

(Ashton, 2003). The transition from lowland to lower 

montane forest (LMF) seems to be mostly attributable 

to declining average temperature with elevation. At 

this threshold, many lowland tree species are displaced 

by a floristically distinct assemblage of montane 

species (Kitayama, 1992). Tree species from the 

Fagaceae and Lauraceae are particularly abundant in 

massifs, where their abundance in both the canopy and 

subcanopy has earned these forests the name “oak-

laurel forests” (Tagawa, 1995).  

Only two mountain forest ecosystems are found 

in Thailand: the LMF and upper montane forest 

(UMF). The ecotone between them is located at 

approximately 1,800 m.a.s.l. based on climatic 

characteristics and edaphic conditions (Santisuk, 

1988). Mount Doi Inthanon, at 2,565 m.a.s.l., is a 

summit in Thailand with extensive tracts of UMF. 

Trees are often small in stature and characterized by 

umbrella-shaped crowns, small leaves, gnarled stems, 

and branches that are covered by epiphytes such as 

orchids, ferns, lichens, and mosses (Hara et al., 2002; 

Khamyong et al., 2004). Several studies have reported 

that species from the Fagaceae and Lauraceae families 

are the most abundant, as also seen in tropical 

mountain forest areas (Kanzaki et al., 2004; Marod et 

al., 2018; Sri-Ngernyuang et al., 2003). 

Intensive studies of species composition, forest 

structure, and dynamics have been conducted in 

lowland forests since the 1980s using large-scale 

research plots (Condit, 1995). Large-scale research 

plots are not only suitable for studying the distribution 

patterns of existing trees, but also tree regeneration, 

which is often expressed in terms of stem-size 

distributions (Bunyavejchewin et al., 2001; Kanzaki et 

al., 2004; Yamada et al., 1997). Diameter class 

distributions (visualized using graphs showing the 

density of trees in several different classes) can be 

used to determine whether the density of smaller trees 

in a forest is sufficient to replace the current 

population of larger trees (Henle et al., 2004; Rubin et 

al., 2006; White et al., 2007). Whether a given forest 

is “sustainable” can be inferred from stand diameter 

distributions. For example, in the absence of major 

disturbances, a reversed J-shaped distribution in 

uneven-aged stands has been regarded as 

demonstrating dynamic equilibrium in sustainably 

managed forests (Marod et al., 2020; Nyland, 2002). 

Unimodal distributions characterized by fewer 

juveniles relative to adults have been interpreted as 

evidence of population decline (Condit et al., 1998; 

Deb and Sundriyal, 2008). The success of regeneration 

efforts can also be inferred from diameter distribution 

patterns associated with ecological processes. 

Distribution patterns (clumped or grouped, and regular 

or random) can effect ecological changes depending 

on local interactions among individuals, seed dispersal 

and germination, abundance, and ecological niche.  

Measuring distribution patterns and linking 

them to ecological processes is an ongoing area of 

ecological research. The Morisita Index of 

aggregation (Iδ) can be used to measure and interpret 
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spatial point patterns (Golay and Kanevski, 2015). 

This index measures whether a given point pattern is 

clumped or dispersed relative to a spatially random 

distribution. The value taken by the index depends on 

both quadrat size and population density. The Morisita 

Index has been applied to detect distribution patterns 

and understand the processes of seed dispersal, seed 

banking, and tree establishment (De Almeida and 

Galetti, 2007; Houle, 1994). It has also been used to 

analyze spatial patterns of regeneration and adult 

tree distributions (Hubbell, 1979). These data can 

help us estimate forest sustainability based on 

population structure and regeneration status. Thus, this 

study aimed to clarify the population structure and 

regeneration status of tree species in an area of 

LMF, and the relative distribution patterns of 

sapling-, pole-, and adult-stage tree in a 16-ha 

permanent plot in an LMF.  

2. METHODOLOGY

2.1 Study site

The Kog Ma sub-watershed (1848N, 9854E) 

is one of the Mae Sa head-watersheds which is located 

on the east-facing slope of Mount Doi Pui (1,685 

m.a.s.l.), 10 km west of Chiang Mai Province in

northern Thailand (Figure 1).  The sub-watershed area 

is 0.65 km2, and covered by primary LMF with canopy 

heights of 25-40 m. The dominant tree species are 

predominantly members of the Fagaceae, especially 

the genera Castanopsis, Lithocarpus, and Quercus, 

together with a variety of undergrowth, shrub, and 

epiphytic species (Bhumibhamon and Wasuwanich, 

1970). Many hydrological studies were found in 

several aspects (Kume et al., 2007; Tanaka et al., 2003; 

Tanaka et al., 2008). However, because less 

documentation on forest structure and dynamics of 

LMF has been reported, particularly based on a large 

permanent plot, an evaluation of LMF was selected for 

this study. The climate is subtropical, and the wet 

season (May to October) transitions to a cool dry 

season (November to January) and subsequent hot dry 

season (February to April). The mean annual 

temperature and rainfall are 20C and 1,700 mm, 

respectively. The majority of precipitation occurs in 

the wet season, with only about 8% of the annual total 

falling during the dry season (Kume et al., 2007; 

Tangtham, 1974). The soils are classified as reddish-

brown laterites (Thailand soil classification) or 

Ultisols (USDA Soil Taxonomy), with about 50% 

sand content and 60-74% porosity (Hashimoto, 2005). 

Figure 1. Study area with a 16-ha plot () in LMF at Doi Suthep-Pui National Park, northern Thailand 

2.2 Data collection 

Large permanent plots are widely used to 

monitor tree spatial distribution and population 

dynamics relating to the environmental changes 

(Condit et al., 2000). In 2010, a 16-ha permanent plot 

was established at an elevation range from 1,300-

1,450 m.a.s.l. The plot measured 400 m × 400 m and 

was subdivided into 1,600 10 m × 10 m subplots to 
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study forest structure and species composition based 

on Condit et al. (2014). All trees with a diameter at 

breast height (DBH, 1.3 m above the soil surface) of 

≥2 cm were tagged with a running number, measured, 

and identified to species. Tree coordinates (x, y) in 

each subplot were also recorded. Leaf specimens were 

collected from the enumerated trees and identified by 

referring to herbarium specimens at the Forest 

Herbarium of Department of National Parks, Wildlife 

and Plants Conservation. Species nomenclature was 

based on Smitinand (2014).  

2.3 Data analysis 

Plant ecological indices were calculated to 

clarify the forest structure. For all stems with a DBH 

≥ 5.0 cm, the density, dominance and importance 

value index (IVI) were calculated based on the sum of 

relative density, dominance and frequency (Krebs, 

1994). Basal area (BA), density and diversity were 

also calculated for each plant family by summing these 

variables across all species in a given family. The size 

class distribution for all species with at least 30 

individuals in the 16-ha plot were prepared. This 

analysis included the small size class of saplings 

(2.0 ≤ DBH < 5.0 cm). The population structure across 

this size reflects that of larger trees (Mclaren et al., 

2005). Size class distribution of each species was 

defined by families of probability mass functions 

fitting to the class frequency. In order to specifically 

select the most suitable family of mass distribution, 

Anderson-Darling statistic (Anderson and Darling 

1952; Liebscher, 2016) and probability-probability 

plot (Chambers et al., 2017) were then applied to help 

determine the goodness-of-fit among families of the 

probability function. Subsequently, the optimal 

probability function was specified from the set of the 

distribution function (varied number of parameters) of 

the selected family using the Likelihood ratio test and 

Akaike Information criteria (Akaike, 1998). The 

regeneration status of each tree species was predicted 

on the basis of its size-class distribution. 

To detect the distribution patterns of saplings, 

pole-stage (5.0 ≤ DBH < 10.0 cm) and mature trees 

(DBH ≥10.0 cm), all species with >80 individuals 

were selected (Lan et al., 2009). Morisita’s Iδ index 

was calculated by dividing the plot into quadrats of 

various sizes. The smallest quadrat size was obtained 

by dividing the 16-ha plot into square quadrats each 

with a size of (0.1)2 m × 400 m (i.e., x-axis length) and 

(0.10)2 × 400 m (i.e., y-axis length), yielding 4 m × 4 

m (16 m2) quadrats. Larger quadrats were obtained by 

doubling the length of the smaller quadrats, producing 

quadrats that ranged from 16 m2 to 6.5 ha. Morisita’s 

Iδ was then calculated using the following equation 

(Morisita, 1959): 

I = q 
∑ ni − N

2

(N2 − N)

Where; ni is the number of individuals in each 

quadrat, N is the total number of individuals in the16 

ha plot, and q is the number of quadrats of a given size. 

The Iδ value was used to classify distribution 

patterns as random (Iδ=1), clumped or aggregated 

(Iδ >1), or regular (Iδ <1). F-tests were used to test for 

departures from random expectation for each quadrat 

size. The statistical significance of the F-tests was 

tested at the 95% confidence limit (p<0.05). 

3. RESULTS AND DISCUSSION

3.1 Species composition and population structure

A total of 28,078 individuals ≥2 cm DBH were 

measured and identified. This population was 

composed of 220 species from 139 genera and 63 

families. The average density of all trees ≥5.0 cm  DBH 

was 806.88 stems/ha, and this population included   195 

species from 131 genera and 56 families (Table S1). 

The highest tree density (stems/ha) was found for 

Castanopsis acuminatissima (n=106.56) followed by 

Styrax benzoides (n=38.94), Vernonia volkameriiolia 

(n=36.19), Castanopsis armata (n=29.00), Litsea 

martabanica (n=27.31), Persea gamblei (n=24.81), 

Helicia nilagirica (n=22.44), Turpinia pomifera 

(n=20.06), and Schima wallichii (n=19.13). A number 

of other temperate tree species were present in low 

densities, including members of the families 

Podocarpaceae (Podocarpus neriifolius and Dacry-

carpus imbricatus), Betulaceae (Betula alnoides and 

Carpinus viminea), and Juglandaceae (Engelhardtia 

spicata and E. serrata). The most dominant tree 

species, with an average BA of 32.79 m2/ha and relative 

basal area (RBA, %) of 14.24, was Castanopsis 

acuminatissima. Other dominant species were Schima 

wallichii (RBA=9.23%), Manglietia garrettii (6.41%), 

Castanopsis armata (5.36%), Castanopsis tribuloides 

(4.80%), Litsea grandis (3.15%), Syzygium toddlioides 

(2.89%), Syzygium tetragonum (2.87%), Choeros-

pondias axillaris (2.81%), and Michelia baillonii 

(2.24%). These 10 species accounted for 54.00% of the 

total BA. To determine the ecological influence of each 

species, the IVI (%) was calculated. The species with 

the highest IVI was Castanopsis acuminatissima 

(33.36), followed by Schima wallichii (14.61), 
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Castanopsis armata (12.86), Styrax benzoides (9.55), 

Castanopsis tribuloides (8.85), Litsea martabanica 

(8.29), Manglietia garrettii (8.23), Persea gamblei 

(8.20), Vernonia volkameriiolia (6.21), Litsea 

martabanica (7.45), Helicia nilagirica (6.30), and 

Syzygium toddlioides (6.21).  

The Euphorbiaceae, Lauraceae, Fagaceae, 

Moraceae, and Theaceae families had the most species 

(20, 19, 16, 11, and 8 species, respectively). The 

Fagaceae family had the highest per hectare tree density 

(186.31 stems/ha) followed by the Lauraceae (92.69 

stems/ha), Euphorbiaceae (71.00 stems/ha), Theaceae 

(39.69 stems/ha), and Styracaceae (38.94 stems/ha) 

families. The Fagaceae family also had the highest 

BA (9.69 m2/ha), followed by the Lauraceae (4.11 

m2/ha), Theaceae (3.40 m2/ha), Magnoliaceae (2.76 

m2/ha), and Myrtaceae (2.38 m2/ha) families (Figure 2). 

As also reported for tropical montane forests 

elsewhere in Southeast Asia (Brambach et al., 2017; 

Buot and Okitsu, 1998; Maxwell et al., 1997; Ohsawa, 

1995; Pendry and Proctor, 1997), the Fagaceae and 

Lauraceae families were more abundant and more 

likely to occupy the highest layer of the tree canopy in 

the LMF in this study. The name “oak-laurel forest” 

has been used for this vegetation type (Ashton, 2003; 

Kochummen, 1989). Oak-laurel forests are the 

dominant vegetation type in the mountains of tropical 

Asia from the Himalayas to New Guinea (Sri-

Ngernyuang et al., 2003), and are closely related to the 

temperate evergreen oak forests of East Asia (Tagawa 

1995; Zhu et al., 2016). However, in Malesia, tropical 

lower montane forests are often dominated more by 

Myrtaceae than by Lauraceae (Aiba and Kitayama, 

2020; Kochummen, 1982). Ashton (2015) reported 

that lower-montane oak-laurel forest is rare in Borneo 

and patchy in Peninsular Malaysia, and he named 

lower montane forest on Mount Mulu, Borneo, as 

“lower montane kerangas”. A similar name for lower 

montane forest on old soil with low dominance of 

Lauraceae at Mount Kinabalu has also been mentioned 

(Aiba and Kitayama, 2020). 

3.2 Regeneration of tree species 

The characteristics of regenerating tree popu-

lations were explored using DBH-class distributions. 

In total, 123 tree species with populations comprising 

>30 individuals were analyzed. The result showed that

DBH classes followed two distributions: negative

exponential (NE; reverse-J) and polynomial (PO). Size

class distributions for 78 species followed an NE

distribution. These distributions have the greatest

numbers of individuals in the lowest DBH class and

progressively fewer individuals in larger DBH classes

(Table S1). Considering the dominance of the

Fagaceae, only three species from that family -

Castanopsis acuminatissima, C. tribuloides, and

Lithocarpus truncates - followed NE distributions

(Figure 3 (a)-(c)); this indicated  that  they  had a robust

capacity to maintain a stable population structure in

the future, because smaller trees will grow into larger

size classes and thus replace larger trees as they die. In

particular, these species would be sustained if

mortality were greater among small (suppressed) trees

and large trees  than  among  mid-sized  co-dominants

Figure 2. (a) Numbers of species, (b) tree densities, and (c) basal areas of the 20 most dominant families in the LMF for stems  5.0 cm 
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Figure 2. (a) Numbers of species, (b) tree densities, and (c) basal areas of the 20 most dominant families in the LMF for stems 5.0 cm 

DBH (cont.) 
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species were found in montane forests in Papua New 

Guinea (Enright and Jaffré, 2011). Its regeneration 

may be unable to compete with angiosperms or 

rainforest tree species that can absorb light as 

seedlings in a shaded understory, but which rapidly 

increase their growth rates when light availability 

increases (Brodribb et al., 2012; Wright et al., 2010). 

Therefore, we cautiously conclude that diameter 

distributions can indicate whether the density of 

smaller trees in a stand is sufficient to replace the 

current population of larger trees, which may help us 

to estimate forest sustainability. 

Figure 3. Diameter class distributions plotted on a logarithmic scale for some species of Fagaceae. (a) Castanopsis accuminatissima, (b) 

Castanopsis tribuloides, (c) Lithocarpus truncatus, (d) Castanopsis armata, (e) Castanopsis diversifolia, (f) Castanopsis argyrophylla, 

(g) Lithocarpus mekongensis, and (h) Lithocarpus auriculatus
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Figure 3. Diameter class distributions plotted on a logarithmic scale for some species of Fagaceae. (a) Castanopsis accuminatissima, (b) 

Castanopsis tribuloides, (c) Lithocarpus truncatus, (d) Castanopsis armata, (e) Castanopsis diversifolia, (f) Castanopsis argyrophylla, 

(g) Lithocarpus mekongensis, and (h) Lithocarpus auriculatus (cont.)
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Figure 3. Diameter class distributions plotted on a logarithmic scale for some species of Fagaceae. (a) Castanopsis accuminatissima, (b) 

Castanopsis tribuloides, (c) Lithocarpus truncatus, (d) Castanopsis armata, (e) Castanopsis diversifolia, (f) Castanopsis argyrophylla, 

(g) Lithocarpus mekongensis, and (h) Lithocarpus auriculatus (cont.)

Figure 4. Diameter class distributions plotted on a logarithmic scale for pioneer species: (a) Macaranga indica, (b) Morus macroura, 

(c) Erythrina subumbrans, (d) Rhus javanica, (e) Choerospondias axillaris, (f) Schima wallichii, (g) Betula alnoides, and the shade-

tolerant species as (h) Podocarpus neriifolius
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Figure 4. Diameter class distributions plotted on a logarithmic scale for pioneer species: (a) Macaranga indica, (b) Morus macroura, 

(c) Erythrina subumbrans, (d) Rhus javanica, (e) Choerospondias axillaris, (f) Schima wallichii, (g) Betula alnoides, and the shade-

tolerant species as (h) Podocarpus neriifolius (cont.)
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Figure 4. Diameter class distributions plotted on a logarithmic scale for pioneer species: (a) Macaranga indica, (b) Morus macroura, 

(c) Erythrina subumbrans, (d) Rhus javanica, (e) Choerospondias axillaris, (f) Schima wallichii, (g) Betula alnoides, and the shade-

tolerant species as (h) Podocarpus neriifolius (cont.)
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Figure 4. Diameter class distributions plotted on a logarithmic scale for pioneer species: (a) Macaranga indica, (b) Morus macroura, 

(c) Erythrina subumbrans, (d) Rhus javanica, (e) Choerospondias axillaris, (f) Schima wallichii, (g) Betula alnoides, and the shade-

tolerant species as (h) Podocarpus neriifolius (cont.)

3.3 Tree distribution pattern 

Seventy-two species were selected for the 

analysis of spatial distribution patterns. The Morisita 

index, Iδ, varied among species, growth stages (sapling, 

pole stage, and mature tree) and quadrat sizes. As 

quadrat size increased, the intensity of spatial 

aggregation decreased. Sixty-two species had clumped 

patterns (Iδ > 1.0) for all growth stages and quadrat sizes 

(Table S1). Aggregated spatial patterns were 

particularly observed in dominant Fagaceae species, 

such as Castanopsis acuminatissima, C. armata, and 

Lithocarpus truncatus (Figure 5). Manglietia garrettii, 

Prunus arborea, Bridelia glauca, Markhamia stipulate, 

and Lithocarpus dealbatus followed random patterns as 

saplings, but were clumped as pole-stage and mature 

trees (Figure 6). By contrast, Michelia baillonii, Schima 

wallichii, Canarium euphyllum, and Elaeocarpus 

serratus were clumped as saplings but randomly 

distributed in other life stages (Figure7). Only one 

species, Tarennoidea wallichii, had a random spatial 

pattern at every growth stage (Figure 7(d)).

 

Figure 5. Clumped spatial distribution patterns of dominant Fagaceae at each growth stage in the 16-ha permanent plot at HKM: (a) 

Castanopsis accuminatissima, (b) C. armata, (c) Lithocarpus truncatus, and (d) Quercus oidocarpa 
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Figure 5. Clumped spatial distribution patterns of dominant Fagaceae at each growth stage in the 16-ha permanent plot at HKM: (a) 

Castanopsis accuminatissima, (b) C. armata, (c) Lithocarpus truncatus, and (d) Quercus oidocarpa (cont.) 
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Figure 6. Species with random spatial patterns as saplings and clumped patterns at other stages in the 16-ha plot at HKM: (a) Mangleitia 

garetttia, (b) Prunus arborea, (c) Markhamia stipulata, and (d) Bridelia glauca 
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Figure 6. Species with random spatial patterns as saplings and clumped patterns at other stages in the 16-ha plot at HKM: (a) Mangleitia 

garetttia, (b) Prunus arborea, (c) Markhamia stipulata, and (d) Bridelia glauca (cont.) 

Clumped spatial patterns are usually observed 

for tree species in tropical forests. Clumping can be 

influenced by seed dispersal (Aparajita and Gopal, 

2008; Elias et al., 2011). We found that the dominant 

species of Fagaceae had clumped patterns at every life 

stage, even though spatial distributions varied among 

species that preferentially occupied ridge sites (Figure 

5). Most species of Fagaceae have acorn or nut fruit 

types, which fall directly beneath mature trees and 

generate clumps of saplings around parent trees. Seeds 

are also eaten by rodents such as squirrels and rats 

(Rueangket et al., 2019), which are well-known seed 

predators with strong incisors that enable them to 

gnaw and consume nuts and other fruits with thick 

seed coats (Corlett, 2017; Vander Wall, 2001). Some 

seeds can be distributed by rodents through scatter 

hoarding. Some seeds may then germinate and become 

established from forgotten seed caches (Corlett, 2017; 

Suzuki et al., 2007). By contrast, Tarenoidea wallichii 

(Rubiaceae) has small freshy fruits (Chamchumroon 

and Puff, 2003; Rueangket et al., 2021), which may 

facilitate its dispersal by frugivorous birds (Aparajita 

and Gopal, 2008; Corlett, 2017). Birds not only move 

seeds away from mature trees, but may also facilitate 

germination after seeds pass through their digestive 

system (Murali, 1997). This kind of dispersal typically 

promotes random rather than clumped patterns, 

similar to our results.

Figure 7. Species with clumped pattern as saplings and random patterns at other life stages in the 16-ha plot at HKM: (a) Maichelia 

baillonii, (b) Schima wallichii, and (c) Canarium euphyllum, while, and (d) Tarennoidea wallichii, which had random spatial patterns at 

every stage. 
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Figure 7. Species with clumped pattern as saplings and random patterns at other life stages in the 16-ha plot at HKM: (a) Maichelia 

baillonii, (b) Schima wallichii, and (c) Canarium euphyllum, while, and (d) Tarennoidea wallichii, which had random spatial patterns at 

every stage (cont.). 
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Canarium euphyllum was clumped at the 

sapling stage but randomly distributed in other stages 

(Figure 7). Its heavy fruits generally fall close to 

mature trees (Kitamura et al., 2006), where larger 

numbers of seedlings and saplings are found than in 

other places. These dense aggregations of seedlings 

and saplings experience intense competition and 

density-dependent mortality, also known as self-

thinning (Marod et al., 1999). In this study, survival 

rates increased with distance from the adult trees, 

which created a random distribution. Other 

researchers have reported the effects of natural 

disturbances on clumped tree species distribution 

patterns (Bunyavejchewin et al., 2003; Elias et al., 

2011; Marod et al., 2021). Environmental changes, 

particularly the sudden influx of high-intensity light 

after a big tree falls, can produce clumped tree 

distributions. Thus, changes in the spatial distributions 

of trees have implications for all parts of an ecosystem, 

both biotic and abiotic, and are reflected in different 

patterns of forest cover and species composition. 

4. CONCLUSION

The 16-ha permanent plot in LMF at Doi 

Suthep-Pui National Park supported high diversity of 

tree species (220 species in total). The dominant 

families, based on the numbers of species and 

population densities, were Fagaceae, Lauraceae, and 

Theaceae. Tree regeneration based on diameter class 

distributions suggested that 78 species can maintain 

their population structure, particularly the dominant 

species of Fagaceae, Castanopsis acuminatissima, C. 

tribuloides, and Lithocarpus truncata. Other species 

had discontinuous unimodal or PO distributions, 

particularly pioneer species such as Macaranga 

indica, Morus macroura, and Rhus javanica. These 

species generally established in canopy gaps, in which 

the environment was greatly altered and did not 

support the regeneration of climax species. The 

establishment of pioneer species may facilitate the 

development of suitable environments for climax 

species. Spatial distribution patterns can feed back to 

affect ecological dynamics, thereby further reinforcing 

patterns dependent on local interactions. For example, 

spatial patterns could be affected by the abundance of, 

and distance to, available resources, as well as by the 

relationship between seed dispersal and frugivores.  

Diameter-class distributions can assist in the 

evaluation of potential forest sustainability and inform 

biodiversity conservation plans for species with 

unimodal or PO distributions. In addition, 

distributions can inform the selection of species 

suitable for the LMF restoration program, especially 

in terms of the appropriate mixtures of pioneer and 

climax species. 
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