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montane forest (LMF). A 16-ha permanent plot was established in LMF at Huai
Kogma sub-watershed, northern Thailand. All trees with a diameter at breast
height > 2 cm were tagged, measured, identified, and their coordinates were
Keywords: mapped. The results showed that 220 species in 139 genera from 63 plant families
Lower montane forest/ Ecological were found. The dominant families based on species numbers and tree density
niche/ Distribution pattern/ Forest were Fagaceae, Lauraceae, and Theaceae. The most dominant species were
dynamics plot Castanopsis acuminatissima, Schima wallichii, Castanopsis armata, and Styrax
benzoides. Diameter classes for climax species frequently followed negative
* Corresponding author: exponential distributions, indicating their populations could be maintained into
E-mail: sura.pat@mahidol.ac.th the future. By contrast, pioneer species, such as Macaranga indica, Morus
macroura, and Rhus javanica, had discontinuous distribution, and were mostly
found in gap areas, indicating successful regeneration may require high light
intensity. Spatial distribution patterns based on Morisita’s index showed that
most of the selected species had clumped patterns, particularly those in the
Fagaceae family, which were predominantly distributed along the mountain
ridge. Tree distribution patterns can affect ecological dynamics, thus reinforcing
patterns dependent on local interactions such as the abundance of and distance to
available resources. Our finding can aid evaluations of forest sustainability, and
support the biodiversity conservation plans. In particular, the selection of suitable
species for LMF restoration programs where mixed plantings of pioneer and
climax species are planned.

1. INTRODUCTION very useful component of conservation and

Understanding how species are distributed, and ~ management decisions, including focused efforts to
how they assemble to form communities and  conserve rare species, habitat management and
ecosystems, is an important issue that has attracted  restoration, anticipation of problematic invasions, and
considerable scientific interest. Its information is a  delimit valued habitat types (Franklin, 2010).
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Vegetation ecologists have engaged in an extended
debate on the mechanisms governing species
assemblage into complex vegetation communities
(Ricklefs, 2008; Brooker et al., 2009). Ongoing global
changes, including climate change, deforestation,
pollution, and biological invasions, have increased
rates of biodiversity loss (Cardinale et al., 2012; Chen
et al., 2011; Pereira et al., 2010; Sala et al., 2000).
These changes have also heightened the need for
knowledge that could help us anticipate and prevent
deleterious effects on biodiversity and ecosystem
functioning. This is especially important for mountain
ecosystems, which are particularly exposed to climate
changes (Pepin et al., 2015), and life mainly
temperature limited and vulnerable to climatic
changes (Amdre et al., 2009).

Mountain ecosystems are mainly defined in
terms of their minimum altitude in meters above sea
level (m.a.s.l.), which ranges from 300 m at 67°N and
55°S to 1,000 m at the equator. Mountain ecosystems
cover about 27% of the Earth’s surface (Kapos et al.,
2000). They maintain ecological processes and
services for both mountain communities and those
living in lowlands, wherein demand from population
centers, agriculture and industry is high (Regato and
Salman, 2008). Mountains are exposed to both natural
and anthropogenic drivers of change (Kampmann et
al., 2008). In particular, montane plant diversity can be
reduced by certain types of land-use, including
intensification and land abandonment (Spehn et al.,
2006). Mountain biota are adapted to extreme climatic
conditions, temperatures, and precipitation (Rashid et
al., 2005). Recovery of mountain ecosystems from
disturbances is typically slow.

The characteristics of montane forests differ
from those of lowland forests due to changes in
vegetation composition along the altitudinal gradient
(Marod et al., 2014; Richards, 1996). It is now
accepted that four forest zones exist for taller tropical
mountains up to the tree line, namely lowland, lower
montane, upper montane and subalpine forest zones
(Ashton, 2003). The transition from lowland to lower
montane forest (LMF) seems to be mostly attributable
to declining average temperature with elevation. At
this threshold, many lowland tree species are displaced
by a floristically distinct assemblage of montane
species (Kitayama, 1992). Tree species from the
Fagaceae and Lauraceae are particularly abundant in
massifs, where their abundance in both the canopy and
subcanopy has earned these forests the name “oak-
laurel forests” (Tagawa, 1995).
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Only two mountain forest ecosystems are found
in Thailand: the LMF and upper montane forest
(UMF). The ecotone between them is located at
approximately 1,800 m.a.s.l. based on climatic
characteristics and edaphic conditions (Santisuk,
1988). Mount Doi Inthanon, at 2,565 m.a.s.l., is a
summit in Thailand with extensive tracts of UMF.
Trees are often small in stature and characterized by
umbrella-shaped crowns, small leaves, gnarled stems,
and branches that are covered by epiphytes such as
orchids, ferns, lichens, and mosses (Hara et al., 2002;
Khamyong et al., 2004). Several studies have reported
that species from the Fagaceae and Lauraceae families
are the most abundant, as also seen in tropical
mountain forest areas (Kanzaki et al., 2004; Marod et
al., 2018; Sri-Ngernyuang et al., 2003).

Intensive studies of species composition, forest
structure, and dynamics have been conducted in
lowland forests since the 1980s using large-scale
research plots (Condit, 1995). Large-scale research
plots are not only suitable for studying the distribution
patterns of existing trees, but also tree regeneration,
which is often expressed in terms of stem-size
distributions (Bunyavejchewin et al., 2001; Kanzaki et
al.,, 2004; Yamada et al., 1997). Diameter class
distributions (visualized using graphs showing the
density of trees in several different classes) can be
used to determine whether the density of smaller trees
in a forest is sufficient to replace the current
population of larger trees (Henle et al., 2004; Rubin et
al., 2006; White et al., 2007). Whether a given forest
is “sustainable” can be inferred from stand diameter
distributions. For example, in the absence of major
disturbances, a reversed J-shaped distribution in
uneven-aged stands has been regarded as
demonstrating dynamic equilibrium in sustainably
managed forests (Marod et al., 2020; Nyland, 2002).
Unimodal distributions characterized by fewer
juveniles relative to adults have been interpreted as
evidence of population decline (Condit et al., 1998;
Deb and Sundriyal, 2008). The success of regeneration
efforts can also be inferred from diameter distribution
patterns associated with ecological processes.
Distribution patterns (clumped or grouped, and regular
or random) can effect ecological changes depending
on local interactions among individuals, seed dispersal
and germination, abundance, and ecological niche.

Measuring distribution patterns and linking
them to ecological processes is an ongoing area of
ecological research. The Morisita Index of
aggregation (Is) can be used to measure and interpret
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spatial point patterns (Golay and Kanevski, 2015).
This index measures whether a given point pattern is
clumped or dispersed relative to a spatially random
distribution. The value taken by the index depends on
both quadrat size and population density. The Morisita
Index has been applied to detect distribution patterns
and understand the processes of seed dispersal, seed
banking, and tree establishment (De Almeida and
Galetti, 2007; Houle, 1994). It has also been used to
analyze spatial patterns of regeneration and adult
tree distributions (Hubbell, 1979). These data can
help us estimate forest sustainability based on
population structure and regeneration status. Thus, this
study aimed to clarify the population structure and
regeneration status of tree species in an area of
LMF, and the relative distribution patterns of
sapling-, pole-, and adult-stage tree in a 16-ha
permanent plot in an LMF.

2. METHODOLOGY
2.1 Study site

The Kog Ma sub-watershed (18°48'N, 98°54'E)
is one of the Mae Sa head-watersheds which is located
on the east-facing slope of Mount Doi Pui (1,685
m.a.s.l.), 10 km west of Chiang Mai Province in

100°0"0"E

northern Thailand (Figure 1). The sub-watershed area
is 0.65 km?, and covered by primary LMF with canopy
heights of 25-40 m. The dominant tree species are
predominantly members of the Fagaceae, especially
the genera Castanopsis, Lithocarpus, and Quercus,
together with a variety of undergrowth, shrub, and
epiphytic species (Bhumibhamon and Wasuwanich,
1970). Many hydrological studies were found in
several aspects (Kume etal., 2007; Tanakaetal., 2003,
Tanaka et al., 2008). However, because less
documentation on forest structure and dynamics of
LMF has been reported, particularly based on a large
permanent plot, an evaluation of LMF was selected for
this study. The climate is subtropical, and the wet
season (May to October) transitions to a cool dry
season (November to January) and subsequent hot dry
season (February to April). The mean annual
temperature and rainfall are 20°C and 1,700 mm,
respectively. The majority of precipitation occurs in
the wet season, with only about 8% of the annual total
falling during the dry season (Kume et al., 2007;
Tangtham, 1974). The soils are classified as reddish-
brown laterites (Thailand soil classification) or
Ultisols (USDA Soil Taxonomy), with about 50%
sand content and 60-74% porosity (Hashimoto, 2005).
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Figure 1. Study area with a 16-ha plot (*) in LMF at Doi Suthep-Pui National Park, northern Thailand

2.2 Data collection

Large permanent plots are widely used to
monitor tree spatial distribution and population
dynamics relating to the environmental changes
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(Condit et al., 2000). In 2010, a 16-ha permanent plot
was established at an elevation range from 1,300-
1,450 m.a.s.l. The plot measured 400 m x 400 m and
was subdivided into 1,600 10 m x 10 m subplots to
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study forest structure and species composition based
on Condit et al. (2014). All trees with a diameter at
breast height (DBH, 1.3 m above the soil surface) of
>2 cm were tagged with a running number, measured,
and identified to species. Tree coordinates (X, y) in
each subplot were also recorded. Leaf specimens were
collected from the enumerated trees and identified by
referring to herbarium specimens at the Forest
Herbarium of Department of National Parks, Wildlife
and Plants Conservation. Species nomenclature was
based on Smitinand (2014).

2.3 Data analysis

Plant ecological indices were calculated to
clarify the forest structure. For all stems with a DBH
> 5.0 cm, the density, dominance and importance
value index (V1) were calculated based on the sum of
relative density, dominance and frequency (Krebs,
1994). Basal area (BA), density and diversity were
also calculated for each plant family by summing these
variables across all species in a given family. The size
class distribution for all species with at least 30
individuals in the 16-ha plot were prepared. This
analysis included the small size class of saplings
(2.0 <DBH < 5.0 cm). The population structure across
this size reflects that of larger trees (Mclaren et al.,
2005). Size class distribution of each species was
defined by families of probability mass functions
fitting to the class frequency. In order to specifically
select the most suitable family of mass distribution,
Anderson-Darling statistic (Anderson and Darling
1952; Liebscher, 2016) and probability-probability
plot (Chambers et al., 2017) were then applied to help
determine the goodness-of-fit among families of the
probability function. Subsequently, the optimal
probability function was specified from the set of the
distribution function (varied number of parameters) of
the selected family using the Likelihood ratio test and
Akaike Information criteria (Akaike, 1998). The
regeneration status of each tree species was predicted
on the basis of its size-class distribution.

To detect the distribution patterns of saplings,
pole-stage (5.0 < DBH < 10.0 cm) and mature trees
(DBH >10.0 cm), all species with >80 individuals
were selected (Lan et al., 2009). Morisita’s I5 index
was calculated by dividing the plot into quadrats of
various sizes. The smallest quadrat size was obtained
by dividing the 16-ha plot into square quadrats each
with a size of (0.1)>m x 400 m (i.e., x-axis length) and
(0.10)%>x 400 m (i.e., y-axis length), yielding 4 m x 4
m (16 m?) quadrats. Larger quadrats were obtained by
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doubling the length of the smaller quadrats, producing
quadrats that ranged from 16 m?to 6.5 ha. Morisita’s
Is was then calculated using the following equation
(Morisita, 1959):

Zniz— N
(N2-N)

|.5=q

Where; nj is the number of individuals in each
guadrat, N is the total number of individuals in thel6
ha plot, and g is the number of quadrats of a given size.

The Is value was used to classify distribution
patterns as random (ls=1), clumped or aggregated
(Is>1), or regular (Is <1). F-tests were used to test for
departures from random expectation for each quadrat
size. The statistical significance of the F-tests was
tested at the 95% confidence limit (p<0.05).

3. RESULTS AND DISCUSSION
3.1 Species composition and population structure
A total of 28,078 individuals >2 cm DBH were
measured and identified. This population was
composed of 220 species from 139 genera and 63
families. The average density of all trees >5.0 cm DBH
was 806.88 stems/ha, and this population included 195
species from 131 genera and 56 families (Table S1).
The highest tree density (stems/ha) was found for
Castanopsis acuminatissima (n=106.56) followed by
Styrax benzoides (n=38.94), Vernonia volkameriiolia
(n=36.19), Castanopsis armata (n=29.00), Litsea
martabanica (n=27.31), Persea gamblei (n=24.81),
Helicia nilagirica (n=22.44), Turpinia pomifera
(n=20.06), and Schima wallichii (n=19.13). A number
of other temperate tree species were present in low
densities, including members of the families
Podocarpaceae (Podocarpus neriifolius and Dacry-
carpus imbricatus), Betulaceae (Betula alnoides and
Carpinus viminea), and Juglandaceae (Engelhardtia
spicata and E. serrata). The most dominant tree
species, with an average BA of 32.79 m?ha and relative
basal area (RBA, %) of 14.24, was Castanopsis
acuminatissima. Other dominant species were Schima
wallichii (RBA=9.23%), Manglietia garrettii (6.41%),
Castanopsis armata (5.36%), Castanopsis tribuloides
(4.80%), Litsea grandis (3.15%), Syzygium toddlioides
(2.89%), Syzygium tetragonum (2.87%), Choeros-
pondias axillaris (2.81%), and Michelia baillonii
(2.24%). These 10 species accounted for 54.00% of the
total BA. To determine the ecological influence of each
species, the IVI (%) was calculated. The species with
the highest IVl was Castanopsis acuminatissima
(33.36), followed by Schima wallichii (14.61),
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Castanopsis armata (12.86), Styrax benzoides (9.55),
Castanopsis tribuloides (8.85), Litsea martabanica
(8.29), Manglietia garrettii (8.23), Persea gamblei
(8.20), Vernonia volkameriiolia (6.21), Litsea
martabanica (7.45), Helicia nilagirica (6.30), and
Syzygium toddlioides (6.21).

The Euphorbiaceae, Lauraceae, Fagaceae,
Moraceae, and Theaceae families had the most species
(20, 19, 16, 11, and 8 species, respectively). The
Fagaceae family had the highest per hectare tree density
(186.31 stems/ha) followed by the Lauraceae (92.69
stems/ha), Euphorbiaceae (71.00 stems/ha), Theaceae
(39.69 stems/ha), and Styracaceae (38.94 stems/ha)
families. The Fagaceae family also had the highest
BA (9.69 m?ha), followed by the Lauraceae (4.11
m?/ha), Theaceae (3.40 m?ha), Magnoliaceae (2.76
m?/ha), and Myrtaceae (2.38 m?/ha) families (Figure 2).

As also reported for tropical montane forests
elsewhere in Southeast Asia (Brambach et al., 2017,
Buot and Okitsu, 1998; Maxwell et al., 1997; Ohsawa,
1995; Pendry and Proctor, 1997), the Fagaceae and
Lauraceae families were more abundant and more
likely to occupy the highest layer of the tree canopy in
the LMF in this study. The name “oak-laurel forest”
has been used for this vegetation type (Ashton, 2003;
Kochummen, 1989). Oak-laurel forests are the
dominant vegetation type in the mountains of tropical
Asia from the Himalayas to New Guinea (Sri-
Ngernyuang et al., 2003), and are closely related to the
temperate evergreen oak forests of East Asia (Tagawa
1995; Zhu et al., 2016). However, in Malesia, tropical
lower montane forests are often dominated more by

Myrtaceae than by Lauraceae (Aiba and Kitayama,
2020; Kochummen, 1982). Ashton (2015) reported
that lower-montane oak-laurel forest is rare in Borneo
and patchy in Peninsular Malaysia, and he named
lower montane forest on Mount Mulu, Borneo, as
“lower montane kerangas”. A similar name for lower
montane forest on old soil with low dominance of
Lauraceae at Mount Kinabalu has also been mentioned
(Aiba and Kitayama, 2020).

3.2 Regeneration of tree species

The characteristics of regenerating tree popu-
lations were explored using DBH-class distributions.
In total, 123 tree species with populations comprising
>30 individuals were analyzed. The result showed that
DBH classes followed two distributions: negative
exponential (NE; reverse-J) and polynomial (PO). Size
class distributions for 78 species followed an NE
distribution. These distributions have the greatest
numbers of individuals in the lowest DBH class and
progressively fewer individuals in larger DBH classes
(Table S1). Considering the dominance of the
Fagaceae, only three species from that family -
Castanopsis acuminatissima, C. tribuloides, and
Lithocarpus truncates - followed NE distributions
(Figure 3 (a)-(c)); this indicated that they had a robust
capacity to maintain a stable population structure in
the future, because smaller trees will grow into larger
size classes and thus replace larger trees as they die. In
particular, these species would be sustained if
mortality were greater among small (suppressed) trees
and large trees than among mid-sized co-dominants
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(Goff and West, 1975). Other species belonging to the
Fagaceae followed PO distributions, in which
discontinuous DBH class distributions were detected
(Figure 3 (d)-(h)). A lack of successful regeneration
could have been caused by the activities of seed
predators or frugivores, particularly small rodents that
eat the seeds of Fagaceae (Rueangket et al., 2019). The
large, edible seeds of C. diversifolia and C. armata
were overexploited by local people, leading to reduced
seed germination and discontinuous size-class
distributions.  Forty-six species followed PO
distributions. Most species of Lauraceae, including
Actinodaphne henryi, Cinnamomum inner, and Litsea
pierrei, had discontinuous size-class distributions
expressed through PO curves (Table S1).
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Pioneer species, such as Macaranga indica,
Morus macroura, Erythrina subumbrans, and Rhus
javanica (Figure 4 (a)-(d)), also followed PO
distributions. The late pioneer species, Choeros-
pondias axillaris, Schima wallichii, and Betula
alnoides, showed the same patterns (Figure 4 (e)-(g)).
Pioneer species were mostly found in canopy gaps,
which suggests that bright light conditions in disturbed
areas are required for their successful establishment
(Goodale et al., 2012; Huth and Wagner, 2006;
Miyazawa et al., 2006; Sangsupan et al., 2021;
Swinfield et al., 2016).

One of the conifer species, Podocarpus
neriifolius, had a low population density of eight trees
with DBH >10 cm in the whole 16-ha plot. Similarly
low densities (2-4 trees/ha of DBH >10 cm) of this
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species were found in montane forests in Papua New  increases (Brodribb et al., 2012; Wright et al., 2010).
Guinea (Enright and Jaffré, 2011). Its regeneration  Therefore, we cautiously conclude that diameter
may be unable to compete with angiosperms or  distributions can indicate whether the density of
rainforest tree species that can absorb light as  smaller trees in a stand is sufficient to replace the
seedlings in a shaded understory, but which rapidly  current population of larger trees, which may help us
increase their growth rates when light availability  to estimate forest sustainability.
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(9) Lithocarpus mekongensis, and (h) Lithocarpus auriculatus (cont.)
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Figure 4. Diameter class distributions plotted on a logarithmic scale for pioneer species: (a) Macaranga indica, (b) Morus macroura,
(c) Erythrina subumbrans, (d) Rhus javanica, () Choerospondias axillaris, (f) Schima wallichii, (g) Betula alnoides, and the shade-
tolerant species as (h) Podocarpus neriifolius
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tolerant species as (h) Podocarpus neriifolius (cont.)
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Figure 4. Diameter class distributions plotted on a logarithmic scale for pioneer species: (a) Macaranga indica, (b) Morus macroura,
(c) Erythrina subumbrans, (d) Rhus javanica, () Choerospondias axillaris, (f) Schima wallichii, (g) Betula alnoides, and the shade-

tolerant species as (h) Podocarpus neriifolius (cont.)

3.3 Tree distribution pattern

Seventy-two species were selected for the
analysis of spatial distribution patterns. The Morisita
index, ls, varied among species, growth stages (sapling,
pole stage, and mature tree) and quadrat sizes. As
quadrat size increased, the intensity of spatial
aggregation decreased. Sixty-two species had clumped
patterns (Is> 1.0) for all growth stages and quadrat sizes
(Table S1). Aggregated spatial patterns were
particularly observed in dominant Fagaceae species,
such as Castanopsis acuminatissima, C. armata, and
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Figure 5. Clumped spatial distribution patterns of dominant Fagaceae at each growth stage in the 16-ha permanent plot at HKM:

Lithocarpus truncatus (Figure 5). Manglietia garrettii,
Prunus arborea, Bridelia glauca, Markhamia stipulate,
and Lithocarpus dealbatus followed random patterns as
saplings, but were clumped as pole-stage and mature
trees (Figure 6). By contrast, Michelia baillonii, Schima
wallichii, Canarium euphyllum, and Elaeocarpus
serratus were clumped as saplings but randomly
distributed in other life stages (Figure7). Only one
species, Tarennoidea wallichii, had a random spatial
pattern at every growth stage (Figure 7(d)).
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Castanopsis accuminatissima, (b) C. armata, (c) Lithocarpus truncatus, and (d) Quercus oidocarpa
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Castanopsis accuminatissima, (b) C. armata, (c) Lithocarpus truncatus, and (d) Quercus oidocarpa (cont.)
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garetttia, (b) Prunus arborea, (c) Markhamia stipulata, and (d) Bridelia glauca (cont.)

Clumped spatial patterns are usually observed
for tree species in tropical forests. Clumping can be
influenced by seed dispersal (Aparajita and Gopal,
2008; Elias et al., 2011). We found that the dominant
species of Fagaceae had clumped patterns at every life
stage, even though spatial distributions varied among
species that preferentially occupied ridge sites (Figure
5). Most species of Fagaceae have acorn or nut fruit
types, which fall directly beneath mature trees and
generate clumps of saplings around parent trees. Seeds
are also eaten by rodents such as squirrels and rats
(Rueangket et al., 2019), which are well-known seed
predators with strong incisors that enable them to
gnaw and consume nuts and other fruits with thick
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seed coats (Corlett, 2017; Vander Wall, 2001). Some
seeds can be distributed by rodents through scatter
hoarding. Some seeds may then germinate and become
established from forgotten seed caches (Corlett, 2017;
Suzuki et al., 2007). By contrast, Tarenoidea wallichii
(Rubiaceae) has small freshy fruits (Chamchumroon
and Puff, 2003; Rueangket et al., 2021), which may
facilitate its dispersal by frugivorous birds (Aparajita
and Gopal, 2008; Corlett, 2017). Birds not only move
seeds away from mature trees, but may also facilitate
germination after seeds pass through their digestive
system (Murali, 1997). This kind of dispersal typically
promotes random rather than clumped patterns,
similar to our results.
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Figure 7. Species with clumped pattern as saplings and random patterns at other life stages in the 16-ha plot at HKM: (a) Maichelia
baillonii, (b) Schima wallichii, and (c) Canarium euphyllum, while, and (d) Tarennoidea wallichii, which had random spatial patterns at

every stage.
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Figure 7. Species with clumped pattern as saplings and random patterns at other life stages in the 16-ha plot at HKM: (a) Maichelia
baillonii, (b) Schima wallichii, and (c) Canarium euphyllum, while, and (d) Tarennoidea wallichii, which had random spatial patterns at

every stage (cont.).
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Canarium euphyllum was clumped at the
sapling stage but randomly distributed in other stages
(Figure 7). Its heavy fruits generally fall close to
mature trees (Kitamura et al., 2006), where larger
numbers of seedlings and saplings are found than in
other places. These dense aggregations of seedlings
and saplings experience intense competition and
density-dependent mortality, also known as self-
thinning (Marod et al., 1999). In this study, survival
rates increased with distance from the adult trees,
which created a random distribution. Other
researchers have reported the effects of natural
disturbances on clumped tree species distribution
patterns (Bunyavejchewin et al., 2003; Elias et al.,
2011; Marod et al., 2021). Environmental changes,
particularly the sudden influx of high-intensity light
after a big tree falls, can produce clumped tree
distributions. Thus, changes in the spatial distributions
of trees have implications for all parts of an ecosystem,
both biotic and abiotic, and are reflected in different
patterns of forest cover and species composition.

4, CONCLUSION

The 16-ha permanent plot in LMF at Doi
Suthep-Pui National Park supported high diversity of
tree species (220 species in total). The dominant
families, based on the numbers of species and
population densities, were Fagaceae, Lauraceae, and
Theaceae. Tree regeneration based on diameter class
distributions suggested that 78 species can maintain
their population structure, particularly the dominant
species of Fagaceae, Castanopsis acuminatissima, C.
tribuloides, and Lithocarpus truncata. Other species
had discontinuous unimodal or PO distributions,
particularly pioneer species such as Macaranga
indica, Morus macroura, and Rhus javanica. These
species generally established in canopy gaps, in which
the environment was greatly altered and did not
support the regeneration of climax species. The
establishment of pioneer species may facilitate the
development of suitable environments for climax
species. Spatial distribution patterns can feed back to
affect ecological dynamics, thereby further reinforcing
patterns dependent on local interactions. For example,
spatial patterns could be affected by the abundance of,
and distance to, available resources, as well as by the
relationship between seed dispersal and frugivores.

Diameter-class distributions can assist in the
evaluation of potential forest sustainability and inform
biodiversity conservation plans for species with
unimodal or PO distributions. In addition,
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distributions can inform the selection of species
suitable for the LMF restoration program, especially
in terms of the appropriate mixtures of pioneer and
climax species.
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