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Nepalese community forests are globally recognized for sustainable forest 

management and improving the livelihoods of forest-dependent communities, but 

their contribution to carbon sequestration in trees and soil is rarely studied. This study 

was performed to understand the effect of management practices on carbon stock of 

two community forests (CFs) - Taldanda (managed) and Dangdunge (unmanaged) - 

dominated by Sal (Shorea robusta) in the mid-hills of Nepal. Twenty-one concentric 

sample plots, each of 250 m2, were laid out in each forest to estimate different carbon 

pools and a stratified random sampling intensity of 0.5% used to collect data. Results 

showed significant (p<0.05) differences in above and below-ground biomass and 

carbon sequestration potential between the two CFs. The managed and unmanaged 

forests had total carbon stock of 269.3±27.4 and 150.0±22.7 ton/ha, respectively, 

demonstrating 1.79 times higher carbon stock in the former than the latter. The 

managed forest had significantly (p<0.05) greater mean soil organic carbon (SOC) 

stock than the unmanaged forest. The SOC was highest in the upper soil layer (0-10 

cm), with a steady decrease as the soil depth increased. All other measured carbon 

pools values were higher in managed compared to unmanaged forest. The difference 

in carbon stock was due to the manipulation of different forest management activities, 

including thinning, timber extraction, fire control, grazing, and fuel wood/fodder 

extraction. The study suggests that the implementation of proper forest management 

would be necessary for enhancing carbon stock in forest trees and soils. 
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1. INTRODUCTION

Carbon sequestration refers to the removal, 

capture, or sequestration of carbon dioxide (CO2) from 

the atmosphere by condensing and storing it in a sink 

in a benign manner (Kirschbaum, 2003). It is the 

prolonged deposition of carbon in soils, plants, oceans, 

and atmosphere (Selin, 2019). Carbon sequestration in 

the forest is the process of removing CO2 from the 

atmosphere and accumulating it in trees (Jindal et al., 

2008). Trees and other plants in a forest absorb CO2 

during photosynthesis and then sequester it as 

biomass, which comprises standing timber, branches, 

foliage and roots, as well as all of the plant organisms 

(Jana et al., 2009). Forest trees and soils account for 

about 60% of the world's terrestrial carbon (Lal, 2004; 

Bajracharya et al., 2018); thus, they are the principal 

carbon pools in the forest ecosystem (Amir et al., 

2018). Forests stock up to 70% to 80% of world’s 

carbon and play a crucial role in mitigating greenhouse 

gas (GHG) emissions and climate change (Batjes, 

2014; Vance, 2018). Furthermore, soil organic carbon 

(SOC) is the most influential carbon pool (Ali et al., 

2019; Hou et al., 2019), and its increase has been 

recognized as a viable strategy for mitigating climate 

change through increased soil carbon sequestration 

(Alidoust et al., 2018). Based on the United Nations 

Framework Convention on Climate Change 

(UNFCCC) and the Kyoto Protocol, IPCC (2003), five 

terrestrial carbon pools (soil, litter, under-ground and 

above-ground biomass, and deadwood) and their 
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dynamics are considered to estimate carbon stocks. 

Following the UNFCCC and its subsequent 

agreements, nations that are required to report on GHG 

emissions and removals must estimate the amount of 

carbon sequestration related to forestry, land use 

changes, and other land use-related activities (Di 

Cosmo et al., 2022).  

In Nepal, forest covers about 45.3% of the total 

land area (FRTC, 2022) accumulating 1,055 million 

tons of carbon, which has a substantial contribution to 

mitigating the adverse consequences of climate 

change (DFRS, 2015). Forest ecosystems are being 

spoiled globally by different biotic and abiotic factors 

such as human encroachment, road constructions, 

wildfires, community reliance on forests, desertifi-

cation, and mining (Arnold, 2022). In tropical and 

subtropical forests, carbon stocks are declining at the 

rate of 1-2 billion tons/year (Subedi et al., 2014). 

Based on the degree of disturbances, Nepalese forests 

are categorized into degraded and non-degraded 

forests (Jina et al., 2008). Bhattarai et al. (2012) 

mentioned that forest management practices influence 

carbon sequestration in both trees and soil. Therefore, 

effective forest management not only slows down 

deforestation and forest degradation rates (Nagendra 

et al., 2008) but also benefits the forest’s carbon 

store and carbon sequestration (Chhatre and Agrawal, 

2009; Pandey et al., 2014; Solomon et al., 2017). 

Presently, 2.4 million ha of forests are being operated 

by 22,682 local communities across the country as 

community forests (CFs) (GoN, 2022). These forests 

are either fully or partially managed or unmanaged by 

the local communities and have great potential to 

increase the carbon sequestration and mitigate the 

climate change. Moreover, agroforestry systems 

practiced within and outside the CFs also store carbon 

in trees and soil (Dhakal et al., 2022) and provide a 

range of ecosystems services (ES) that need to be 

considered in CF management (Ojha et al., 2022). 

In unmanaged forests, occasional large-scale 

disturbances and frequent small-scale disturbances 

allow late-successional phases to develop, resulting in 

a fine-grained mosaic of different developmental 

phases (Bengtsson et al., 2000). Thus, unmanaged 

forests display typical features, such as large amounts 

of dead wood and decaying trees, old and large trees, 

and pits and mounds around root plates (Spies and 

Yurner, 1999). On the other hand, managed forest 

landscapes are characterized by frequent disturbances 

with low variability in disturbance size and display 

more homogeneous tree composition, vertical 

stratification, age structure, and successional 

dynamics but lack senescent phases (Kuuluvainen et 

al., 1996; Commarmot et al., 2005). At the local scale, 

unmanaged forests in general are said to contain more 

species than managed forests (Okland et al., 2003).  

Sal (Shorea robusta) forests dominate both in 

hills and plains of Nepal and are managed by both 

government and local communities. Sal forests have 

been heavily exploited either to generate state revenue 

or to meet the forest product demand of the ever-

increasing population (Acharya et al., 2002). Though 

the role of CFs in improving the livelihoods and 

ecosystems services have been studied (Dhakal et al., 

2022; Ojha et al., 2022), their contribution in terms of 

carbon sequestration in trees and soil has rarely been 

reported. Though a few researchers have assessed the 

carbon stocks for a variety of land-use classes, species, 

and physiographic regions in CFs, most of them have 

no records of carbon stocks (Shrestha and Singh, 

2008). Moreover, the soil carbon sequestration 

potential under CFs and agroforestry systems is still 

underappreciated (Kafle, 2020; Joshi et al., 2021; 

Dhakal et al., 2022). There is also a knowledge gap on 

the variation in carbon stock between managed and 

unmanaged forests in the same geographic region, 

climate, altitude, and within same species. Thus, this 

study assesses the above- and below-ground carbon 

stocks in trees and soil under managed and unmanaged 

Hill Sal CFs of Nepal. The study also illustrates the 

influence of management activities on Sal biomass 

and carbon stock, as well as the association between 

SOC and bulk density with depth. Additionally, this 

study offers fundamental knowledge on the 

association between altitude and carbon stock and 

provides the baseline information for the carbon 

sequestration potential of managed and unmanaged 

Hill Sal CFs of Nepal.  

2. METHODOLOGY

2.1 Study area

The study was conducted in a managed 

Taldanda and an unmanaged Dangdunge CFs of 

Tanahun District in Nepal’s Gandaki Province 

(27°74′-28°13′ N and 83°94′-84°56′ E) (Figure 1). 

Taldanda and Dangdunge CFs, with respective land 

areas of 100.12 ha and 81.98 ha, are both Sal-

dominated. These CFs were chosen because they are 

nearly identical in terms of the growing stock observed 

10 years ago (154 m3/ha), altitude, climatic zone, and 

aspect, but differ in their management practices.
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Figure 1. Map of Nepal showing study area with two community forests 

2.2 Selection criteria 

The criteria for managed and unmanaged CFs 

are shown in Table 1. Based on these criteria, 

Taldanda was considered as ‘managed CF’ and 

Dangdunge as an ‘unmanaged CF’. 

2.3 Sampling design and procedure 

The majority of the data was gathered through a 

direct field survey of biophysical measurements. The 

diameter at breast height (DBH) and height of the tree 

were measured with a diameter tape (D-tape) and an 

Abney’s level, respectively. A linear tape in the plot 

was laid out according to the sampling design (Figure 

2). According to the guidelines for measuring carbon 

stocks in CF, 12 and nine sample plots were laid out in 

Taldanda and Dangdunge CF, respectively (ANSAB, 

2010). Due to complex geology and variable altitude, 

a stratified random sampling method was used for 

measurements. Based on the Ministry of Forest and 

Soil Conservation’s inventory guidelines, a sampling 

intensity of 0.5% was used (DoF, 2004).  

Due to moderately dense woody vegetation, 

trees were measured within a circular plot of 250 m2 

with radius of 8.92 m to quantify above ground tree 

biomass (AGTB) (MacDicken, 1997). The DBH was 

measured at 1.3 m (DBH≥5 cm was considered as 

tree) and tree height was measured in each circular plot 

of 250 m2 (Figure 2). For sapling measurements, a 

nested subplot of 100 m2 with a radius of 5.64 m was 

established within larger plots (ANSAB, 2010). For 

assessing regeneration, smaller nested subplots with a 

1 m radius were established within the larger nested 

plots. Saplings with diameters ranging from 1 to 5 cm 

were measured at 1.3 m above ground level, while 

saplings with diameter <1 cm were counted as 

regenerated. The regeneration data were used to 

observe the quality of regeneration. 

The SOC was determined using samples 

collected from the IPCC (2006) recommended depth 

of 30 cm. A single 30 cm deep pit was dug at the center 

of each plot of both managed and unmanaged forests. 

To calculate bulk density, three soil samples from 

three depths (0-10 cm, 10-20 cm, and 20-30 cm) of 

approximately 300 cm3 were collected from each plot 

using a standardized 300 cm3 metal soil sampling 

core. Likewise, three samples from the same depths 

were collected to determine the organic carbon 

concentration in each depth. In addition, secondary 

data sources like published literature on carbon 

estimation were also used. 
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Table 1. Selection criteria of managed and unmanaged CFs 

Criteria Activities Remarks 

Thinning and Timber extraction  Implementation of guidelines prescribed by respective CF

operation plan (OP)

If Yes, Managed 

If No, Unmanaged 

Weeding and cleaning  Weeding at seedling stage

 Cleaning at sapling stage

If Yes, Managed 

If No, Unmanaged 

Fire  Fire line construction

 Controlled or prescribed burning

 Legal measures to prevent fire

(Sharma et al., 2011; Mathema, 2016)

If Yes, Managed 

If No, Unmanaged 

Grazing  Hoofmarks and dungs of livestock

 Broken tops of seedlings and saplings

 Signs of trampling

(Joshi et al., 2020)

If Absence, Managed 

If Presence, Unmanaged 

Fuel wood/fodder collection  Restriction

(Jina et al., 2008)

If Yes, Managed 

If No, Unmanaged 

Figure 2. Sampling design of circular plots 

2.4 Measurements and data collection 

2.4.1 Above ground tree biomass 

Above-ground tree biomass (AGTB) was 

estimated by using the following allometric equation 

devised by Chave et al. (2005): 

AGTB = 0.0509 × ρ D2 H  (1) 

Where; AGTB=above-ground tree biomass 

(kg); ρ=wood specific gravity (g/cm2); D=tree 

diameter (m); and H=tree height (m). 

The biomass stock density (kg/m2) was 

calculated by adding the individual tree weight (kg) in 

the sampling plot and dividing by sampling plot area 

(250 m2) and multiplying by 10 to convert to ton/ha. 

Biomass stock density was then converted to carbon 

stock density by multiplying by the default carbon 

fraction of 0.47 (IPCC, 2006). 

2.4.2 Above-ground sapling biomass 

Above-ground sapling biomass (AGSB) 

consisted of foliage, branch,  and stem. The following 

regression model was used to calculate the AGSB. 

Log (AGSB) = a + b log (D) (2) 

Where; log=natural log (dimensionless); 

a=intercept of allometric relationship for saplings 

(dimensionless); b=slope allometric relationship for 

saplings (dimensionless); and D=over bark diameter at 

breast height (measured at 1.3 m above ground) (cm). 

To evaluate the AGSB, national allometric 

biomass tables was utilized, which was generated by 

the Department of Forest (DoF), the Department of 

Forest Research and Survey (DFRS), Tree 

Improvement and Silviculture Component (TISC) 

(Tamrakar, 2000). Biomass stock density was then 

converted to carbon stock density by multiplying by 

the default carbon fraction of 0.47 (IPCC, 2006). 

2.4.3 Below-ground biomass 

The below-ground biomass (BGB) included the 

biomass of all live roots except fine roots with <2 mm 

diameter (Chavan and Rasal, 2012). The BGB was 

calculated by multiplying the AGB by 0.26 (constant 

factor) as per the Good Practice Guidelines of IPCC 

(2006) and Mandal and Joshi (2015):  

0.56 m - Soil organic carbon

1 m - Regeneration (<1 cm dbh, count)

5.64 m - Saplings biomass (1-5 cm dbh)

8.92 m - Tree biomass (=>5 cm dbh)

Source: Asia Network for Sustainable Agriculture and Bio-resources 

 (ANSAB, 2010)
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BGB = AGB × 0.26 (3) 

Where; BGB=below-ground biomass and 

AGB=above-ground biomass. 

2.4.4 Deadwood biomass 

The deadwood biomass (DWB) was evaluated 

by adding AGB and BGB and then multiplying by 

0.11 (constant factor) as prescribed by IPCC (2006):  

DWB = (AGB + BGB) × 0.11 (4) 

Where; BGB=below-ground biomass and 

AGB=above-ground biomass. 

2.4.5 Soil organic carbon and soil bulk density 

Soil samples from 0-10, 10-20, and 20-30 cm 

depths from two replications were used to calculate 

bulk density and the carbon content of each plot in the 

laboratory. 

Bulk density: Sixty-three soil samples were 

taken to the soil lab of the College of Natural Resource 

Management (CNRM), Puranchaur, Nepal. Samples 

were oven-dried at 105°C for 24 h and dried soils were 

passed through a 2 mm sieve. The sieved soils were 

weighed and the volume of stones was measured by 

water displacement method for stone correction. The 

following formula was employed to compute the bulk 

density (Pearson et al., 2005). 

Bulk density (g/cm3) 

   =
Oven dry mass (g/cm3)

Core volume (cm3) − 
Mass of coarse fragments (g)

Density of rock fragment (g/cm3)

(5) 

Carbon concentration (%): Sixty-three soil 

samples from each plot were dried at room 

temperature for three days and then quantified for 

carbon measurement by clearing stones and plant 

residue of >2 mm in size. Then they were taken to 

the Soil and Fertilizer Testing Laboratory (SAFTL), 

Gandaki Province, Pokhara where the titrimetric 

method based on Walkley and Black (1934) was 

employed for determination of carbon concentration. 

Carbon stock density of soil organic carbon was 

calculated following Pearson (2007):  

SOC = ρ × d × %C  (6) 

Where; SOC=soil organic carbon stock per unit 

area (ton/ha); ρ=soil bulk density (g/cm3); d=soil 

depth at which the sample was taken (cm); and 

%C=carbon concentration (%). 

2.5 Statistical analysis 

To compare the carbon stock density between 

managed and unmanaged CFs at 5% level of 

significance, T-tests were performed using SPSS 

software. Correlation and regression analysis was 

conducted to establish the relationships between 

altitude and carbon stock for both managed and 

unmanaged CFs. 

3. RESULTS AND DISCUSSION

3.1 Properties of forest stand

The mean diameter and height of trees was 

29.28 cm and 18.36 m, respectively, in Taldanda CF, 

while they were 16.71 cm and 7.95 m respectively in 

Dandunge CF. Similarly, the mean diameter (dbh) of 

saplings was 2.63 cm and 1.89 cm respectively in 

Taldanda and Dangdunge CFs. On the other hand, tree 

and sapling density CF were 366 and 1,151 per ha, 

respectively in Taldanda, while they were 662 and 

1,649 per ha, respectively, in Dangdunge CF. The 

results demonstrate that diameter, dbh, and height of 

the tree were higher in the managed CF while tree and 

sapling densities were higher in unmanaged CF. 

Managed CF had also more regeneration (10,896 per 

ha) than unmanaged CF (6,719 per ha) (Table 2). 

Dominant tree species in managed and unmanaged 

CFs are presented in Table 3. 

Table 2. Properties of forest stand under the managed and unmanaged CFs in Nepal 

CF No. 

of 

plots 

Tree Sapling Regeneration 

dbh (cm) height (m) trees

/ha 

dbh (cm) Saplings/ 

ha 

Seedlings/ha 

Min Max Mean Min Max Mean Min Max Mean 

Taldanda 

CF 

12 5.5 55.8 29.28 5.3 27.5 18.36 366 1.3 4.9 2.63 1,151 10,896 

Dangdunge 

CF 

9 5.3 46.1 16.71 1.3 21.1 7.95 662 1.1 4.6 1.89 1,649 6,719 
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Table 3. Dominant tree species in managed and unmanaged CFs 

Dangdunge CF Taldanda CF 

Shorea robusta Shorea robusta 

Schima wallichii Schima wallichii 

Castanopsis indica Dalbergia sissoo 

Lagerstroemia parviflora Acacia catechu 

Wrightia arborea Melastoma malabathricum 

Photinia integrifolia Colebrookea oppositifolia 

3.2 Vegetative biomass and carbon stock 

The above-ground tree biomass (AGTB) and 

carbon stock in Taldanda CF were 294.17 ton/ha and 

138.26±19.47 ton/ha, respectively, compared to 

145.37 ton/ha and 68.33±16.88 ton/ha in Dangdunge 

CF. Similarly, the above-ground sapling biomass 

(AGSB) and carbon stock in Taldanda CF were 18.65 

ton/ha and 8.77±0.83 ton/ha, respectively, compared 

to 4.65 ton/ha and 2.18±0.39 ton/ha in Dangdunge CF. 

The below-ground biomass (BGB) and carbon stock 

in Taldanda CF were 81.33 ton/ha and 38.22±5.03 

ton/ha, respectively, compared to 39.00 ton/ha and 

18.33±4.37 ton/ha, respectively, in Dangdunge CF. 

Likewise, the deadwood biomass (DWB) and carbon 

stock in Taldanda CF were 43.35 ton/ha and 

20.37±2.68 ton/ha, respectively, compared to 20.79 

ton/ha and 9.77±2.33 ton/ha, respectively, in 

Dandunge CF. The data reveal that all biomass and 

carbon parameters had higher values for managed CF 

compared to unmanaged CF. 

3.3 Soil organic carbon stock 

Taldanda CF had higher mean SOC than 

Dangdunge CF, with 63.72±5.11 ton/ha and 51.38± 

4.76 ton/ha, respectively. The maximum SOC was in 

the upper layer (0-10 cm) in both managed and 

unmanaged CFs and gradually decreased with 

increasing soil depth. In both CFs, as the soil depth 

increased, SOC decreased (Figure 3(a)) but bulk 

density increased (Figure 3(b)). Taldanda CF also had 

a higher bulk density than Dangdunge CF on average.

Figure 3. Amount and trend of (a) soil organic carbon stock (b) soil bulk density in each soil depth 

3.4 Total biomass and carbon stock 

The total carbon stock density was computed by 

summing the carbon stock density of the individual 

carbon pools (Table 4). The Taldanda CF had a total 

carbon stock of 269.34±27.44 ton/ha compared to only 

149.98±22.69 ton/ha in Dangdunge CF (Table 4). In 

Taldanda CF, the total C stock partitioned to 51% in 

above-ground trees, 3% in above-ground saplings, 

14% in below-ground biomass, 8% in the deadwood, 

and 24% in the soil. In Dangdunge CF, it partitioned 

to 45% in above-ground tree, 2% in above-ground 

saplings, 12% in below-ground biomass, 7% in 

deadwood and 34% in soil. The data reveal that 

partitioning of total C in Taldanda was higher in plant 

biomass while in Dandunge it was higher in soil 

biomass. 

3.5 Altitude, aspect and carbon stock 

In both managed and unmanaged CFs, plots 

were allotted without consideration of aspect, so the 

majority of the plots were located in south facing slope 

(29%) followed by east (28%), north (24%), and west 

(19%) facing slopes. Altogether, the altitude ranged 

from 473 m to 1,090 m from the mean sea level. There 

were negative correlations between altitude and total 

C and aspect and total C, suggesting that the carbon 

stock density decreases with an increase in altitude or 

aspect (Figure 4). 
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Table 4. Carbon pools and total carbon stock in Taldanda and Dangdunge CFs 

Carbon pools Carbon stock (ton/ha) p-value

Taldanda CF Dangdunge CF 

Above ground tree carbon 138.26±19.47 68.33±16.88 0.0253 

Above ground sapling carbon 8.77±0.83 2.18±0.39 0.0168 

Below ground carbon 38.22±5.03 18.33±4.37 0.0498 

Deadwood carbon 20.37±2.68 9.77±2.33 0.0012 

Soil organic carbon 63.72±5.11 51.37±4.76 0.0327 

Total 269.34±27.44 149.98±22.69 0.0287 

Figure 4. Altitude vs. carbon stock in both managed and unmanaged forests 

4. DISCUSSION

Total carbon stock and tree biomass were 

significantly higher for the Taldanda CF than 

Dangdunge CF (Table 4) due to the absence of 

disturbances, including grazing, fuel wood/fodder 

collection, and timber harvesting (Joshi et al., 2020). 

Agro-forestry practices, grazing management, 

restoration of degraded land, mixing fertilizers, and 

inclusion of grass species are the best strategies for 

carbon storage under the fodder production system 

(Prasad et al., 2018). Also, the differences in above-

ground carbon stock in the two CFs might be due to 

variations in forest age, plant species, and local factors 

(Bohara et al., 2021). The proper management 

activities lead to more effective stand productivity, 

and greater increment and assemblage of biomass 

(Jati, 2012). Joshi et al. (2020) also mentioned both the 

tree and sapling carbon stock were higher in non-

degraded (managed) forests. Furthermore, there was 

better decomposition of leaf, litter, and tree branches, 

and below ground fine roots in Taldanda CF due to the 

protection of the forest from fire, grazing, and 

fodder/fodder extraction restriction. In contrast, due to 

lack of such protections, such advantages were not 

observed in Dangdunge CF which might have 

affected the BGB and carbon stock (Singh et al., 

1987). Kafle et al. (2019) found a deadwood biomass 

of 22.39 ton/ha and deadwood carbon of 10.74 ton/ha 

in Parsa National Park, Nepal. Site parameters such as 

stand establishment and quantity, grade, age, and 

management activities may affect the deadwood 

carbon stock in the forest. Our study found a 

deadwood carbon stock value of 20.37±2.68 in 

Taldanda and 9.77±2.33 in Dangdunge CF, which was 

much less than other estimates, e.g., 0 to >600 ton/ha 

(Bastienne and Pablo, 2008).  

Higher SOC in the managed CF was a result of 

the prevention of forest fires and livestock grazing. 

The presence of decomposable organic matter from 

branches and litter fall can boost the soil carbon in 

forests (Jati, 2012; Bhatta et al., 2021). Such boosting 

can occur significantly in the managed forest. 

However, in an unmanaged forest, forest fire always 

imbibes aboveground biomass and forest floor carbon, 

and based on the extent of the fire, belowground roots 

and soil carbon may be adversely impacted (Joshi et 

al., 2020). Tarus and Nadir (2020) predicted that when 

exposed to excessive fire, the carbon retained in the 
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forest floor litter and branches undergoes prompt 

oxidation, permitting it to transfer to a gaseous phase. 

Forest management practices affect the rate as well as 

the intensity of carbon stock and SOC (Mandal et al., 

2013). 

There were differences in the average bulk 

density of the two forests -1.26 g/cm3 in Taldanda CF 

and 1.03 g/cm3 in Dangdunge CF (Figure 3(b)). 

Higher soil compaction in Taldanda CF could be due 

to management activities like thinning, weeding, and 

cleaning. On the other hand, intensive grazing, 

movement of local people to the forest for livestock 

grazing and leaf, litter, fuel wood and fodder 

collection might be the causes for soil compaction in 

Dangdunge CF. Animal trampling can cause changes 

in bulk density, infiltration rate, soil moisture, and soil 

mechanical properties (Chaichi et al., 2005; Dunne et 

al., 2011). Grazing influences the soil nutrient release 

and availability, degradation of leaf litter and roots, 

and the organic matter (Cornwell et al., 2008; He et 

al., 2012). Hence, forest management activities have 

an impact on soil carbon sequestration and emissions 

(Jandl et al., 2007). Finally, in agreement with findings 

of this study, Thong et al. (2020) mentioned that soil 

carbon sequestration can be significantly affected by 

aspect and altitude. 

5. CONCLUSION

Taldanda CF had a total carbon stock of 

269.3±27.4 ton/ha and a CO2 sequestration of 987.6 

ton/ha, whereas Dangdunge CF had a total carbon 

stock of 145.0±22.7 ton/ha with CO2 sequestration of 

549.9 ton/ha. SOC constituted 24% of total C stock in 

managed forest, while 34% in unmanaged forest. The 

SOC decreased gradually as soil depth increased, 

whereas bulk density increased in both CFs. 

Furthermore, carbon density had a negative 

correlation with altitude and aspect in both CFs. This 

study shows that managed CFs have a higher capacity 

to store CO2 in forest biomass than unmanaged forests 

but soil C sequestration is higher in unmanaged CF. 

The study suggests that the implementation of proper 

forest management activities is of utmost important 

not only for the enhancement of carbon stock in tree 

and soil but also for sustainable forest management 

and mitigating climate change. The study recommends 

that the growing biomass stock and carbon stock need 

to be estimated and updated on a regular basis nation-

wide to ensure accurate estimates of carbon emissions 

and carbon sequestrations necessary for reporting 

requirements and meeting the net zero target. 
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