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Plastic products are so extensively used that they continue to strain the already
overburdened waste management system and, inevitably, the global climate.
Biodegradation is a sustainable remedy. Here, we report a few microorganisms
isolated from landfill soil near Dhaka that thrive especially on polyethylene
terephthalate (PET) polymers. Soil samples were subjected to three enrichment
cycles that contained no carbon except PET. Pure isolates were recovered and
incubated on minimal agar containing PET as the sole carbon. A morphological
examination was carried out. Potential PET-degrading enzyme sequences from
the isolates and other microalgae were analyzed for homology using BLASTP
and TBLASTN, and multiple sequence alignment (MSA) was performed to
assess conserved domains. Six isolates were obtained. Two isolates grew around
the PET film but did not grow sufficiently in other areas of the minimal agar.
Two other isolates with greenish pigmentation flourished around the PET film as
well as on other areas of the agar. One of the green cells resembled Aphanocapsa,
with irregular shapes and occasionally brown dense bodies, while the others
looked round like Microcystis. Homology analysis revealed the hypothetical
PETases in green cells contained the highly conserved catalytic triad (Ser-His-
Asp) at the active site, as always found in alpha-beta hydrolase fold containing
enzymes. Microbes isolated from two landfill sites in the vicinity of Dhaka have
been adapted to utilize PET as a carbon source. In the future, sequencing and
further characterization would be necessary to validate the findings. Microalgal
systems demand increased focus, given their potential to offer valuable resources
for bioremediation.

1. INTRODUCTION

Polyethylene terephthalate (PET or PETE) is one
of the most used types of plastic for many attractive
features. Aromatic terephthalic acid and ethylene glycol
give rise to this linear polymer with excellent
mechanical and thermal properties. Oftentimes, we use
the single-use versions of it for its appealing qualities.
However, the same appears as a curse as piled-up
plastics in the natural ecosystem continuously pose a
threat to our earth, including clogging issues, habitat
ruining, animal entrapment, and microplastic-mediated
toxicity to the nervous and reproductive system (Barnes
etal., 2009; Waring et al., 2018). The difficulties in the
degradation of PET arise from its molecular weight

(Urbanek et al., 2021) high degree of crystallinity,
failure to act as substrate, and high Tg (glass transition
temperature) (Mohanan et al., 2020; Brott et al., 2022).
Part of the ecological burden has been attempted to
solve by taking recycling initiatives. Recycling, which
may take many forms, is currently practiced mainly
through melt extrusion and glycolysis (Park et al.,
2014). However, these processes are not cheap or
efficient, let alone eco-friendly. Biodegradation is an
extremely desirable alternative. Nature has excellent
capacity by dint of its collection of microbes to adapt
and tweak its existing enzyme pool to create a new
variety that can degrade new substrates. Past attempts
to find enzymes that can degrade PET provide evidence
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of microorganisms or their enzymes’ ability to break
down these notoriously resilient synthetic chemicals
(Malafatti-Picca et al., 2019; Carniel et al., 2017;
Gamerith et al., 2017; Yang et al., 2013). ldeonella
sakaiensis PETase (IsPETase) isolated from Japan has
been one of the top-performing mesophilic PET
metabolizing enzymes (Yoshida et al., 2016; Samak et
al., 2020; Carr et al., 2020). The enzyme is secreted
when the substrate is available after which it breaks
down the PET into MHET (mono-2-hydroxyethyl
terephthalate), BHET (bis-hydroxyethyl terephthalate-
late), TPA (terephthalic acid), and EG (ethylene glycol)
along with MHETase. PETases are enzymes similar to
cutinase, and they have been demonstrated to possess
the ability to biodegrade PET. Similar to cutinase, other
hydrolases such as lipase and carboxylesterase have
previously been reported to exhibit biodegradation
activity on PET (Han et al.,, 2017). Studies have
revealed that these enzymes share a common
characteristic: they all contain the typical serine
hydrolase fold at their active sites, along with the Ser-
His-Asp catalytic triad (Wei et al., 2016; Han et al.,
2017; Joo et al., 2018; Austin et al., 2018). Other PET
degradation activities with the same catalytic elements
have been reported in fungi such as Fusarium and
Humicola cutinases, Candida antarctica lipase CalB as
well as Aspergillus and Penicillium sp., etc. (Carniel et
al.,, 2017) and in bacteria such as Thermobifida
cutinases (Barth et al., 2016; Silva et al., 2011; Wei et
al., 2016) and Saccharomonospora viridis cutinase
type polyesterase (Kawai et al., 2014). Most of the
reports on plastic biodegradation in Bangladesh have
been on LDPE (Low-Density Polyethylene) (Hossain et
al., 2019; Biki et al., 2021) where isolates such as
Ralstonia sp. strain SKM2 and Bacillus sp. strain SM1
were found to exhibit plastic breakdown activity.

Our study aims to isolate strains from the natural
microbial community evolving to utilize PET in landfill
soil near Dhaka through enrichment culturing. A variety
of PET utilization abilities if found in the current study
would add to the existing handful list of enzymatic
systems. Moreover, it is always desirable to find an
alternative option or outperformer in terms of activity
and/or other characteristics that are biotechnologically
promising such as cheaper feedstock and thermal
stability.

2. METHODOLOGY
2.1 Sample collection

Garbage soil samples were collected along with
dumped plastic from Matuail and Aminbazar, the two
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landfills serving the capital city of Bangladesh (Figure
1). The sampling was performed in rounds: At first, in
December 2020, and then in April 2022. Matuail, with
a 100-acre area located in Demra (south of Dhaka),
serves as the city’s garbage dump. It is an aged landfill
(26 years old) (Akter et al., 2021). Since there is no
segregation and recycling facility, with a daily load of
2,500 tons of solid waste from Dhaka’s south city
corporation areas, it is a place where massive mounds
of plastic waste deposition take place (Chandan,
2021). The Aminbazar landfill is | km away from the
capital and has been serving mostly the northern part
of Dhaka since 2007 (Urme et al., 2021). So, both
areas have the potential to facilitate the evolution of
enzymes that degrade plastic.

For sampling, we used sterile containers to
collect the soil samples at a depth of 9-10 cm. Around
10 g of soil were collected into a sterile Ziplock bag
and transported to the laboratory, the temperature was
also recorded.

2.2 Preparation of PET strips as the sole source of
carbon and for the PET utilization test

The polyethylene terephthalate (PET) sheet (HS
Code: 3920.62.90) used in this study was a generous
gift from Arbab Poly Pack Ltd. (Bangladesh)
(https://www.arbabpolypackitd.com). These PET
sheets were 100% Food grade and have been imported
from India. PET film was sectioned into 2x3 cm
rectangular-shaped pieces of PET strips which were
used as the sole source of carbon in the liquid
enrichment medium or minimal agar medium. All PET
strips were disinfected by autoclaving at 121°C for at
least 30 min under 15 psi of pressure. These PET strips
were further used in enrichment culturing or
performing PET-utilizing tests.

2.3 Inoculum preparation, screening using
enrichment medium, pure culture isolation and
characterization

One gram of the soil sample along with dumped
plastic was dipped into 90 mL NaCl Solution (0.85%)
and gently shaken to mix (Jangra et al., 2020). This
plastic-associated environment, known as the
plastisphere, was used as an enrichment source for
plastic utilizing microorganisms (as described by
Rdthi et al., 2023). The suspended soil samples were
kept for 2 days in a shaker incubator at 120 rpm and at
room temperature, and 1 mL of this suspension was
used as an inoculum for the enrichment medium
(Figure 1).
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Figure 1. Flow diagram of site selection, sampling, screening, isolation, and characterization of plastic (PET) utilizing microbes from
Matuail (left) and Aminbazar (right) landfill soil
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For screening, 100 mL of enrichment medium
was prepared following Skariyachan et al. (2015) with
slight modifications. The enrichment broth contained
1 g/L NaNOs, 0.2 g/L MgS04.7H0, 0.05 g/L FeCls,
0.02 g/L CaCly, 1 g/L KH2PO4, 1 g/L K:HPO4, 1 g/L
(NH4)2SO4 at pH 7 supplemented with one PET strip
(2 x 3 cm rectangular shaped) as the sole source of
carbon in a 250 mL Erlenmeyer flask (Figure 1). One
mL of the inoculum (prepared soil suspension) was
added and then the flasks were incubated for 15 days
at ambient temperature in the presence or absence of
light (not shown). Negative control was also
incorporated into the experiment. It contained the
enrichment broth with the PET strip that did not
receive any inoculum. After 15 days of incubation, 1
mL of the first enrichment culture was transferred
along with the PET strip from the first cycle to a
second enrichment broth for another 15 days at
ambient temperature. The third round of enrichment
also followed in the same way for an additional 15
days. After three cycles of enrichment, 50 pL from
both the Matuail and Aminbazar flasks were placed on
minimal agar (the same composition as the enrichment
broth but supplemented with 1.5% agar) by the spread
plate technique. Plates were incubated at 37°C for
those that did not receive any light in the enrichment
cycles. Another group of plates was incubated at an
ambient temperature where there was an ample
amount of light. Obtained colonies were isolated by
the streak plate method and subcultured repeatedly for
pure isolates (Figure 1).

These isolates were further characterized by the
PET-utilizing test following the plate test described by
Urbanek et al. (2017) with modification. In this study,
we designed and performed the PET-utilizing test, by
growing individual isolates first in liquid enrichment
broth with PET strips as the sole source of carbon and
then a hundred microliters of the resulting cultures
were dropped and spread on the solid enrichment
(minimal) agar plates. The experiment was conducted
in parallel using two sets: In one set: an agar plate was
overlaid with PET film as the sole organic carbon
source while a control plate was set without any
carbon source, and both plates were incubated at 37°C
(Figure 1). For the second set: two plates were set one
with PET films as the carbon source and another
without, just like mentioned above, but with different
incubation conditions including ambient temperature
and sufficient light. After four days of incubation, all
plates were checked and growth was compared
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between the two sets. For both of these sets, a third
plate was also incorporated that received no inoculum.

A smear of the isolated pure culture was made
on a fresh grease-free slide with a sterile loop. The
slide was checked under a microscope to determine the
morphology of isolated strains based on shape, size,
and color (Sugoro et al., 2022; Najeeb et al., 2022,
Badr and Fouad, 2021; Bellinger and Sigee, 2015).
Otherwise, a drop of culture was placed under a cover
slip and directly observed without stain.

2.4 Glycerol stock preparation

Five hundred microliter overnight cultures of
each of the isolates were added in 50% (v/v) glycerol,
gently mixed and the tube was frozen at -20°C.

2.5 In silico bioinformatics analysis

A homology search utilizing BLASTP and
TBLASTN (Basic Local Alignment Search Tool
Program and Protein-nucleotide 6-frame translation)
was conducted to select potential PETase-like
microalgal proteins (performed on 19 October 2022)
by selecting the following organisms such as algae
(taxid: 3041), green algae (taxid: 3041), red algae
(taxid: 2763), blue-green algae (taxid: 1117), yellow-
green algae (taxid: 2833), brown algae (taxid: 2870),
Shewanella algae (taxid: 38313), Chlamydomonas
reinhardtii (taxid: 3055), Dunaliella salina (taxid:
3046), Chlorella (taxid: 3071), Botrycoccus braunii
(taxid: 38881), Phaeodactylum tricornutum (taxid:
2850), Thalassiosira pseudonana (taxid: 35128),
Isochrysis (taxid: 37098), and Nannochloropsis (taxid:
5748). Multiple sequence alignments were conducted
using PROMALS3D (http://prodata.swmed.edu/
promals3d/promals3d.php) (Pei et al., 2008) on the
amino acid sequences of enzymes obtained from the
abovementioned searches in addition to previously
known PETase enzymes preferably with known
structures. The Phyre2.0 fold recognition server
(Kelley et al., 2015) was used for protein modeling
(normal mode and default parameters). Docking of the
substrate against the model proteins was performed
using AutoDock Vina (Trott and Olson, 2010)
accessible via PyRx (Dallakyan and Olson, 2015).A
grid box was specified mainly around the substrate
binding and active sites with dimensions (25.0-X,
28.54-Y, 21.45-Z for cyanobacterial enzyme and
25.30-X, 26.05-Y, 23.47-Z for pycnococcal protein) A
and centered at (0.0, -1.77, 2.47 for cyanobacterial
protein and -13.24, 30.11, 5.27 for pycnococcal
protein) A. The ligand was docked to the protein with
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a default exhaustiveness of 8. The model with the
lowest binding energy was chosen. The BIOVIA
Discovery Studio Visualizer (Biovia, 2021) was used
for model visualization and representation of the
intermolecular interactions, and to create a 2D
diagram of ligand binding site atoms.

3. RESULTS AND DISCUSSION
3.1 Microorganisms from Aminbazar and Matuail
dumpsites showed growth in the enrichment broth
utilizing PET film as the sole source of carbon
Enrichment culturing has been previously used
for the isolation of microorganisms with novel
metabolic capacity (Tortora et al., 2007). The design
of the enrichment medium tells which metabolic type
is going to be favored. Usually, no selective agent is
used in this type of nutritional material; but
omission/incorporation of a metabolic condition
results in the selection of a specific type of microbe

Day 1

that possesses the desired metabolic trait, and by the
same mechanism it does not allow other types of
microbes to grow (Tortora et al., 2007).

The enrichment medium used in our study did
not contain any organic carbon source except the PET
film. Soil samples collected from Aminbazar and
Matuail dumpsites were inoculated into the enrichment
medium. Enrichment of PET-degrading microbes was
carried out in three consecutive 15-day-long subculture
screens both in the presence and/ or absence of sunlight.
Growth and greenish appearance were noticed at the
end of each subculture for cycles that were exposed to
light, which were more evident in further subcultures
(Figure 2). Quicker growth in the subsequent
subcultures and slow response in the first few days after
soil samples were introduced in the enrichment medium
may represent the lag phase (Rolfe et al., 2012) when
the microbes were preparing and acclimatizing with the
nutrient and other conditions.

Figure 2. Enrichment analysis of PET utilizing microorganisms in three consecutive 15-day-long subculture stages showing growth and
green appearances. 1t cycle: the first 15 days; 2™ cycle: from the 16-30™ day; 3 cycle: 31%t- 45™ day. M: Matuail; A: Aminbazar; and

N=Negative control with PET strip but no inoculum

3.2 PET as the sole organic carbon source for
individual isolates on minimal (enrichment) agar
plate

Since the liquid enrichment medium contained
no other carbon source except plastic film, the growth
in the enrichment medium indicates two possibilities:
(a) autotrophic growth or (b) growth using PET film
as a carbon source. We recovered six pure isolates
after repeated streaking and microscopic observations.
To test if their growth is the result of either of the two
above reasons, equal amounts of the pure cultures
were used to make a lawn on two minimal agar plates
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one of which was laid over with PET films, but the
other plate was not (Figure 1).

Both plates were examined on the 4" day of
incubation. Two of the isolates showed growth at the
edges of the PET film and only scarcely or no growth
was observed on the rest of the agar surface. The other
four isolates (M2, M4, Al, and A2) were different and
showed growth both at the edges of the plastic and all
over the agar plates. All isolates, except A2, appeared
pleomorphic/irregular, under the microscope while A2
had a round appearance (Figure 3).
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Figure 3. Isolated microbes on minimal agar plates with PET film as the sole organic carbon source and their microscopic observation at
100X (oil immersion) under the light microscope
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Apart from the occasional isolated green cells,
there were brown dense structures in the M4
micrograph. The irregularly shaped colonial form of
M4 resembled amorphous gelatinous colonies of
Aphanocapsa (Bellinger and Sigee, 2015; Felisberto
and Souza, 2014; Gama et al., 2014 and
Supplementary Table S1). Although Al individual
cells were sometimes spheroidal, the colonial form of
Al was largely irregular and looked like mucilage-
producing Microcystis (Bellinger and Sigee, 2015;
Pereira and Portillo, 2018; Pham et al., 2021 and
Supplementary Table S2). To test if Aphanocapsa or
Microcystis contain any sequence homologous to
PETase, we performed BLASTP using Aphanocapsa
and Microcystis as organisms but no homology was
found. However, when we searched for esterase
sequences in these two types of microbes using simple
text mining at the NCBI Protein database, we retrieved
three esterases from Aphanocapsa (Apest) and many
from Microcystis (Mcest). Using the three Apest and
randomly selected two Mcest sequences along with
the IsSPETase, we performed an MSA using the align
tab of the UniProt toolbar, which revealed the three
catalytic Ser-His-Asp triad typical of alpha-beta
hydrolases (Consortium, 2023 and Supplementary
Figure S1). PET degrading activity has been reported
previously in different enzymes like cutinase, lipase,
esterase (Joo et al., 2018; Carr et al., 2020; Maurya et
al., 2020) or PETase (an alpha-beta hydrolase fold
family member) that act along with MHETase (Palm
et al., 2019). These enzymes have been primarily
described in bacteria or fungi (Carr et al., 2020; Qi et
al., 2021). Although scarce in reports, PET degrading
activities are also present in microalgae (Chia et al.,
2020). The isolates for this study were green in
appearance, and their characteristics under the
microscope (Figure 3) resembled much to an extent,
the previously reported plastic biodegradation by
green photosynthetic microalgae capable of plastic
biodegradation (Kumar et al., 2017). Microalgae have
been demonstrated with plastic degradation capacity
by synthesizing toxins or enzymes while using plastic
polymers as carbon sources (Chia et al., 2020).

To assess the ability of isolated green microbes
to utilize heat-treated PET films, we subjected them to
sodium dodecyl sulfate (SDS) washing to eliminate
attached cells before examining them under a light
microscope. Despite the SDS wash, both M4 and A2
isolates displayed green growth in connection with
PET, indicating growth within the PET films (see

19

Supplementary Table S3). This finding aligns with
recent studies that used SEM to demonstrate
microalgae adherence to PET surfaces, with alterations
noted even after physical and/or chemical pretreatment
of PET (Falah et al., 2020, Supplementary Table S3).
Interestingly, another study highlighted a preference
for nylon over PET, suggesting PET's resistance to
biological attachment (Demirkan et al., 2020). Our
study involved a comparison of our 400X light
microscopy images with previously published SEM
scans, revealing green growth within PET films by the
isolated green microorganisms (Supplementary Table
S3).

PET is a manmade product unlike cellulose or
other plant or animal-derived polymers. So, nature
needs more time to train its enzyme pool to attack
PET; this makes PETases very rare (Carr et al., 2020).
Only a handful of reports highlight and mention
the PETase enzymes and their activity. A global
investigation discovered a significant presence of PET
hydrolases in regions with crude oil, underscoring the
importance of natural selection (Danso et al., 2018).
The current study’s enrichment and isolation of PET-
utilizing microorganisms suggest that the sampled
soils in this research contain life forms adapting to
PET consumption.

Nature currently lacks the maturity to
efficiently handle manmade PET using microbial
enzymes as tools, so a complete understanding of
pathways for PET degradation in microbes remains a
challenge. Some studies propose the collaboration of
microbial consortiums comprising various bacteria,
protozoa, and yeast-like cells, which collectively
break down PET into TPA and EG. This breakdown
allows the cells in the consortium to metabolize these
components (Taniguchi et al., 2019). In another study,
it was reported that the bacterium I. sakaensis can
convert PET into CO; using two enzymes namely,
IsPETase and ISMHETase (Yoshidaet al., 2016). Prior
to these findings, the fungus Humicola insolens
cutinase (HiC) demonstrated a preference for
producing MHET from BHET. When combined with
Candida antarctica lipase B (CALB), this system
could digest the MHETSs into TPA (Carniel et al.,
2017). Consequently, there are variations in the
breakdown products and the routes that microbes take
to degrade PET for utilization. In the future, further
biochemical degradation analysis may provide
insights into the metabolic routes our isolates are using
to utilize PET as their carbon substrate.
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3.3 Model of hypothetical protein from
Pycnococcus provasolii  and  Cyanobacterium
TDX16 alpha/beta hydrolase contain active and
substrate binding sites for PET hydrolysis
Microalgal PET degradation activity is
promising because industrial production of bacterial
degrader is costlier than microalgae as the latter do not
require organic carbon sources for growth (Moog et
al., 2019; Hempel and Maier, 2016). Moreover,
endotoxins are absent in algae (Akram et al., 2023).
So, PET remediation approaches using algal systems
are more appealing than bacterial counterparts. Due to
their attractiveness, several works reported the
endeavor of heterologous expression of PETase in the
microalgal system (Almeida et al., 2019; Moog et al.,
2019; Kim et al., 2020) (Table 1). However, naturally
occurring microalgal PETases rarely appeared in the
literature. Our current report highlights two natural
microalgal systems (Aphanocapsa and Microcystis)
with PET-associated growth, which may harbor
PETase-like activity. As microalgae offer promise in
various aspects, we attempted to explore the presence
of naturally occurring PETase genes within
microalgae. Our searches were performed by using
both BLASTP and TBLASTN (Figure 4). One
originates from the organism Pycnococcus provasolii,
a species of green algae and is a hypothetical protein
of 335 amino acids. The solitary, spherical, 1.5-4.0
mm in diameter, resistant, sporopollenin-free, and
ultrastructurally close to green algal cells of

Pycnococcus provasolii are hardly identifiable from
the cells of other coccoid planktonic creatures under
the light microscope (Guillard et al., 1991).

The other one is cyanobacterium TDX16
alpha/beta hydrolase protein containing 175 amino
acids. According to Dong and Xing (2020) the first
origin-known alga, TDX16-DE, is synthesized via de
novo organelle biogenesis from the Chroococcidiopsis-
like endosymbiotic cyanobacterium TDX16 after
acquiring the DNA of its host green alga,
Haematococcus pluvialis. With a diameter of 2.0-3.6 m,
TDX16-DE is spherical or oval. The strain has 99.7%
identity to Chlorella vulgaris, according to 18S rRNA
sequencing. However, based on several characteristics,
including size, membrane-bound organelles, and
cyanobacterial origin, scientists established TDX16-DE
as a new genus and species, Chroococcidiorella
tianjinensis (Dong and Xing, 2020).

The TBLASTN search also discovered two
nucleotide sequences. Pycnococcus  provasolii
genome assembly chromosome 12 is one of them. This
gene repertoire, which has 65 protein genes, and 33
RNA genes is comparable in size to that found in
Chlorophyceae green algae (Turmel et al., 2009). The
other one is a partial mMRNA of Emiliania huxleyi
CCMP1516 triacylglycerol lipase 1 (LIP1).
Sequencing of CCMP1516 genome revealed its
proportion of repetitive components (64%), which is
substantially higher than that of sequenced diatoms
(Read et al., 2013).

Table 1. Plastic degradation activity in microalgae from literature mining

Organism name Species name

Detection method Reference

Green algae Functional expression of
Ideonella sakaiensis PETase
in Chlamydomonas

Reinhardtii CC-124

High-performance liquid
chromatography (HPLC),
Scanning electron microscopy
(SEM)

Kim et al. (2020)

Blue-green algae
(Cyanaobacteria)

Biological degradation of
LDPE by Anabaena spiroides,
and Navicula pupula

Weight loss method Barone et al. (2020)

Microalgae (Single-
celled green algae)

PET Degradation by Chlorella
vulgaris with pre-treatment

Compound microscopy (CM),
SEM, Fourier transformed
infrared spectroscopy (FTIR),
and Gas chromatography-mass
spectrometry (GCMS)

Falah et al. (2020)

Mesophilic marine
photosynthetic
microalga

Expression of PETase in
Phaeodactylum tricornutum

SDS-PAGE, Western blot,
PNGase F assay, SEM, and
Ultra high-performance liquid
chromatography (UHPLC)

Moog et al. (2019)

Marine sponge-derived
strain

Heterologous expression of
IsPETase-like gene
Streptomyces sp. SM14
isolated from the sponge
Haliclona simulans

In silico analysis,
polycaprolactone (PCL) plate-
clearing assay

Kennedy et al. (2009) and
Almeida et al. (2019)
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(@) Description Total score Query E-value Percentage Accession Accessions 1D
coverage identity length
Alpha/beta hydrolase, partial 128 62% 3e-34 42.54% 175 OWY58880.1
[Cyanobacterium TDX16]
Hypothetical protein 65.9 73% 6e-10 26.69% 335 GHP05201.1
[Pycnococcus provasolii]
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(b) Description Total score Query E-value Percentage Accession Accessions ID
coverage identity length
Emiliania huxleyi CCMP1516  66.2 67% 2e-10 25.98% 946 XM_005780464.1
triacylglycerol lipase 1 (LIP1)
Partial MRNA
Pycnococcus provasolii 65.1 2% le-09 26.75% 879559 OW568872.1
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Figure 4. Sequence similarity analysis using BLASTP and TBLASTN for microalgal genes/proteins with PETase-like characteristics

using IsPETase protein as the query

In PETase, the catalytic triad comprising
Ser160, His237, and Asp206 (Figure 5) indicates a
charge-relay mechanism system like that found in
other o/B-fold hydrolases. From multiple sequence
alignment, a similar active site is found in both
microalgal proteins found in the BLASTP/TBLASTN
search (Figure 4).

The hydrolytic enzymes of distant phylogenetic
origin have been found to contain the alpha/beta
hydrolase fold that contains eight beta sheets
connected by alpha helices, with a highly conserved
catalytic triad than the substrate binding sites. The
model of a hypothetical protein from Pycnococcus
provasolii constructed in this work (Figure 5(c)) also
exhibits eight beta sheets that are connected by alpha
helices. The Cyanobacterium TDX16 alpha/beta
hydrolase model does not show eight beta sheets,
which is due to the truncated amino acid sequence
(175 AA long) used as a query in the Phyre2.0 server.
When fed into the MSA program (Figure 5(b)), both
sequences show conservation of the active sites (AS)
and substrate binding sites (SBS). Among the
nucleophile (serine)-histidine-aspartate loop of the
catalytic triad, the histidine does not accommodate any
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change (Ollis et al., 1992). The substrate binding site
has been found to accommodate different amino acids
like Phe-Met-(Trp/Tyr/Ala) in Bacteroidetes PET
hydrolyzing enzymes (Zhang et al., 2022) whereas
Tyr-Met-Trp in ldeonella sakaensis (ISPETase) and
the leaf compost cutinase (LCC) PETase, etc. In the
current MSA analysis, the cyanobacterial protein
contains Phe-Met-Trp but the Pycnococcus provasolii
has Trp-Leu-Asn (Figure 5(b)).

The Cyanobacterium TDX16 alpha/beta
hydrolase and Pycnococcus provasolii hypothetical
protein models shown in Figure 5(c) (i and ii,
respectively) were docked with BHET (bis 2-
hydroxyethyl terephthalate) dimer. The amino acids
predicted to form the SBS and AS are shown in yellow
in the ribbon diagram of the models. The binding
affinity for BHET dimer against the cyanobacterial
protein was -4.9 Kcal/mol whereas for BHET dimer
against the pycnococcal protein was -6.5 Kcal/mol.
Both of the protein models demonstrate a cleft for
binding BHET dimer. A 2D diagram of ligand binding
site atoms shows possible interactions including pi-
sigma, van der Waals, and H-bonding.
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Figure 5. (a) Domain structure of ISPETase showing the highly conserved catalytic triad, substrate binding sites, and (b) disulfide bridges
as well as previous mutagenesis effects Homology analysis building MSA. For MSA, eight sequences were used: SH: Streptomyces sp.
SM14 alpha/beta hydrolase; CH: cyanobacterium TDX16 alpha/beta hydrolase; TaC: Thermobifida alba cutinase est1; TcC: Thermobifida
cellulolytica cutinase 1; TfC: Thermobifida fusca Cutinase; UpC: Unknown prokaryotic cutinase; PpH: Pycnococcus provasalii
hypothetical protein; and IsH: Ideonella sakaiensis PET hydrolase. All sequences share the same active site (Ser160, Asp206, and His237)
also the SBSs were highly conserved. (c) Model of Cyanobacterium TDX16 alpha/beta hydrolase (i) and Pycnococcus provasolii
hypothetical protein (ii). The ASs and SBSs are shown in yellow.
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4. CONCLUSION

Stopping the immediate use of plastics is highly
unlikely, which means we are likely to witness an
increasing accumulation of plastic waste over the next
decade. Plastics such as PET are commonly used in
packaging industries and the production of synthetic
fabrics, and their natural resistance to biodegradation
has led to a rapid buildup of plastic waste which in turn
poses a major threat to various forms of life and,
ultimately, to the global climate. This is why it is
essential to explore methods for bioremediation of
plastics. The issue of plastic waste is a global problem,
and it is of particular concern for densely populated
delta regions like Bangladesh, which is surrounded by
water. Unfortunately, the waste management systems
in such areas pay limited attention to and make little
effort to address the issue of plastic pollution.

In this study, we explored the garbage disposal
site and isolated a few potential PET-utilizing
microbes from their natural habitat, the garbage
disposal site. In the lab, we screened, cultured and
tested their growth utilizing PET as the sole source of
carbon at defined conditions, and on synthetic
enrichment media. An initial examination and
characterization using light microscopy and in silico
bioinformatics analysis identified two microalgal
isolates with the potential capacity to degrade PET
(polyethylene terephthalate). Additionally, when
searching protein sequence databases for microalgal
PETases, there were indications of possible PETase
activity within the microalgal gene pool. However,
further genomic and molecular investigations are
required for taxonomic classification and to confirm
their ability to biodegrade PET. Nevertheless, this
study underscores the importance of exploring natural
habitats to isolate promising candidates, such as green
microalgal cells, with bioremediation capabilities,
which could potentially lead the way to a more
environmentally  sustainable solution for the
worldwide plastic crisis in the near future.
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