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This study utilised remote sensing data and ArcGIS 10.8 software to evaluate
changes in land use and land cover (LULC) and their effects on land surface
temperature (LST) in Hai Duong Province, Vietnam, from 1992 to 2022. Landsat
satellite data were pre-processed and classified using supervised methods for the
years 1992, 2010, and 2022. In 1992, vegetation cover accounted for 57.89% of
land cover, increasing to 84.49% in 2010, but then decreasing again to 66.67%
in 2022. In contrast, the built-up area consistently increased, from 2.88% in 1992
to 29.35% in 2022, as most of the barren land present in 1992 became built-up
area in 2022. The LST values were calculated from the thermal bands for the
years 1992, 2010, and 2022 and ranged from 16.09°C to 34.27°C, 17.04°C to
36.74°C, and 11.03°C to 28.44°C, respectively. In addition, the Normalized
Difference Vegetation Index (NDVI) values were calculated using the near-
infrared band and the red band, with values ranging from -0.40 to 0.70 over the
study period. A linear regression analysis indicated a shift in the correlation
between NDVI and LST from positive to negative. This study highlights the
significant transformation that occurred in Hai Duong Province due to rapid
population density increases, urban growth and infrastructure development,
leading to a decline in greenery. These LULC changes can cause severe
environmental damage. These research findings will assist policymakers in
formulating management strategies and sustainable land-use plans to minimize
potential harm and promote sustainable development in the area.

1. INTRODUCTION

climate change research and protecting the

Climate change has a considerable influence on
agriculture, both direct and indirect, making it a
significant environmental issue worldwide. Its effects
include changes in precipitation patterns, extreme
temperature stress and alterations in land surface
temperature (LST), which reduce crop health and
productivity (Laux et al., 2017; Zia et al., 2017
Praveen and Sharma, 2019; Hammad et al., 2019;
Zamin et al., 2019; Celik, 2020; Skendzi¢ et al., 2021).
These changes have driven to rural-to-urban
migration, significantly affecting land use and land
cover (LULC) patterns (Silva et al., 2018; Ritse et al.,
2020). Understanding LST patterns is crucial for

environment (Donelson et al., 2018; Monroe et al.,
2019). Multiple factors, including soil composition,
changes in vegetation cover and the presence of
permeable and impermeable surfaces, can affect LST
patterns. Furthermore, green cover and vegetation play
critical roles in mitigating LST in urban areas, making
them more resilient to the effects of climate change
(Ahmed et al., 2009; Winsemius et al., 2018; Mubeen
et al., 2021; Hussain and Karuppannan, 2023).

LULC changes exert a significant influence on
the provision of ecosystem services and affect
ecosystem functions at the local, regional and global
levels (Das and Das, 2019; Li et al., 2021; Phuong and
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Thien, 2023a). These changes also affect human
variables, such as environmental and political plans
(Roberts et al., 2018). Studying LULC changes
provides valuable information to understand past
practices, current models, and future directions.
Change detection techniques, classified by whether
they use pixel-, feature- or object-level image
processing, are used to categorise LULC changes and
different techniques can be used to detect changes
(Tang and Di, 2019; Xu et al., 2019; Sahin et al., 2022;
Thien et al., 2023a). Earlier research has established
that LULC changes can have considerable
environmental effects, particularly on the urban
climate (Yao et al., 2020; Sahin et al., 2022).

Remote sensing (RS) and geographic
information systems (GIS) have proven very effective
in analysing and evaluating LULC and LST changes
(Owolabi et al., 2020; Hu et al., 2023; Hussain and
Karuppannan, 2023; Zeren Cetin et al., 2023).
Satellite-based RS provides general LULC data at
specific times and locations, and RS and GIS together
can be used to map and identify LULC and LST
changes. Recently, studies have relied heavily on
remote spatial information from satellites to map
individual plant species and describe changes in plant
types. The Normalised Difference Vegetation Index
(NDVI) is essential for monitoring vegetation cover
and its response to climate change (Estrella et al.,
2021; Fayech and Tarhouni, 2021; Phuong and Thien,
2023b). NDVI wvalues reflect plants’ biological
activities (Guha, 2021; Bohanon and Crane, 2022).
Daily changes in LST can be described through NDVI
values, indicating the state of the vegetation cover
(Fatemi and Narangifard, 2019; Mukherjee and Singh,
2020; Nse et al., 2020; Hussain and Karuppannan,
2023). NDVI values also help with the study of plants’
global and regional ecological cycles. The vegetation
response to environmental changes, plant life cycles
and vegetation health can all be observed by NDVI
(Workie and Debella, 2018; Rizvi et al., 2021; Sajan
et al., 2023).

In Vietnam, studies of LST have primarily been
conducted in large urban areas, such as Hanoi, Ho Chi
Minh City, and Da Nang (Son et al., 2017; Thanh
Hoan et al., 2018; Nguyen et al., 2019; Veettil et al.,
2023; Veettil and Van, 2023). However, no such work
has been performed in the neighbouring areas, such as
Hai Duong Province, which are also starting to
encounter problems as the expansion of impermeable
surface areas causes surface temperatures to rise.
Monitoring such issues can help policymakers take
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early steps to adopt appropriate policies to correct and
mitigate the resulting problems. This study’s main aim
is to investigate the impact of LULC changes on LST
in Hai Duong Province from 1992 to 2022 by utilising
RS techniques, particularly NDVI. The investigation
will also assess the relationship between LULC
changes and the effects of climate change in the area.
The results will provide policymakers and land
managers with essential information to make informed
decisions regarding LULC changes in the province.
The specific objectives of this study are to (i) assess
LULC changes; (ii) calculate LST; (iii) examine
changes in vegetation cover using NDVI; and (iv)
analyse the relationship between NDVI and LST in
Hai Duong Province in 1992, 2010, and 2022.

2. METHODOLOGY
2.1 Study area

This research focuses on Hai Duong Province
located in the Red River Delta region of Vietnam. The
province spans approximately 1,668.24 km?, ranging
between longitude 106°09'47" E to 107°04'37" E and
latitude 20°40'38” N to 21°42'38” N (General
Statistics Office, 2022). It consists of two cities, one
town, and nine districts, with Hai Duong City serving
as its economic, political, and cultural center. The
province is known for its agricultural activities,
particularly rice cultivation, due to its relatively flat
topography. Additionally, it hosts several industrial
zones, such as the Nam Sach and Dai An Industrial
Zones, which contribute significantly to its economic
growth. The climate of the province is of the tropical
monsoon type, featuring warm and humid summers
and cool and dry winters. The yearly temperature in
the area usually varies between 24 and 26°C, while the
average annual precipitation amounts to 1,500-1,800
mm. Natural disasters such as floods, typhoons, and
landslides, however, occasionally affect the province's
agricultural sector, infrastructure, and people. The
study area map was shown in Figure 1.

2.2 Landsat data

Satellite images from Landsat 5-TM (1992 and
2010) and Landsat 8-OLI/TIRS (2022) were
downloaded freely from the United States Geological
Survey (USGS) website (https://earthexplorer.usgs.
gov/) (Table 1) to study LULC changes in the study
area. A total of six images were downloaded, covering
two frames with path/rows of 126/045 and 126/046,
and were collected in winter to minimize the impact of
cloud cover on the detection of LULC changes. The
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LULC model was classified into four groups:
vegetation, build-up, barren land, and water bodies,
based on field survey information and high-resolution
Google Earth Pro images. The accuracy of the LULC
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Figure 1. Study area map of Hai Duong Province, Vietnam
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Table 1. Detailed data summary of satellite imagery used in the study

106°30'0"E

Landsat scene 1D Acquisition data ~ Satellite Image quality Cloud cover land  Path/row
%
LT51260451992336BJCO0 01/12/1992 Landsat 5-TM 9 E)O)O 126/045
LT51260461992336BJCO0 7 0.00 126/046
LT51260452010305BKT00 01/11/2010 Landsat 5-TM 7 0.00 126/045
LT51260462010305BKT00 7 0.00 126/046
LC81260452022354LGN00 20/12/2022 Landsat 8-OLI/TIRS 9 9.96 126/045
LC81260462022354LGNO0 9 4.62 126/046

2.3 Image processing and classification

In the preparation of Landsat satellite imagery
for this study, co-registering to the UTM zone 48N
projection using the WGS-84 datum was essential,
accomplished through the utilisation of ArcGIS 10.8
software (Esri, USA) (Thien et al., 2023b). The
spectral bands from Landsat 5-TM (bands 1-5 and
band 7) and Landsat 8-OLI/TIRS (bands 1-7) were
stacked to produce a multiband image using discrete
bands (Hussain and Karuppannan, 2023). Mosaicking
was then used to combine overlapping images, and the
extract by mask tool was used to subset the image
based on the study area (Chamling and Bera, 2020;
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Hussain et al., 2020; Thien et al., 2023b). Once pre-
processing was complete, based on local knowledge
supervised classification was performed on the
satellite image datasets from 1992, 2010, and 2022
using a maximum likelihood algorithm. By drawing
polygons around typical locations for each individual
LULC type, training samples were chosen for each
type (Viana et al., 2019). The spectral signatures of
each LULC class were then retrieved from pixels
surrounding the delineated polygons (Fayaz et al.,
2020; Thien and Phuong, 2023). A detailed
methodology is presented in Figure 2.
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Figure 2. Schematic representation of the methodology followed in the study

2.4 Accuracy assessment

In this study, a process of accuracy evaluation
was carried out to authenticate the generated image
classifications and minimize errors in digital imagery
(Alganci et al., 2020). Two techniques were utilised to
assess accuracy: the error matrix and the kappa
coefficient (Feizizadeh et al., 2022; Thien and Phuong,
2023). The error matrix offers the most comprehensive
and mutual means of determining the current accuracy
outcomes, which can be utilised to derive various
statistical measures for accuracy assessment. These
include the percentage of the producer’s accuracy, the
user’s accuracy, and overall accuracy, which address
errors produced by chance (Hussain et al., 2020). The
kappa coefficient, ranging from 0 to 1, expresses the
difference between classified results and reference
points (Cviti¢ et al., 2021). Equations (1), (2), (3), and
(4) were used as optimal quantitative measures to
classify satellite imagery.

Xkk

Producer’s accuracy = e x 100 (1)
User's accuracy = zkil: x 100 (2

Overall accuracy = %Zﬂ:l n; X 100 (3)
Kappa coefficient = N i Xide~ Bheo (e X410 4)

NZ— ¥k o Kt X4K)

Where; N stands for the pixels in total, r for the
classes number, and x;y for the sum of the pixels in
rows “k” and columns “k”, respectively. In the error
matrix, the total samples in column “k” are represented
by subscription x i, while the total samples in row “k”
are represented by xy .

2.5 Estimation of NDVI

The NDVI is a widely used criterion for
detecting and monitoring vegetation areas (Estrella et
al., 2021; Fayech and Tarhouni, 2021). The Landsat
images were used to estimate the NDVI, which has
values ranging between —1 and +1 (Thien and Phuong,
2023). The NDVI values were calculated using
formula (5), which is as follows:

NIR —RED
NIR +RED

NDVI =

®)

Where; NIR is the near-infrared band and RED
is the red band.

2.6 Estimation of LST

The LST is usually measured using the RS
technique, which refers to the temperature of the
Earth’s surface (Zhang et al., 2019). It can be utilised
to gain insights into the Earth’s energy balance, urban
heat island effects, and vegetation stress, among other
applications. To compute LST, different researchers
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have used defined measurements on Landsat data
(Sekertekin and Bonafoni, 2020; Balew and Korme,
2020; Moazzam et al., 2022; Rendana et al., 2023). In
this study, LST values were estimated from the
thermal bands of Landsat 5-TM and Landsat 8-
OLI/TIRS (bands 6 and 10). All steps for the LST
calculation are provided below.

Equations (6) and (7) were used to convert
digital numbers (DN) to radiance for Landsat 5-TM
and Landsat 8-OLI/TIRS, respectively (Rendanaetal.,
2023).

LmaxA~Lmina

b=
A QCalmax—QCalmin

- ) X (QCal - Qcalmin) + LminA (6)

Where; L, represents the sensor radiance,
Lmaxa 1S the maximum radiance of band 6, Lyin IS
the minimum radiance of band 6, QCal is the
quantized calibrated pixel value in DN, QCal,,, is the
maximum quantized calibrated pixel value in DN, and
QCal,y,j, is the minimum quantized calibrated pixel
value in DN.

Ly = M x QCal + A ©)

Where; M;, is the radiance multiplicative
scaling factor, A;, is the radiance additive scaling
factor for band10.

Equation (8) was then applied to obtain the
Brightness Temperature (BT) in °C.

K>

BT = <1n(f—;+1)> —273.15

Where; K, and K, are the calibration constants
of thermal bands (Landsat 5-TM (K, =607.76 and
K, =1260.56); Landsat 8-OLI/TIRS (K, =774.8853
and K,=1321.0789)).

Then, equation (9) was utilised to determine the
LST.

®)

BT
LST = T%T) X ln(s) (9)

Where; A is the central band wavelength of
emitted radiance, BT is the Brightness temperature,

and ¢ is the emissivity (evaluated by using equation

(10)):

£ = 0.004 x Pv + 0.986 (10)

149

Where; Pv is the proportion of vegetation
evaluated by using equation (11):

NDVI-NDVIin

Py = (m) (11)

Where; NDVI has been estimated by equation (5).

2.7 Regression analysis

Regression analysis was used to measure the
correlation between NDVI and LST in Hai Duong
Province for the years 1992, 2010, and 2022 (Alam et
al., 2022). To perform the regression analysis, 200
random points data were created within the study area
boundary using the Create Random Points tool in
ArcGIS 10.8. Then, the extract multi values to points
tool was used to extract one value for each point from
the NDVI1 and LST pixels (Alam et al., 2022). Finally,
these points were exported to Excel 2016 software
(Microsoft, USA) to estimate the regression equation
between NDVI and LST. The correlation coefficient
values generated by the regression analysis ranged
from -1 to +1 (Rendana et al., 2023).

3. RESULTS AND DISCUSSION
3.1 Land use and land cover changes

The study utilised supervised classification
techniques to analyse the LULC changes in Hai Duong
Province, Vietnam, from 1992 to 2022. The findings
indicate that the study area contains diverse land
features, such as vegetation, barren land, built-up
areas, and bodies of water (Figure 3). In 1992,
vegetation accounted for 57.89% (965.71 km?) of the
total study area, followed by barren land, which
accounted for 35.65% (594.78 km?), water, which
accounted for 3.58% (59.76 km?) and, finally, built-up
areas, which accounted for at least 2.88% (47.99 km?)
(Table 2). By 2010, the vegetation area had increased
to 84.49% (1,409.49 km?), while the barren land area
had decreased sharply to 4.59% (76.58 km?). The
built-up and water areas had also increased to 7.01%
(117.02 km?) and 3.91% (65.15 km?), respectively
(Table 2). By 2022, the vegetation area had decreased
to 66.67% (1,112.23 km?), the barren land area had
decreased to only 0.76% (12.73 km?), the built-up area
had increased to 29.35% (489.71 km?), and the water
area had decreased to 3.21% (53.57 km?) (Table 2).
These results show that the built-up area has increased
continuously from 1992 to 2022 in the study area.
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Figure 3. Land use/land cover maps of Hai Duong Province in (a) 1992, (b) 2010, and (c) 2022
Table 2. Area and percentage of land use/land cover classes distribution in 1992, 2010, and 2022
LULC classes 1992 2010 2022
Area (km?) % Area (km?) % Area (km?) %
Vegetation 965.71 57.89 1409.49 84.49 1112.23 66.67
Barren land 594.78 35.65 76.58 4.59 12.73 0.76
Built-up 47.99 2.88 117.02 7.01 489.71 29.35
Waterbodies 59.76 3.58 65.15 3.91 53.57 3.21
Total 1668.24 100.00 1668.24 100.00 1668.24 100.00

Changes in LULC in Hai Duong Province from
1992 to 2022 are presented in Table 3. From 1992 to
2010, the areas covered by vegetation, built-up areas,
and bodies of water increased, while the area of barren
land significantly decreased. The vegetation cover
experienced the most positive shift, increasing by
443.78 km? (26.60%), whereas the barren land showed
a negative shift, decreasing by 518.20 km? (31.06%)
(Table 3). Meanwhile, the built-up area and bodies of
water increased by 69.03 km? (4.14%) and 5.39 km?
(0.32%), respectively (Table 3). From 2010 to 2022,
built-up area showed a strong increasing trend, gaining
372.69 km? (22.34%), while the other land cover
classes, vegetation, barren land, and bodies of water,
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tended to decrease, losing 297.26 km? (17.82%), 63.85
km? (3.83%), and 11.58 km? (0.69%), respectively
(Table 3).

3.2 Accuracy assessment

The quality of the LULC maps for the years
1992, 2010, and 2022 was evaluated with an error
matrix, which returned overall accuracies of 93.31%,
92.98%, and 96.67%, respectively (Table 4). The
producer’s accuracy assessment showed that the
relative accuracies of land cover classification for
1992 and 2010 were 96.82% and 96.43% for the
vegetation category, respectively, and for 2022, the
built-up category achieved the highest accuracy
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(97.94%) (Table 4). The user accuracy for different  accuracy was observed in 1992 for the built-up
land cover classes each year was relatively high. The  category (80.77%) (Table 4). The kappa coefficients
highest user accuracy occurred in 2010 for the  for 1992, 2010, and 2022 were 0.893, 0.887, and
vegetation category (97.59%), while the lowest user  0.946, respectively (Table 4).

Table 3. Land use/land cover changes of Hai Duong Province during 1992-2010, 2010-2022, and 1992-2022

LULC classes Changes 1992-2010 Changes 2010-2022 Changes 1992-2022

Area (km?) % Area (km?) % Area (km?) %
Vegetation 443.78 26.60 -297.26 -17.82 146.52 8.78
Barren land -518.20 -31.06 -63.85 -3.83 -582.05 -34.89
Built-up 69.03 4.14 372.69 22.34 441.72 26.48
Waterbodies 5.39 0.32 -11.58 -0.69 -6.19 -0.37

Table 4. Accuracy assessments for classified maps

LULC classes 1992 2010 2022
Producer’s User’s Producer’s User’s Producer’s User’s
accuracy (%)  accuracy (%)  accuracy (%) accuracy (%)  accuracy (%) accuracy (%)
Vegetation 96.82 93.83 96.43 97.59 97.39 97.39
Barren land 92.16 96.91 81.08 81.08 87.50 87.50
Built-up 87.50 80.77 94.12 96.00 97.94 96.94
Waterbodies 83.87 89.66 88.37 82.61 92.86 95.12
Overall accuracy (%) 93.31 92.98 96.67
Kappa coefficient 0.893 0.887 0.946
3.3 NDVI variation in the study area minimum of -0.24 and a maximum of +0.54 in the

The NDVI values shifted noticeably over the  studyarea (Figure 4). Higher NDVI values in the study
study period, indicating changes in vegetation and  area represent vegetation and forests and signify
land use. In 1992, the NDVI values in the study area  increased productivity and efficiency, while lower
ranged from -0.35 to +0.63, which changed by 2010to  values, associated with bare soil, bodies of water, and
a minimum of -0.40 and a maximum of +0.70 (Figure  built-up areas, indicate reduced productivity.

4). By 2022, the NDVI values had changed again to a
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Figure 4. The NDVI maps of Hai Duong Province in (a) 1992, (b) 2010, and (c) 2022
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Figure 4. The NDVI maps of Hai Duong Province in (a) 1992, (b) 2010, and (c) 2022 (cont.)

3.4 LST variation in the study area 16.09°C-34.27°C in 1992, 17.04°C-36.74°C in 2010,
Figure 5 presents a visual representation of the  and 11.03°C-28.44°C in 2022. Notably, LST
spatial distribution and patterns of LST in Hai Duong  increased significantly between 1992 and 2010 in
Province in the three study years (1992, 2010, and  most parts of the study area, although some small
2022) and shows how the LST values and spatial  regions adjacent to water bodies showed stable
patterns change over time in response to changes in  temperatures. However, by 2022, the overall LST had
LULC. The estimated LST values ranged from  decreased significantly compared to 1992 and 2010.
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Figure 5. The LST maps of Hai Duong Province in (a) 1992, (b) 2010, and (c) 2022
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3.5 Relationship between NDVI and LST

Figure 6 illustrates the correlation between
NDVI and LST during the three study years (1992,
2010, and 2022), with a regression line showing the
distinct relationship between these two indices. The
correlation coefficients (R?) obtained from linear
regression analysis of the data in 1992, 2010, and 2022
were 0.0965, 0.0035, and 0.2277, respectively (Figure
6). The regression line between the NDVI and LST
values for the year 1992 indicates a positive
correlation; when NDVI values are high, LST values

are also high, and vice versa. In 2010, the regression
line and correlation coefficient were close to O,
suggesting that NDVI and LST values were less
interdependent. However, in 2022, the regression line
between these two variables demonstrates a negative
correlation. That is, areas with low NDVI values, such
as impermeable surfaces and built-up areas, exhibited
high LST values, while areas with dense, healthy
vegetation have high NDVI values and low LST
values.
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Figure 6. Relationship between NDVI and LST for the years 1992, 2010, and 2022 in Hai Duong Province

4. DISCUSSION

This study applied modern time- and cost-
effective methods to investigate the drivers of LULC
and LST changes from 1992 to 2022 in Hai Duong
Province, Vietnam. Landsat satellite images (TM and
OLI/TIRS) from 1992, 2010, and 2022 were classified
using the supervised classification method with four
LULC classes, vegetation, barren land, built-up area
and bodies of water (Figure 3). The area of each LULC
class is also presented in Table 2. Accuracy
assessment is important to confirm the correctness of
the generated image classifications (Alganci et al.,
2020; Hussain et al., 2020; Thien and Phuong, 2023).
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The classification results were also evaluated for
accuracy and returned kappa coefficients above 0.8.
These high-accuracy results indicate the reliability of
the land cover classification and confirm good
consistency between the reference and classification
maps. These results confirm that the categorized
images meet the necessary accuracy standards and are
viable data for subsequent analyses and applications
(Cviti¢ et al., 2021; Thien et al., 2023b).

Spatial analysis of the multi-temporal LULC
map of Hai Duong Province shows significant changes
over the past 30 years (1992-2022). LULC changes
occur continuously and are influenced by many
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natural and human factors. These changes have both
positive and negative effects. According to
socioeconomic reports about Hai Duong Province, the
four key economic sectors of the region are
agriculture, forestry and fisheries; industry and
construction; services; and taxes and subsidies on
products. In 2022, the industrial and construction
sector accounted for 56.1% of economic activity,
while the service sector accounted for 26.5% and the
remaining two sectors together only accounted for
about 17.0% (Hai Duong Statistical Office, 2022).
This suggests that the LULC changes in the study area
may reflect the expansion of land used for economic
development and urbanization, including the
construction of new infrastructure, such as roads,
railways, bridges, and industrial zones (Rahaman et
al., 2022; Thien et al., 2023a). In addition, climate
change may contribute to changes in areas covered by
vegetation, barren areas, and bodies of water (Ahmad
et al., 2014; Mahmoud and Gan, 2018; Sadiq Khan et
al., 2020). The research results highlight the need to
implement  effective land-use planning and
management strategies to minimize the negative
effects of these changes on the environment and local
communities.

This study was conducted because rapid
urbanization has had significant effects on the thermal
environment of the study area, which are reflected in
the distribution of NDVI and LST values. Using
Landsat 5-TM and Landsat 8-OLI/TIRS satellite
images, the NDVI index was calculated for the period
from 1992 to 2022 by leveraging the spectral
characteristics related to vegetation cover, including
its ability to absorb visible light, use photosynthetic
energy and reflect near-infrared (NIR) radiation (Zeng
et al., 2019; Kumar et al., 2022; Thien et al., 2023b).
Areas of bare land typically have lower NDVI values
than areas with many trees, suggesting the potential
effect of increasing vegetation cover as measured by
satellite-based assessments of vegetation greenness
across the study area. As Ahmad et al. (2014)
demonstrated, NDVI is an important component in

various vegetation indices due to its stable
performance, characterized by non-systematic
variation.

These findings highlight the dynamism of LST
and its sensitivity to LULC changes. Notably, this
study identified a correlation between the expansion of
built-up areas and the reduction of vegetation cover,
especially in the central and western portions of the
study area, leading to increased LSTs in these
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localities (Balew and Korme, 2020; Alam et al., 2022).
These results emphasize the importance of
incorporating LULC dynamics into urban planning
and management policies to mitigate the adverse
effects of urbanization on the local climate and
generally improve the quality of life in urban
environments (Hussain et al., 2020; Moazzam et al.,
2022; Phuong and Thien, 2023a). The deep insights
gained from this study can serve as valuable inputs for
decision-making processes related to land-use
management and planning and contribute to
promoting sustainable urban development.

The spatial relationship between NDVI and
LST values from 1992-2022 shows that their positive
relationship gradually becomes negative. The average
LST is low in areas with vegetation cover and flooded
areas, indicating a relatively higher rate of water
evaporation and favourable conditions for latent
exchange between the surface and the atmosphere
compared to areas with many impermeable surfaces,
such as built-up and barren areas (Thanh Hoan et al.,
2018; Rendana et al., 2023; Veettil et al., 2023).
Meanwhile, the low NDVI values observed in barren
and built-up areas and the high NDVI values seen in
areas of mixed vegetation cover and flooded areas
reflect a common trend reported in NDVI land cover
studies (Alam et al., 2022; Moazzam et al., 2022). The
determination coefficient between NDVI and LST
values also shows that the positive correlation
gradually becomes negative. The density of built-up
areas and vegetation cover are important factors
determining LST in the study area. The surface density
of built-up areas increases LST, while high vegetation
cover density significantly reduces LST (Mukherjee
and Singh, 2020; Nse et al., 2020).

5. CONCLUSION

This study utilised Landsat satellite imagery to
assess alterations in LULC and their effects on LST in
Hai Duong Province, Vietnam, from 1992 to 2022.
The supervised classification method in ArcGIS 10.8
software was used to classify Landsat satellite data,
which was evaluated for accuracy and resulted in
kappa coefficients of 0.893 for 1992, 0.887 for 2010,
and 0.946 for 2022. The classification results showed
significant changes in land cover in the study area.
Vegetation was the dominant land cover throughout
the study period (1992-2022). Meanwhile, the built-up
area, which comprised 47.99 km? (2.88%) in 1992,
exhibited a consistent upward trend and eventually
reached 489.71 km? (29.35%) in 2022. The Landsat
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data indicated swift changes from barren land in 1992
to vegetation cover in 2010, which then transitioned
into built-up area by 2022. Although LST values
overall decreased from 34.27°C in 1992 to 28.44°C in
2022, the rising built-up area in Hai Duong Province
caused an expansion of high-LST areas in 2022. The
regression analysis of NDVI and LST values also
showed a shift from a positive to a negative correlation
between the two variables. Our study findings suggest
that the surge in built-up area and the reduction in
bodies of water are among the primary factors
contributing to the decline in vegetation cover quality
and area, leading to the loss of natural ecosystems and
biodiversity. Furthermore, the increasing built-up area
may cause further environmental issues. The
evaluation of LULC changes can help define the
effects of various development activities on LULC
classes during the planning process. The use of RS and
GIS technologies also enables spatiotemporal
analysis, which cannot be achieved through
conventional mapping techniques. This study will
enhance local and national authorities’ ability to
develop comprehensive  strategies for land
management in the study area.

The use of satellite imagery, while beneficial for
large-scale analysis, may not capture the fine details
of land use and land cover changes that occur at a
smaller scale. For future studies, the inclusion of
socioeconomic data could provide a more
comprehensive understanding of the drivers of the
observed LULC changes. Long-term monitoring and
prediction models could also be developed to
forecast future LULC changes and their potential
effects on the local climate and biodiversity. These
recommendations, if implemented, could result in
more robust and comprehensive insights into land use
and land cover changes and their implications for
sustainable urban development.
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