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Larvisiding is one common way used to reduce mosquito density in breeding 

areas before metamorphosizing into adults. Despite numerous eradication efforts, 

the outcomes have not met expectations, leading to additional issues such as 

environmental pollution in urban areas. In the context of dengue hemorrhagic 

fever (DHF), addressing the challenge of mitigating the endemic outbreak entails 

formulating an effective strategy through a vector eradication approach. 

Therefore, this study explored the spatial pattern of DHF and estimated the 

potential spread of outbreaks. A geographic information system approach, with 

nearest neighbor analysis and kernel density estimation (KDE), was used to 

generate information regarding the pattern and potential for transmission of 

Aedes aegypti mosquitoes. The results showed that in 2019, a random pattern was 

observed, while in 2020, a clustered pattern of virus spread occurred. 

Furthermore, in terms of the potential transmission, an exposed zone of 9.73 km² 

was identified in 2019, and this increased to 15.72 km² in 2020. In this study, 

several important actions were implemented with a spatial approach, enabling the 

detection and polarization of events. However, the limitations included not being 

comprehensive in addressing the hygiene, sanitation, drainage, and population 

density aspects. 
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1. INTRODUCTION

Dengue hemorrhagic fever (DHF) is a seasonal 

disease, posing an unresolved health issue with 

significant social and economic dimensions. The 

spatial connections to environmental aspects, 

particularly cleanliness, play a crucial role in the 

impact of DHF outbreaks (Lawson and Williams, 

2001). Efforts to reduce disease transmission have 

been undertaken by various scientific groups with 

diverse perspectives, but the results obtained have not 

been optimal (Sekarrini et al., 2022a). The estimation 

of transmission through Aedes aegypti mosquitoes is 

derived from patient data history associated with the 

population, collected from health agencies. The 

detailed tracking of the population has been recorded 

and is assumed as the basis for calculating 

transmission cases (Firdous et al., 2017). 

The rapid spread of the virus over 2-7 days is 

facilitated by the movement of Aedes aegypti 

mosquitoes, resulting in symptoms such as high fever, 

weakness, and red spots on the skin (Murray and 

Smith, 2013; Sekarrini et al., 2020). The transmission 

is enhanced by environmental conditions 

characterized by minimal vegetation, low 

transportation density, lowlands, and rapid urban 

development, allowing for the uncontrollable 

proliferation of Aedes aegypti mosquitoes (Hii et al., 

2012). This information is also substantiated by the 

impact of anthropogenic growth on the natural 

environment, leading to various issues concerning 

ecosystem damage (Wijayanti et al., 2016). The 

measurement of DHF outbreak transmission can be 

conducted using a mapping tool derived from the 

results of transmission detection, incident detection, 
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and prevention coverage implemented by health 

agencies (Rushton, 2003; Waller and Gotway, 2004; 

Sekarrini et al., 2022b). The effect of weather 

variables on the magnitude of dengue fever 

distribution has been established in several previous 

studies. These studies explored changes in infectivity 

and vector survival rates, showing the sensitivity of 

climatic factors to dengue transmission (Negev et al., 

2015). Furthermore, the lack of sanitation, poor 

activity patterns, declining water quality, and existing 

health conditions interact with the growth of Aedes 

aegypti mosquito vector, forming a common challenge 

in relation to the prevention and control of DHF 

(Devine and Furlong, 2007; Bansal et al., 2011). 

The impact of DHF transmission on health 

investigations is reflected through the utilization of 

geographic information systems methodologies 

(Giofandi et al., 2023). Scientific application of 

geographic information systems enables the 

determination of a case location and the assessment of 

its influence pattern on the surrounding area (Gatrell 

and Luytonen, 2003). The role of geographic 

information systems in managing and analyzing 

environmental health surveillance data is recognized 

as changes are occurring in the presentation of 

information in the field of public health. Furthermore, 

the potential for DHF transmission through the bite of 

Aedes aegypti mosquitoes can be estimated using the 

kernel density estimation (KDE) approach. This 

approach uses a calculation technique based on the 

relative location of incidents through spatial devices, 

considering various environmental aspects. The 

results can be applied to policy and interactive 

planning of event estimates to address the increased 

population activity associated with transmission 

(Spencer and Angeles, 2007; King et al., 2016). The 

KDE algorithm, with locations monitored at high 

spatial resolution and population incident data, 

produces a favorable output for the development of a 

spatial transmission method based on field 

observation. In this context, the problem of modifiable 

unit area is addressed by associating each event with a 

fixed zone setting (Arifin et al., 2016). The challenge 

in implementing KDE lies in the selection of 

parameter clusters, enabling the adaptation of network 

density settings for problem-solving. 

In the western part of Indonesia, dengue fever 

issues based on a geospatial approach are seldom 

addressed by a few studies. In most cases, global 

assessments are the main focus, with less attention 

given to crucial problems at a more detailed level. The 

utilization of surveillance data for local observations 

is one of the calculations used to estimate the future 

incidence of dengue fever, in line with the Sustainable 

Development Goals (SDGs) program. Pekanbaru City 

is one of the urban areas with the highest incidence of 

dengue fever cases. The characteristics of lowland 

areas, with an altitude of <100 meters above sea level, 

increase the prevalence of Aedes aegypti (Molina et 

al., 2022), The similarity in these topographic 

conditions is one factor in selecting the Tampan 

District as an observation area. In recent periods, an 

increase in built-up land in urban areas without 

corresponding improvement in sanitary environmental 

conditions and drainage channels has led to a higher 

potential for the presence of Aedes aegypti mosquito 

habitats (Liu et al., 2022).  

This study aimed to determine the spatial 

pattern of dengue fever incidence and estimate the 

potential spread of outbreaks. The spatial pattern of 

incidence was identified using nearest-neighbor 

analysis in the form of clusters. This part is essential 

for representing the regional intensity of dengue fever 

incidence within the cluster. To estimate the potential 

for transmission, geographic information system 

(GIS) techniques through a KDE approach were used. 

Public health resources continue to be burdened by the 

incidence of this epidemic, and the transmission of 

DHF changes dynamically, necessitating more 

effective monitoring and control strategies. Therefore, 

this model is expected to provide a better 

understanding of DHF incidence problem. It can also 

be implemented as one of the approaches at the urban 

scale, specifically in areas with morphological 

conditions and other aspects similar to sustainable 

development. 

2. METHODOLOGY

2.1 Study area

This study was conducted at the Tampan 

District of Pekanbaru City, located in the center of 

Sumatra Island, Indonesia, as illustrated in Figure 1. 

Geographically, the observation area is situated at 

101°22'45"-101°23'09" East Longitude and 0°28'41"-

0°29'09" North Latitude, covering an area of 57 km2 

and falling within a densely populated region. One of 

the primary reasons for selecting this location is the 

relatively flat to undulating topographic conditions 

and high air humidity, reaching 89%. In addition, this 

area is known for having a high potential for dengue 

fever cases, as shown by recent reports. 
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Figure 1. Study site 

2.2 DHF epidemiological data 

Monthly reports of dengue fever cases were 

collected from the surveillance database of the Riau 

Provincial Health Office representative in Tampan 

District, Pekanbaru City. Monthly dengue incidence 

reports from nine villages were observed from January 

2019 to December 2020. The surveillance system data 

were initiated from reports by hospital inpatients, 

health centers, and pharmacies, which were then 

detected by officers. The report did not include 

information on the burden of infection and 

manifestations of dengue fever but provided the 

coordinates of the residence and age of patients (Table 

1). Therefore, reports confirmed by health agency 

officials were used in this study, and all the data were 

spatially processed using the nearest neighbor 

statistical index and kernel density estimation (KDE). 

All processing was carried out with the Spatial 

Statistics and Geographic Information Systems (GIS) 

software (Figure 2). 

Table 1. Age categories of patients infected with Aedes aegypti mosquitoes 

Age group Category 2020 (%) 2019 (%) 

<5 Toddler 4 0.05 3 0.10 

6-11 Childhood 8 0.10 6 0.20 

12-16 Early Adolescence 13 0.16 6 0.20 

17-25 Late Adolescence 29 0.36 6 0.20 

26-35 Early Adulthood 14 0.18 2 0.07 

36-45 Late Adulthood 8 0.10 4 0.13 

46-55 Early Old Age 1 0.01 2 0.07 

>55 Late Old Age 3 0.04 1 0.03 

Total 80 1.00 30 1.00 
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Figure 2. Flow chart of the methodology 

2.3 Detection of incidence distribution and 

potential transmission of Aedes aegypti 

The processing carried out to detect clusters of 

distribution linkages between incident locations aimed 

to discover distribution patterns and help filter out 

irrelevant information. The neighboring statistical 

algorithm used to detect the distribution pattern of 

Dengue hemorrhagic fever (DHF) incidence was 

calculated using the formula: 

R =  Ju/Jh (1) 

Where; R is the target, Ju is the average 

observed distance between each object to be 

measured, and Jh is the expected distance in a 

distribution. This analysis required data on the 

distance between one settlement and another, 

considered a point in space used to assess the spread 

pattern of geographical phenomena. Furthermore, the 

estimation of potential transmission considered the 

flying capabilities of mosquitoes with an average of 50 

meters to 50 km, depending on the species. The 

migration range of mosquitoes significantly influences 

the ecology and physiology of the species, irrespective 

of the disturbance situation. When the flight is related 

to disturbance, the species tend to cover shorter 

distances ranging from 25 meters to 6 km2 

(Verdonschot and Lototskaya, 2014).  

In the context of Aedes aegypti mosquitoes, the 

flight distance was estimated to be about 400 meters 

(Satoto et al., 2019). The relatively simple formula for 

KDE was used with a conceptual method that could 

be   simplified  according  to  the  phenomenon  under 

examination.  The   application  of  physics  analogies 

could be used to understand how the density 

estimation kernel works. The algorithm for KDE in 

determining potential areas for DHF outbreaks was 

calculated using the formula: 

f(x) =  
1

nh
∑ = 1K (

X − Xt

h
)n

t   (2) 

K(x) =
3

4
(1 − x²), |x| ≤ 1    (3) 

Bandwidth = 0.9 ∗ min (SD,√
1

In(2)
× Dm)    (4) 

Where; h is the bandwidth, n is the number of 

cases, X-Xt is the distance from the center of the 

incident, and K is the quadratic kernel function of the 

equation. Bandwidth refers to the shorter value of the 

height from the output level in a spatial reference (Sun 

et al., 2019). Meanwhile, the bandwidth value of the 

standard distance has been derived from SD of the 

distance between each point. Dm is the medium 

distance value of the point distribution pattern (Wang 

et al., 2019). 

Vector formats are used majorly for making 

disease maps based on aggregated data but the major 

drawback is the limited availability of detailed disease 

case data. This is important because data acquisition 

is subject to high subjectivity and low precision 

(Shi, 2010). To overcome these challenges, a KDE 

simulation was conducted to cover multi-modal 

distributions with minimal errors. In this study, one 

circle of data was uniformly randomized from a 

uniform distribution, incorporating either normal 

bivariate distribution or a combination of two or three. 

The density value function can estimate the excess of 

points or compare to the underlying value of each 

point (Donthu and Rust, 1989).  

The results between boundary coverage and 

geolocation of Point of Interest (POI) events were 

assessed to understand the rationality and traceability 

effectiveness of the kernel density estimation 

approach. The area within the POI with high 

estimation potential was considered to have the most 

frequent transmission. Therefore, the calculation of 

the accuracy was based on a precision indicator, which 

entailed dividing the delimited area by the identical 

area and multiplying the result by 100%. This value 

was used in the process of calculating the area ratio of 

points found within the radius of the incident POIs. 
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3. RESULTS AND DISCUSSION

3.1 Distribution of DHF patients

This study focused on location information, 

specifically the proximity or distance of an activity 

from the surroundings. Location information in this 

study was conducted to discover the distribution of 

Dengue hemorrhagic fever (DHF) events which was 

limited by an administrative scale, namely Tampan 

District, Pekanbaru City with spatial distribution 

patterns of incident locations through statistical 

analysis of nearest neighbor. 

Figure 3. Age distribution of patients with DHF incidence in Tampan District 

Based on the results, patients infected with 

Aedes aegypti mosquitoes varied, with a dominance of 

late adolescence to children (six cases each), in 2019. 

Meanwhile, in 2020, most patients were found in the 

age category of early adulthood to adolescence, 

between 17-25 years, as shown in Figure 3. Therefore, 

it is recommended that the surveillance of virus 

transmission age in the Tampan District be further 

strengthened, and a highly sensitized emergency 

response to control transmission be established. The 

continued implementation of health education 

programs focused on infectious diseases at the school 

level and suitable for both children and adults is also 

essential (Portella and Kraenkel, 2021). The results 

further showed that the peak period for acute 

infectious diseases in the Tampan District was 

between June to December, coinciding with the rainy 

season in the island of Sumatra, Indonesia. Moreover, 

a more responsive tracking system in the specific 

identification process can minimize potential breeding 

sites, contributing to the prevention and control of 

mosquito habitats (Zhang et al., 2023). 

Information related to the distribution pattern of 

DHF sufferers was measured by the statistical value of 

the nearest neighbor index, ranging from 0 to 2.15. 

Values approaching 0 are included in the category of 

clustered pattern, while those approaching 2.15 are 

identified as a uniform pattern. An index value of 1.0 

positioned in the middle, suggests a random pattern 

without bias toward clustering or uniformity. 

The statistical calculation of the nearest neighbor 

index for the location of the patients in 2019 yielded a 

value of 1.0622. A total of 30 location points were 

identified, forming the second quadrant with a random 

distribution pattern. This spatial information is evident 

in the irregular pattern represented by the yellow 1-

point figure, which separates from the surrounding 

locations. Meanwhile, the nearest neighbor statistical 

index value for events in 2020 was estimated at 0.6505. 

A total of 80 location points were identified, forming a 

clustered distribution pattern. When observed spatially, 

these incidents form a clustered pattern, as illustrated in 

Figure 4. Information related to the pattern of incident 

groups includes proximity among certain locations, 

suggesting a potential vulnerability in the transmission 

of DHF. The results were consistent with a study 

conducted in other Southeast Asian countries where the 

highest incidence occurred in the productive age, 

attributed to climatological conditions (Masrani et al., 

2022). Some estimates of increased vector transmission 

occur during the journey to school or work (Ragab et 

al., 2023). 
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Figure 4. Distribution pattern in 2019 and 2020 

The 2019 nearest neighbor statistical index 

value is marked in yellow, representing a random 

pattern category. Meanwhile, data obtained from the 

nearest neighbor statistical index value for 2020 

showed a clustered pattern marked in blue (Figure 5). 

Information regarding the condition of the house and 

the surrounding environment is needed in structured 

and visual analyses to determine the conditions of 

Aedes aegypti mosquito habitats. 

These results were corroborated by data from 

the surrounding climatological station detailed in the 

yearbook, indicating a significant increase in surface 

temperature from 2020 with an average temperature of 

28.83°C to 34.80°C in 2021 (SoPM, 2021). This 

increase enhances the suitability for the existence of 

Aedes aegypti mosquitoes as also described by 

(Lubinda et al., 2019) who identified the most suitable 

temperature range for the environmental habitat to be 

28-35°C. Another study (Setiawati, 2019) stated that 

urban development provided an expansion of 

movement for dengue vectors including Aedes aegypti 

and Aedes albopictus mosquitoes. Response variables 

such as climate factors were reported to affect the 

incidence of dengue fever by 66.1%. The peak of the 

strongest variable was found from rainfall followed by 

the surface temperature. The presence of Aedes 

aegypti larvae adapts well to poor water and 

overpopulated areas, effectively breeding in such 

habitats (Ramadona et al., 2023).  

The observed change pattern was attributed to 

extreme temperature changes resulting from increased 

greenhouse gas emissions, deforestation, sea level 

rise, and global warming. Although environments with 

increased temperatures are more prone to Aedes 

aegypti mosquitoes (Ferraguti et al., 2023), current 

conditions are reducing the distribution, leading to 

adaptive clustering. 

3.2 Potential of Aedes aegypti transmission 

Clustering of potential transmission was 

performed through KDE and data types used in the 

analysis were derived from the coordinates of event 

location, categorized by sex ratio (Figure 6) and age 

category (Figure 8). The primary analysis of potential 

transmission through statistical estimation illustrated 

the influence of high infection density during the 

observation year. Therefore, this area should be 

considered when planning strategic actions for 

incidence control in anthropogenic activity land use 

areas. 
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Clustered Random Dispersed Clustered Random Dispersed 

Figure 5. The results of the closest neighbor analysis pattern in 2019 and 2020 

The KDE showed the existence of a centralized 

dengue transmission location and the calculation was 

based on the sex ratio for 2019 and 2020, as shown in 

Figure 6. Significant movement was observed among 

females in 2020, totaling 38 incidents, while 

groupings were formed in several parts for the 

movement of transmission events based on the male 

gender, reaching 42 incidents (Figure 6(a)). In the 

female gender, transmission occurred widely and 

randomly, as observed from the movement of the 

incidence in 2019. In 2020, this transmission occurred 

in clusters represented in blue (Figure 6(b)). Each 

result of KDE not only describes the orientation of the 

incident locations during the observation period but 

also shows valuable insights for surveillance 

surveyors to respond promptly to ongoing events. 

The analysis showed that based on the sex ratio, 

the risk of transmission was higher in females 

compared to males. These results are expected to aid 

in the identification of populations in vulnerable areas 

and in conducting early diagnoses for appropriate 

treatments to reduce the number of incidents, 

specifically in females. In general, the total vulnerable 

area observed increased for both male and female 

incidents, as shown in Figure 7. The potential area for 

the male gender increased significantly from 6.65 km2 

to 15 km2. Within the <100-meter range, the area 

increased by 76 hectares, in the 100-200-meter range, 

there was a rise of 200 hectares. Furthermore, in the 

200-300-meter radius, there was a broader expansion 

of 263 hectares, and in the farthest 300-400-meter 

radius, the increase amounted to 296 hectares. 

Figure 6. Kernel density estimation based on gender ratio in 2019 and 2020 

The incidence rate in females was found to    

also increase but not significantly compared to males. 

This was observed in the rise from 7.31 km2 to 7.47 

km2 in 2019 and further to 14.78 km2 in 2020. The 

observation was grounded in the proximity of 

transmission events and the influence of climatology, 

which shortened the range of mosquitoes. The 

estimated area of the exposed zone in the <100-meter 

radius increased to 69 hectares, the 100-200-meter 

radius covered 181 hectares, the 200-300-meter radius 

had a coverage area of 237 hectares, and the farthest 

radius of 300-400 meters resulted in a reachable area 
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of 244 hectares. Furthermore, the KDE approach was 

used to assess the eight age categories. This 

consideration was used to determine the number and 

distribution of events in each age grouping of patients 

infected with Aedes aegypti mosquitoes. 

Figure 7. The curve of DHF spread based on gender ratio in 2019 and 2020 

In general, the total incidence of dengue fever 

varied in age categories from Early Adolescence to 

Early Adulthood (Figure 8). In this age category, 

individuals are in the productive age, actively 

engaging in daily activities, while fewer cases were 

found in the growing age group. This was illustrated 

in Figure 8(a) and (b), respectively, showing an 

increase in cases with the incident initially changing 

randomly to a clustering pattern. As explained 

previously, the flying range and the presence of wind 

acting as factors affecting movement speed contribute 

to mosquito transmission occurring in closer 

proximity. This phenomenon was also observed in 

vulnerable age groups such as the Early Old and Late 

Old, where transmission movement activities occurred 

far apart, potentially starting with the presence of new 

breeding habitats. Furthermore, the Late Adolescence 

group was identified as the most vulnerable age for 

dengue fever transmission incidents. This result is 

evident in Figure 7(d), which interprets the movement 

of Aedes aegypti mosquitoes from the previous year. 

It was found that almost all incidents had intersections 

with the year 2020, creating a pattern of incidents 

occurring in close proximity, and designating this area 

as a red zone. The estimated transmission in 2020, 

represented by blue, overlaps with that of the previous 

year. When interpreted more broadly, the potential for 

incidents in the following year did not change 

significantly within the transmission area. 

Various age categories were considered to 

determine the potential transmission of dengue fever 

outbreaks. When examined individually, specifically 

in the Toddler age category (<5 years), an initial 

random pattern of occurrence was observed, later 

shifting into groups. The potential coverage area 

varied, starting from a radius of <100 meters with an 

area of 13 hectares, to 37 hectares at 100-200 meters, 

55 hectares at 200-300 meters, and 73 hectares at the 

farthest radius in 2020. In the previous year, smaller 

areas were observed in the potential range, namely 9 

hectares for a radius of <100 meters, 28 hectares at 

100-200 meters, 47 hectares at 200-300 meters, and 66 

hectares at the farthest radius of 300-400 meters. 

Furthermore, in the Childhood age category (6-11 

years old), the same movement pattern model was 

observed as the previous age category, but there were 

differences in the coverage area. In 2020, the potential 

coverage area started with 25 hectares at a radius of 

<100 meters, 75 hectares at 100-200 meters, 126 

hectares at 200-300 meters, and 169 hectares at 300-

400 meters. For 2019, the movement of the potential 

transmission area was lower at 298 hectares, with 

coverage of 19 hectares at a radius of <100 meters, 57 

hectares at 100-200 meters, 94 hectares at 200-300 

meters, and 129 hectares at 300-400 meters. 
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Figure 8. Kernel density estimation based on age category in 2019 and 2020 

113



Giofandi EA et al. / Environment and Natural Resources Journal 2024; 22(2): 105-118

Figure 9. The percentage of DHF spread by age category in 2019 and 2020 

In Early Adolescence (11-16 years), differences 

in movement patterns were observed compared to the 

two previous age categories. The movement was 

slightly initiated by transmission from the same 

vector, evidenced by a non-overlapping flight radius, 

preventing mutual influence or initiation from 

different sources. Regarding coverage at this age level, 

41 hectares were recorded at a radius of <100 meters, 

121 hectares at 100-200 meters, 189 hectares at 200-

300 meters, and 243 hectares at the farthest radius of 

300-400 meters in 2020. Compared to the potential 

coverage of the previous year, 19 hectares, 57 

hectares, 94 hectares, and 129 hectares were found in 

the four radius categories namely <100 meters, 100-

200 meters, 200-300 meters, and 300-400 meters 

respectively. This indicated that the coverage in 2019 

was lower than in 2020. Additionally, in the Late 

Adolescence age category (17-25 years), the highest 

incidence of dengue fever was recorded with a four 

times increase observed from 302 hectares in 2019 to 

almost 1,104 hectares or 1.1 km2 in 2020. At this age 

level, serious attention is needed to reduce the 

incidence rate, starting with vaccination or an ideal 

form of environmental protection easily adapted by 

the community. 

In the Early Adulthood age category (26-35 

years), which initially had two incidents, an increase 

to 14 incidents was observed. New transmission 

activities were found in this age group, increasing the 

potential area of transmission to 525 hectares. The 

changes in coverage area included 36 hectares at <100 

meters, 102 hectares at 100-200 meters, 164 hectares 

at 200-300 meters, and 223 hectares at 300-400 

meters, derived from the difference in potential area 

between both years. For the Late Adulthood age 

category (36-45 years old), a random transmission 

pattern with a systematic phenomenon was observed. 

An increase in potential transmission reaching an area 

of 200 hectares was recorded, with a distribution of 

radius coverage including 12 hectares at <100 meters 

around, 37 hectares at 100-200 meters, 63 hectares at 

200-300 meters, and 88 hectares at 300-400 meters. 

In the Early Old Age category (46-55 years), a 

decrease in the potential area reaching half of the 

previous year was observed throughout the entire 

radius of the potential range of transmission. This was 

attributed to the decrease in the incidence rate, 

approaching the absence of case findings throughout 

the observation period. Similar results were observed 

in the Late Old Age category (>55 years) with a less 

significant incidence rate but expanded area, reaching 

100 hectares from the beginning of 2019 to the end of 

2020. Subsequently, the entire site unit was subjected 

to a KDE approach, divided into two-year categories 

to analyze the density of Aedes aegypti mosquito 

infection in the observation area. 

The estimated density for DHF transmission 

through the flight distance of Aedes aegypti 

mosquitoes is shown in Figure 5. The potential level 

of DHF transmission was denoted by a red overlay, 

indicating areas with high kernel density as the 

proximity of patients increased. This signifies a virus-
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prone region where the red area is susceptible to 

dengue virus infection, potentially facilitating its 

transmission to the surroundings (Chen, 2018). 

Furthermore, the location of DHF cases correlated 

with the habitat of Aedes aegypti mosquitoes. Areas 

with close proximity to breeding sites are more prone 

to experiencing DHF incidence due to heightened 

susceptibility. Mitigating measures, such as closing 

water reservoirs, recycling or burying mosquito 

breeding items, and effectively managing drained 

reservoirs can help reduce the risk of transmission in 

these areas (Saita et al., 2022).

Figure 10. Kernel density estimation in 2019 and 2020 

Based on the results of the validity assessment, a 

significant increase was observed based on the KDE 

approach, from 0.30% in 2019 to 0.63% in 2020, as 

shown in Table 2. The boundaries of areas with the 

potential for disease transmission, calculated 

considering geolocation, were closely related to the 

incidence data in the observation area. However, an 

increase in the number of DHF virus cases was 

observed. This was reflected in the number of DHF 

cases, with 30 reported in 2019 and 80 in 2020, showing 

an increase of 50 cases within one year.  

Regarding patients affected by dengue 

hemorrhagic fever, when prevention and control 

measures are not swiftly initiated, the virus will spread 

more rapidly, potentially leading to death. Furthermore, 

this study found that poor environmental conditions and 

inadequate solid waste management result from the 

uncontrolled growth of urbanized areas, providing 

space for breeding sites. This factor is responsible for 

the indiscriminate disposal of plastic and bottle waste, 

forming pools suitable for the oviposition of Aedes 

aegypti mosquitoes (Souza et al., 2022). 

Table 2. Assessment of the model in terms of validity 

Description Kernel Density Estimation 

2020 2019 

Potential of disease area (km2) 22 13 

Unpotential of disease area (km2) 35 44 

Validity (%) 0.63 0.30 
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This section discusses the areas affected by 

potential exposure to dengue virus bites from Aedes 

aegypti mosquitoes for one year. Based on the results, 

an increase was observed in the location of DHF cases 

in 2020. The potential area in 2019 was approximately 

973.13 hectares, increasing to 1,572.36 hectares in 

2020, as shown in Figure 6. Information related to the 

distance of the exposed zone was divided into four 

categories ranging from <100 meters, 100 to 200 

meters, 200 to 300 meters, and 300 to 400 meters. As 

shown in Figure 11, the zone category of <100 meters 

had coverage of exposed area amounting to 53.14 

hectares in 2019, which was higher compared to 2020, 

at 24,83 hectares. At a radius of 100-200 meters, the 

exposed area expanded, reaching 254.06 hectares in 

2019 and 187.69 hectares in 2020. Extending to a 

larger radius of 200-300 meters in 2020, the area 

significantly increased to approximately 579.22 

hectares, while in 2019, it was comparatively lower at 

237.05 hectares. Finally, at the farthest radius of 300-

400 meters, the increase in the number of cases in 2020 

yielded the most significant area, reaching 780.62 

hectares, compared to 2019, which had 428.88 

hectares. 

The distinction between each category 

corresponds to the distance from the location of the 

incident, estimating how far Aedes aegypti mosquitoes 

can fly without being disturbed by weather conditions 

and wind direction. The existence of broad categories 

of potential transmission zones was affected by the 

location of each patient acting as a host based on a high 

estimated kernel density. Additionally, areas with few 

or no cases of DHF were marked by color degradation, 

particularly faded red in the furthest zone from the 

flying distance of Aedes aegypti mosquitoes. Changes 

in land configuration, such as land use and urban 

development, including road networks and waste 

management systems directly or indirectly impact the 

transmission of dengue fever to the community 

(Andreo et al., 2021). The presence of excess water 

reservoirs also increases the abundance of mosquito 

vector species, creating suitable ecological spaces for 

the habitat and resulting in the potential for clustered 

transmission (Naqvi et al., 2021). 

Figure 11. The curve of DHF spread in 2019 and 2020 

The growth of new event points during the 

observation period in the designated area was 

illustrated by the utilization of the KDE approach. The 

estimation process algorithm for the pattern of 

changes in the incidence point was influenced by 

comparing to the existence of other events. The 

resulting interpretation suggests a significant increase 

in the number of incidence cases with the addition of 

an increasingly widespread potential transmission 

area. Furthermore, the development of anthropogenic 

activities in an area contributes to the potential 

presence of mosquito larvae and drives the demand for 

affordable health facilities, enhancing overall comfort 

in human living spaces. This in turn ensures 

community resilience in responding to Aedes aegypti 

mosquito outbreaks. The diversity of dengue virus 

transmission in the observation area was spatially 

influenced by complex interactions between humans 

and environmental factors of Aedes aegypti 

mosquitoes and climatology. In a particular phase, 
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climate anomalies influence the abundance of vector 

species, as well as the density and behavior of humans 

in the area. This was further compounded by high 

population and residential density, which reduced the 

distance between infected individuals, thereby 

accelerating transmission. 

This study has certain limitations, such as not 

considering climate and other environmental 

variables. Incorporating these variables on a detailed 

scale could produce more complex zoning with a 

specific unit scale. This information is crucial for 

pinpointing locations expected to be part of the 

transmission area for Aedes aegypti mosquitoes. 

Special treatment is needed to understand how to 

anticipate dengue fever events in densely populated 

areas with building structures. In addition, it is 

necessary to build literacy about endemic outbreak 

mitigation in the community based on a sustainable 

environmental approach, coupled with the inclusion of 

climate change dynamics scenarios. 

4. CONCLUSION

In conclusion, the analysis of DHF incidence 

using the nearest neighbor analysis and kernel density 

estimation (KDE) equation found distinct distribution 

patterns. The movement from random events to 

clustered groups underscored the impact of public 

awareness in maintaining clean conditions and 

prioritizing sanitation, hygiene, and drainage. This shift 

in distribution was indicative of improved community 

practices. Moreover, when estimating the transmission 

potential of Aedes aegypti mosquitoes based on the 

radius of the flight distance, weather conditions, and 

wind direction must be considered. Although this study 

observed a downward trend in the incidence of DHF, 

identifying potential areas of occurrence further 

reflected the history of vector control. The results 

obtained during the observation can be used to inform 

and guide future studies on environmental 

epidemiological ecology and the implementation of 

appropriate measures in disease control. 
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