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Larvisiding is one common way used to reduce mosquito density in breeding
areas before metamorphosizing into adults. Despite numerous eradication efforts,
the outcomes have not met expectations, leading to additional issues such as
environmental pollution in urban areas. In the context of dengue hemorrhagic
fever (DHF), addressing the challenge of mitigating the endemic outbreak entails
formulating an effective strategy through a vector eradication approach.
Therefore, this study explored the spatial pattern of DHF and estimated the
potential spread of outbreaks. A geographic information system approach, with
nearest neighbor analysis and kernel density estimation (KDE), was used to
generate information regarding the pattern and potential for transmission of
Aedes aegypti mosquitoes. The results showed that in 2019, a random pattern was
observed, while in 2020, a clustered pattern of virus spread occurred.
Furthermore, in terms of the potential transmission, an exposed zone of 9.73 km?
was identified in 2019, and this increased to 15.72 km2 in 2020. In this study,
several important actions were implemented with a spatial approach, enabling the
detection and polarization of events. However, the limitations included not being
comprehensive in addressing the hygiene, sanitation, drainage, and population
density aspects.

1. INTRODUCTION

Dengue hemorrhagic fever (DHF) is a seasonal
disease, posing an unresolved health issue with
significant social and economic dimensions. The
spatial connections to environmental aspects,
particularly cleanliness, play a crucial role in the
impact of DHF outbreaks (Lawson and Williams,
2001). Efforts to reduce disease transmission have
been undertaken by various scientific groups with
diverse perspectives, but the results obtained have not
been optimal (Sekarrini et al., 2022a). The estimation
of transmission through Aedes aegypti mosquitoes is
derived from patient data history associated with the
population, collected from health agencies. The
detailed tracking of the population has been recorded
and is assumed as the basis for calculating
transmission cases (Firdous et al., 2017).

The rapid spread of the virus over 2-7 days is
facilitated by the movement of Aedes aegypti
mosquitoes, resulting in symptoms such as high fever,
weakness, and red spots on the skin (Murray and
Smith, 2013; Sekarrini et al., 2020). The transmission
is enhanced by environmental conditions
characterized by minimal  vegetation, low
transportation density, lowlands, and rapid urban
development, allowing for the uncontrollable
proliferation of Aedes aegypti mosquitoes (Hii et al.,
2012). This information is also substantiated by the
impact of anthropogenic growth on the natural
environment, leading to various issues concerning
ecosystem damage (Wijayanti et al., 2016). The
measurement of DHF outbreak transmission can be
conducted using a mapping tool derived from the
results of transmission detection, incident detection,
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and prevention coverage implemented by health
agencies (Rushton, 2003; Waller and Gotway, 2004;
Sekarrini et al., 2022b). The effect of weather
variables on the magnitude of dengue fever
distribution has been established in several previous
studies. These studies explored changes in infectivity
and vector survival rates, showing the sensitivity of
climatic factors to dengue transmission (Negev et al.,
2015). Furthermore, the lack of sanitation, poor
activity patterns, declining water quality, and existing
health conditions interact with the growth of Aedes
aegypti mosquito vector, forming acommon challenge
in relation to the prevention and control of DHF
(Devine and Furlong, 2007; Bansal et al., 2011).

The impact of DHF transmission on health
investigations is reflected through the utilization of
geographic information systems methodologies
(Giofandi et al., 2023). Scientific application of
geographic information systems enables the
determination of a case location and the assessment of
its influence pattern on the surrounding area (Gatrell
and Luytonen, 2003). The role of geographic
information systems in managing and analyzing
environmental health surveillance data is recognized
as changes are occurring in the presentation of
information in the field of public health. Furthermore,
the potential for DHF transmission through the bite of
Aedes aegypti mosquitoes can be estimated using the
kernel density estimation (KDE) approach. This
approach uses a calculation technique based on the
relative location of incidents through spatial devices,
considering various environmental aspects. The
results can be applied to policy and interactive
planning of event estimates to address the increased
population activity associated with transmission
(Spencer and Angeles, 2007; King et al., 2016). The
KDE algorithm, with locations monitored at high
spatial resolution and population incident data,
produces a favorable output for the development of a
spatial transmission method based on field
observation. In this context, the problem of modifiable
unit area is addressed by associating each event with a
fixed zone setting (Arifin et al., 2016). The challenge
in implementing KDE lies in the selection of
parameter clusters, enabling the adaptation of network
density settings for problem-solving.

In the western part of Indonesia, dengue fever
issues based on a geospatial approach are seldom
addressed by a few studies. In most cases, global
assessments are the main focus, with less attention
given to crucial problems at a more detailed level. The
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utilization of surveillance data for local observations
is one of the calculations used to estimate the future
incidence of dengue fever, in line with the Sustainable
Development Goals (SDGs) program. Pekanbaru City
is one of the urban areas with the highest incidence of
dengue fever cases. The characteristics of lowland
areas, with an altitude of <100 meters above sea level,
increase the prevalence of Aedes aegypti (Molina et
al., 2022), The similarity in these topographic
conditions is one factor in selecting the Tampan
District as an observation area. In recent periods, an
increase in built-up land in urban areas without
corresponding improvement in sanitary environmental
conditions and drainage channels has led to a higher
potential for the presence of Aedes aegypti mosquito
habitats (Liu et al., 2022).

This study aimed to determine the spatial
pattern of dengue fever incidence and estimate the
potential spread of outbreaks. The spatial pattern of
incidence was identified using nearest-neighbor
analysis in the form of clusters. This part is essential
for representing the regional intensity of dengue fever
incidence within the cluster. To estimate the potential
for transmission, geographic information system
(GIS) techniques through a KDE approach were used.
Public health resources continue to be burdened by the
incidence of this epidemic, and the transmission of
DHF changes dynamically, necessitating more
effective monitoring and control strategies. Therefore,
this model is expected to provide a better
understanding of DHF incidence problem. It can also
be implemented as one of the approaches at the urban
scale, specifically in areas with morphological
conditions and other aspects similar to sustainable
development.

2. METHODOLOGY
2.1 Study area

This study was conducted at the Tampan
District of Pekanbaru City, located in the center of
Sumatra Island, Indonesia, as illustrated in Figure 1.
Geographically, the observation area is situated at
101°22'45"-101°23'09" East Longitude and 0°28'41"-
0°29'09" North Latitude, covering an area of 57 km?
and falling within a densely populated region. One of
the primary reasons for selecting this location is the
relatively flat to undulating topographic conditions
and high air humidity, reaching 89%. In addition, this
area is known for having a high potential for dengue
fever cases, as shown by recent reports.
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Figure 1. Study site

2.2 DHF epidemiological data

Monthly reports of dengue fever cases were
collected from the surveillance database of the Riau
Provincial Health Office representative in Tampan
District, Pekanbaru City. Monthly dengue incidence
reports from nine villages were observed from January
2019 to December 2020. The surveillance system data
were initiated from reports by hospital inpatients,
health centers, and pharmacies, which were then
detected by officers. The report did not include

information on the burden of infection and
manifestations of dengue fever but provided the
coordinates of the residence and age of patients (Table
1). Therefore, reports confirmed by health agency
officials were used in this study, and all the data were
spatially processed using the nearest neighbor
statistical index and kernel density estimation (KDE).
All processing was carried out with the Spatial
Statistics and Geographic Information Systems (GIS)
software (Figure 2).

Table 1. Age categories of patients infected with Aedes aegypti mosquitoes

Age group Category 2020 (%) 2019 (%)
<5 Toddler 4 0.05 3 0.10
6-11 Childhood 8 0.10 6 0.20
12-16 Early Adolescence 13 0.16 6 0.20
17-25 Late Adolescence 29 0.36 6 0.20
26-35 Early Adulthood 14 0.18 2 0.07
36-45 Late Adulthood 0.10 4 0.13
46-55 Early Old Age 0.01 2 0.07
>55 Late Old Age 0.04 1 0.03

Total 80 1.00 30 1.00
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Figure 2. Flow chart of the methodology

2.3 Detection of incidence distribution and
potential transmission of Aedes aegypti

The processing carried out to detect clusters of
distribution linkages between incident locations aimed
to discover distribution patterns and help filter out
irrelevant information. The neighboring statistical
algorithm used to detect the distribution pattern of
Dengue hemorrhagic fever (DHF) incidence was
calculated using the formula:

R = Ju/]h ()

Where; R is the target, Ju is the average
observed distance between each object to be
measured, and Jh is the expected distance in a
distribution. This analysis required data on the
distance between one settlement and another,
considered a point in space used to assess the spread
pattern of geographical phenomena. Furthermore, the
estimation of potential transmission considered the
flying capabilities of mosquitoes with an average of 50
meters to 50 km, depending on the species. The
migration range of mosquitoes significantly influences
the ecology and physiology of the species, irrespective
of the disturbance situation. When the flight is related
to disturbance, the species tend to cover shorter
distances ranging from 25 meters to 6 km?
(Verdonschot and Lototskaya, 2014).

In the context of Aedes aegypti mosquitoes, the
flight distance was estimated to be about 400 meters
(Satoto et al., 2019). The relatively simple formula for
KDE was used with a conceptual method that could
be simplified according to the phenomenon under
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examination. The application of physics analogies
could be used to understand how the density
estimation kernel works. The algorithm for KDE in
determining potential areas for DHF outbreaks was
calculated using the formula:

f) = — ¥ = 1K(555) 0
KG) =31 -x), x| <1 ®)
Bandwidth = 0.9 * min (SD, /ﬁ X Dm) ()

Where; h is the bandwidth, n is the number of
cases, X-Xt is the distance from the center of the
incident, and K is the quadratic kernel function of the
equation. Bandwidth refers to the shorter value of the
height from the output level in a spatial reference (Sun
et al., 2019). Meanwhile, the bandwidth value of the
standard distance has been derived from SD of the
distance between each point. Dm is the medium
distance value of the point distribution pattern (\Wang
etal., 2019).

Vector formats are used majorly for making
disease maps based on aggregated data but the major
drawback is the limited availability of detailed disease
case data. This is important because data acquisition
is subject to high subjectivity and low precision
(Shi, 2010). To overcome these challenges, a KDE
simulation was conducted to cover multi-modal
distributions with minimal errors. In this study, one
circle of data was uniformly randomized from a
uniform distribution, incorporating either normal
bivariate distribution or a combination of two or three.
The density value function can estimate the excess of
points or compare to the underlying value of each
point (Donthu and Rust, 1989).

The results between boundary coverage and
geolocation of Point of Interest (POI) events were
assessed to understand the rationality and traceability
effectiveness of the kernel density estimation
approach. The area within the POl with high
estimation potential was considered to have the most
frequent transmission. Therefore, the calculation of
the accuracy was based on a precision indicator, which
entailed dividing the delimited area by the identical
area and multiplying the result by 100%. This value
was used in the process of calculating the area ratio of
points found within the radius of the incident POls.
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3. RESULTS AND DISCUSSION
3.1 Distribution of DHF patients

This study focused on location information,
specifically the proximity or distance of an activity
from the surroundings. Location information in this
study was conducted to discover the distribution of

Dengue hemorrhagic fever (DHF) events which was
limited by an administrative scale, namely Tampan
District, Pekanbaru City with spatial distribution
patterns of incident locations through statistical
analysis of nearest neighbor.
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Figure 3. Age distribution of patients with DHF incidence in Tampan District

Based on the results, patients infected with
Aedes aegypti mosquitoes varied, with a dominance of
late adolescence to children (six cases each), in 2019.
Meanwhile, in 2020, most patients were found in the
age category of early adulthood to adolescence,
between 17-25 years, as shown in Figure 3. Therefore,
it is recommended that the surveillance of virus
transmission age in the Tampan District be further
strengthened, and a highly sensitized emergency
response to control transmission be established. The
continued implementation of health education
programs focused on infectious diseases at the school
level and suitable for both children and adults is also
essential (Portella and Kraenkel, 2021). The results
further showed that the peak period for acute
infectious diseases in the Tampan District was
between June to December, coinciding with the rainy
season in the island of Sumatra, Indonesia. Moreover,
a more responsive tracking system in the specific
identification process can minimize potential breeding
sites, contributing to the prevention and control of
mosquito habitats (Zhang et al., 2023).

Information related to the distribution pattern of
DHF sufferers was measured by the statistical value of
the nearest neighbor index, ranging from 0 to 2.15.
Values approaching 0 are included in the category of
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clustered pattern, while those approaching 2.15 are
identified as a uniform pattern. An index value of 1.0
positioned in the middle, suggests a random pattern
without bias toward clustering or uniformity.

The statistical calculation of the nearest neighbor
index for the location of the patients in 2019 yielded a
value of 1.0622. A total of 30 location points were
identified, forming the second quadrant with a random
distribution pattern. This spatial information is evident
in the irregular pattern represented by the yellow 1-
point figure, which separates from the surrounding
locations. Meanwhile, the nearest neighbor statistical
index value for events in 2020 was estimated at 0.6505.
A total of 80 location points were identified, forming a
clustered distribution pattern. When observed spatially,
these incidents form a clustered pattern, as illustrated in
Figure 4. Information related to the pattern of incident
groups includes proximity among certain locations,
suggesting a potential vulnerability in the transmission
of DHF. The results were consistent with a study
conducted in other Southeast Asian countries where the
highest incidence occurred in the productive age,
attributed to climatological conditions (Masrani et al.,
2022). Some estimates of increased vector transmission
occur during the journey to school or work (Ragab et
al., 2023).
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Figure 4. Distribution pattern in 2019 and 2020

The 2019 nearest neighbor statistical index
value is marked in yellow, representing a random
pattern category. Meanwhile, data obtained from the
nearest neighbor statistical index value for 2020
showed a clustered pattern marked in blue (Figure 5).
Information regarding the condition of the house and
the surrounding environment is needed in structured
and visual analyses to determine the conditions of
Aedes aegypti mosquito habitats.

These results were corroborated by data from
the surrounding climatological station detailed in the
yearbook, indicating a significant increase in surface
temperature from 2020 with an average temperature of
28.83°C to 34.80°C in 2021 (SoPM, 2021). This
increase enhances the suitability for the existence of
Aedes aegypti mosquitoes as also described by
(Lubinda et al., 2019) who identified the most suitable
temperature range for the environmental habitat to be
28-35°C. Another study (Setiawati, 2019) stated that
urban development provided an expansion of
movement for dengue vectors including Aedes aegypti
and Aedes albopictus mosquitoes. Response variables
such as climate factors were reported to affect the
incidence of dengue fever by 66.1%. The peak of the
strongest variable was found from rainfall followed by
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the surface temperature. The presence of Aedes
aegypti larvae adapts well to poor water and
overpopulated areas, effectively breeding in such
habitats (Ramadona et al., 2023).

The observed change pattern was attributed to
extreme temperature changes resulting from increased
greenhouse gas emissions, deforestation, sea level
rise, and global warming. Although environments with
increased temperatures are more prone to Aedes
aegypti mosquitoes (Ferraguti et al., 2023), current
conditions are reducing the distribution, leading to
adaptive clustering.

3.2 Potential of Aedes aegypti transmission

Clustering of potential transmission was
performed through KDE and data types used in the
analysis were derived from the coordinates of event
location, categorized by sex ratio (Figure 6) and age
category (Figure 8). The primary analysis of potential
transmission through statistical estimation illustrated
the influence of high infection density during the
observation year. Therefore, this area should be
considered when planning strategic actions for
incidence control in anthropogenic activity land use
areas.
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Figure 5. The results of the closest neighbor analysis pattern in 2019 and 2020

The KDE showed the existence of a centralized
dengue transmission location and the calculation was
based on the sex ratio for 2019 and 2020, as shown in
Figure 6. Significant movement was observed among
females in 2020, totaling 38 incidents, while
groupings were formed in several parts for the
movement of transmission events based on the male
gender, reaching 42 incidents (Figure 6(a)). In the
female gender, transmission occurred widely and
randomly, as observed from the movement of the
incidence in 2019. In 2020, this transmission occurred
in clusters represented in blue (Figure 6(b)). Each
result of KDE not only describes the orientation of the
incident locations during the observation period but
also shows valuable insights for surveillance
surveyors to respond promptly to ongoing events.
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The analysis showed that based on the sex ratio,
the risk of transmission was higher in females
compared to males. These results are expected to aid
in the identification of populations in vulnerable areas
and in conducting early diagnoses for appropriate
treatments to reduce the number of incidents,
specifically in females. In general, the total vulnerable
area observed increased for both male and female
incidents, as shown in Figure 7. The potential area for
the male gender increased significantly from 6.65 km?
to 15 km? Within the <100-meter range, the area
increased by 76 hectares, in the 100-200-meter range,
there was a rise of 200 hectares. Furthermore, in the
200-300-meter radius, there was a broader expansion
of 263 hectares, and in the farthest 300-400-meter
radius, the increase amounted to 296 hectares.
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Figure 6. Kernel density estimation based on gender ratio in 2019 and 2020

The incidence rate in females was found to
also increase but not significantly compared to males.
This was observed in the rise from 7.31 km? to 7.47
km? in 2019 and further to 14.78 km? in 2020. The
observation was grounded in the proximity of
transmission events and the influence of climatology,

which shortened the range of mosquitoes. The
estimated area of the exposed zone in the <100-meter
radius increased to 69 hectares, the 100-200-meter
radius covered 181 hectares, the 200-300-meter radius
had a coverage area of 237 hectares, and the farthest
radius of 300-400 meters resulted in a reachable area
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of 244 hectares. Furthermore, the KDE approach was
used to assess the eight age categories. This
consideration was used to determine the number and

distribution of events in each age grouping of patients
infected with Aedes aegypti mosquitoes.
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Figure 7. The curve of DHF spread based on gender ratio in 2019 and 2020

In general, the total incidence of dengue fever
varied in age categories from Early Adolescence to
Early Adulthood (Figure 8). In this age category,
individuals are in the productive age, actively
engaging in daily activities, while fewer cases were
found in the growing age group. This was illustrated
in Figure 8(a) and (b), respectively, showing an
increase in cases with the incident initially changing
randomly to a clustering pattern. As explained
previously, the flying range and the presence of wind
acting as factors affecting movement speed contribute
to mosquito transmission occurring in closer
proximity. This phenomenon was also observed in
vulnerable age groups such as the Early Old and Late
Old, where transmission movement activities occurred
far apart, potentially starting with the presence of new
breeding habitats. Furthermore, the Late Adolescence
group was identified as the most vulnerable age for
dengue fever transmission incidents. This result is
evident in Figure 7(d), which interprets the movement
of Aedes aegypti mosquitoes from the previous year.
It was found that almost all incidents had intersections
with the year 2020, creating a pattern of incidents
occurring in close proximity, and designating this area
as a red zone. The estimated transmission in 2020,
represented by blue, overlaps with that of the previous
year. When interpreted more broadly, the potential for
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incidents in the following year did not change
significantly within the transmission area.

Various age categories were considered to
determine the potential transmission of dengue fever
outbreaks. When examined individually, specifically
in the Toddler age category (<5 years), an initial
random pattern of occurrence was observed, later
shifting into groups. The potential coverage area
varied, starting from a radius of <100 meters with an
area of 13 hectares, to 37 hectares at 100-200 meters,
55 hectares at 200-300 meters, and 73 hectares at the
farthest radius in 2020. In the previous year, smaller
areas were observed in the potential range, namely 9
hectares for a radius of <100 meters, 28 hectares at
100-200 meters, 47 hectares at 200-300 meters, and 66
hectares at the farthest radius of 300-400 meters.
Furthermore, in the Childhood age category (6-11
years old), the same movement pattern model was
observed as the previous age category, but there were
differences in the coverage area. In 2020, the potential
coverage area started with 25 hectares at a radius of
<100 meters, 75 hectares at 100-200 meters, 126
hectares at 200-300 meters, and 169 hectares at 300-
400 meters. For 2019, the movement of the potential
transmission area was lower at 298 hectares, with
coverage of 19 hectares at a radius of <100 meters, 57
hectares at 100-200 meters, 94 hectares at 200-300
meters, and 129 hectares at 300-400 meters.
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Figure 9. The percentage of DHF spread by age category in 2019 and 2020

In Early Adolescence (11-16 years), differences
in movement patterns were observed compared to the
two previous age categories. The movement was
slightly initiated by transmission from the same
vector, evidenced by a non-overlapping flight radius,
preventing mutual influence or initiation from
different sources. Regarding coverage at this age level,
41 hectares were recorded at a radius of <100 meters,
121 hectares at 100-200 meters, 189 hectares at 200-
300 meters, and 243 hectares at the farthest radius of
300-400 meters in 2020. Compared to the potential
coverage of the previous year, 19 hectares, 57
hectares, 94 hectares, and 129 hectares were found in
the four radius categories namely <100 meters, 100-
200 meters, 200-300 meters, and 300-400 meters
respectively. This indicated that the coverage in 2019
was lower than in 2020. Additionally, in the Late
Adolescence age category (17-25 years), the highest
incidence of dengue fever was recorded with a four
times increase observed from 302 hectares in 2019 to
almost 1,104 hectares or 1.1 km? in 2020. At this age
level, serious attention is needed to reduce the
incidence rate, starting with vaccination or an ideal
form of environmental protection easily adapted by
the community.

In the Early Adulthood age category (26-35
years), which initially had two incidents, an increase
to 14 incidents was observed. New transmission
activities were found in this age group, increasing the
potential area of transmission to 525 hectares. The
changes in coverage area included 36 hectares at <100
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meters, 102 hectares at 100-200 meters, 164 hectares
at 200-300 meters, and 223 hectares at 300-400
meters, derived from the difference in potential area
between both years. For the Late Adulthood age
category (36-45 years old), a random transmission
pattern with a systematic phenomenon was observed.
An increase in potential transmission reaching an area
of 200 hectares was recorded, with a distribution of
radius coverage including 12 hectares at <100 meters
around, 37 hectares at 100-200 meters, 63 hectares at
200-300 meters, and 88 hectares at 300-400 meters.

In the Early Old Age category (46-55 years), a
decrease in the potential area reaching half of the
previous year was observed throughout the entire
radius of the potential range of transmission. This was
attributed to the decrease in the incidence rate,
approaching the absence of case findings throughout
the observation period. Similar results were observed
in the Late Old Age category (>55 years) with a less
significant incidence rate but expanded area, reaching
100 hectares from the beginning of 2019 to the end of
2020. Subsequently, the entire site unit was subjected
to a KDE approach, divided into two-year categories
to analyze the density of Aedes aegypti mosquito
infection in the observation area.

The estimated density for DHF transmission
through the flight distance of Aedes aegypti
mosquitoes is shown in Figure 5. The potential level
of DHF transmission was denoted by a red overlay,
indicating areas with high kernel density as the
proximity of patients increased. This signifies a virus-
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prone region where the red area is susceptible to
dengue virus infection, potentially facilitating its
transmission to the surroundings (Chen, 2018).
Furthermore, the location of DHF cases correlated
with the habitat of Aedes aegypti mosquitoes. Areas
with close proximity to breeding sites are more prone
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to experiencing DHF incidence due to heightened
susceptibility. Mitigating measures, such as closing
water reservoirs, recycling or burying mosquito
breeding items, and effectively managing drained
reservoirs can help reduce the risk of transmission in
these areas (Saita et al., 2022).
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Figure 10. Kernel density estimation in 2019 and 2020

Based on the results of the validity assessment, a
significant increase was observed based on the KDE
approach, from 0.30% in 2019 to 0.63% in 2020, as
shown in Table 2. The boundaries of areas with the
potential for disease transmission, calculated
considering geolocation, were closely related to the
incidence data in the observation area. However, an
increase in the number of DHF virus cases was
observed. This was reflected in the number of DHF
cases, with 30 reported in 2019 and 80 in 2020, showing
an increase of 50 cases within one year.

Table 2. Assessment of the model in terms of validity

Regarding patients affected by dengue
hemorrhagic fever, when prevention and control
measures are not swiftly initiated, the virus will spread
more rapidly, potentially leading to death. Furthermore,
this study found that poor environmental conditions and
inadequate solid waste management result from the
uncontrolled growth of urbanized areas, providing
space for breeding sites. This factor is responsible for
the indiscriminate disposal of plastic and bottle waste,
forming pools suitable for the oviposition of Aedes
aegypti mosquitoes (Souza et al., 2022).

Description Kernel Density Estimation

2020 2019
Potential of disease area (km?) 22 13
Unpotential of disease area (km?) 35 44
Validity (%) 0.63 0.30
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This section discusses the areas affected by
potential exposure to dengue virus bites from Aedes
aegypti mosquitoes for one year. Based on the results,
an increase was observed in the location of DHF cases
in 2020. The potential area in 2019 was approximately
973.13 hectares, increasing to 1,572.36 hectares in
2020, as shown in Figure 6. Information related to the
distance of the exposed zone was divided into four
categories ranging from <100 meters, 100 to 200
meters, 200 to 300 meters, and 300 to 400 meters. As
shown in Figure 11, the zone category of <100 meters
had coverage of exposed area amounting to 53.14
hectares in 2019, which was higher compared to 2020,
at 24,83 hectares. At a radius of 100-200 meters, the
exposed area expanded, reaching 254.06 hectares in
2019 and 187.69 hectares in 2020. Extending to a
larger radius of 200-300 meters in 2020, the area
significantly increased to approximately 579.22
hectares, while in 2019, it was comparatively lower at
237.05 hectares. Finally, at the farthest radius of 300-
400 meters, the increase in the number of cases in 2020
yielded the most significant area, reaching 780.62

hectares, compared to 2019, which had 428.88
hectares.

The distinction between each category
corresponds to the distance from the location of the
incident, estimating how far Aedes aegypti mosquitoes
can fly without being disturbed by weather conditions
and wind direction. The existence of broad categories
of potential transmission zones was affected by the
location of each patient acting as a host based on a high
estimated kernel density. Additionally, areas with few
or no cases of DHF were marked by color degradation,
particularly faded red in the furthest zone from the
flying distance of Aedes aegypti mosquitoes. Changes
in land configuration, such as land use and urban
development, including road networks and waste
management systems directly or indirectly impact the
transmission of dengue fever to the community
(Andreo et al., 2021). The presence of excess water
reservoirs also increases the abundance of mosquito
vector species, creating suitable ecological spaces for
the habitat and resulting in the potential for clustered
transmission (Naqvi et al., 2021).
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Figure 11. The curve of DHF spread in 2019 and 2020

The growth of new event points during the
observation period in the designated area was
illustrated by the utilization of the KDE approach. The
estimation process algorithm for the pattern of
changes in the incidence point was influenced by
comparing to the existence of other events. The
resulting interpretation suggests a significant increase
in the number of incidence cases with the addition of
an increasingly widespread potential transmission
area. Furthermore, the development of anthropogenic
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activities in an area contributes to the potential
presence of mosquito larvae and drives the demand for
affordable health facilities, enhancing overall comfort
in human living spaces. This in turn ensures
community resilience in responding to Aedes aegypti
mosquito outbreaks. The diversity of dengue virus
transmission in the observation area was spatially
influenced by complex interactions between humans
and environmental factors of Aedes aegypti
mosquitoes and climatology. In a particular phase,
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climate anomalies influence the abundance of vector
species, as well as the density and behavior of humans
in the area. This was further compounded by high
population and residential density, which reduced the
distance between infected individuals, thereby
accelerating transmission.

This study has certain limitations, such as not
considering climate and other environmental
variables. Incorporating these variables on a detailed
scale could produce more complex zoning with a
specific unit scale. This information is crucial for
pinpointing locations expected to be part of the
transmission area for Aedes aegypti mosquitoes.
Special treatment is needed to understand how to
anticipate dengue fever events in densely populated
areas with building structures. In addition, it is
necessary to build literacy about endemic outbreak
mitigation in the community based on a sustainable
environmental approach, coupled with the inclusion of
climate change dynamics scenarios.

4, CONCLUSION

In conclusion, the analysis of DHF incidence
using the nearest neighbor analysis and kernel density
estimation (KDE) equation found distinct distribution
patterns. The movement from random events to
clustered groups underscored the impact of public
awareness in maintaining clean conditions and
prioritizing sanitation, hygiene, and drainage. This shift
in distribution was indicative of improved community
practices. Moreover, when estimating the transmission
potential of Aedes aegypti mosquitoes based on the
radius of the flight distance, weather conditions, and
wind direction must be considered. Although this study
observed a downward trend in the incidence of DHF,
identifying potential areas of occurrence further
reflected the history of vector control. The results
obtained during the observation can be used to inform
and guide future studies on environmental
epidemiological ecology and the implementation of
appropriate measures in disease control.
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