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In mountainous terrain, landslides are common, particularly in intermontane 

basin locations. Such regions can adversely affect both human beings and the 

environment. In the assessment of landslide susceptibility, machine learning 

(ML) algorithms are increasingly popular due to their compatibility with

geospatial data and tools. Herein, this study evaluated the performance of four

ML algorithms: namely, random forest (RF), gradient boost (GB), extreme

gradient boost (XGB), and stacking ensemble (STK). These algorithms were

implemented to create a practical model of landslide susceptibility. The site under

investigation is in the province of Chiang Mai, an intermontane basin area in

northern Thailand where populations are settled. To address issues of

multicollinearity, the variance inflation factor (VIF) was used. Eight out of

fourteen factors were selected for examination; hyperparameters of each model

were tested to acquire the best combination. Results indicated that the STK model

outperforms all other models, providing evaluation metrics (precision, recall, F1-

score, and overall accuracy) of 82.92%, 81.18%, 82.04%, and 81.75%,

respectively. The area under the receiver operating characteristic (ROC) curve

also reveals the high efficiency of the model, achieving 0.8928. However, further

analysis of the appropriate model or base learner is necessary for achieving even

higher predictive results.
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1. INTRODUCTION

Across the globe, natural disasters are becoming 

more frequent and severe, spanning from storms and 

floods to droughts, forest fires, and earthquakes. 

Among these natural phenomena, landslides threaten 

both human life and natural habitats, often resulting in 

widespread damage and destruction of property (Sim 

et al., 2022). The rise in landslides can be attributed to 

changes in climate and topography, including specific 

geological conditions (Kumar and Anbalagan, 2016). 

With mountainous regions and ongoing changes in 

urbanization and climate, Thailand is no exception to 

this trend. Thunderstorms, which bring heavy rainfall 

and flash floods, are the major catalysts for landslides, 

while geological factors are essential in triggering 

them. 

The mapping of landslides has proven to be a 

valuable tool in reducing the risk of landslides in 

mountainous regions (Wang et al., 2021). With the 

rapid development of urbanization and infrastructure, 

assessing landslide susceptibility has become 

increasingly crucial to ensure the safety of 

communities residing in landslide-prone areas. 

Geoinformatics also plays a fundamental role in the 

prediction of landslide susceptibility, allowing for the 

integration and analysis of various spatial data to 

identify susceptibility areas and generate maps of 

landslide hazard zones (Lee, 2005; Van Westen et al., 

2008; Pham et al., 2017). However, traditional 

methods regarding the mapping of landslide 

susceptibility often rely on expert knowledge and 

experience, which can be subjective and time-
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consuming (Kumar and Anbalagan, 2016; Myronidis 

et al., 2016; Thongley and Vansarochana, 2021). 

In the modelling of landslide susceptibility, 

statistical approaches have been developed and 

applied. Such approaches have been categorized into 

classical statistics, index-based statistics, machine 

learning, artificial neural networks, and multiple-

criteria decision analysis (Reichenbach et al., 2018). 

Of these approaches, machine learning (ML) has 

shown great promise in developing accurate and 

reliable maps to predict the occurrence of landslides 

(Wu et al., 2020). Many ML algorithms have been 

associated with geoinformatics analytical tools and 

have demonstrated the ability to predict landslide 

occurrences (Pham et al., 2017; Hu et al., 2020; Wang 

et al., 2021; Huan et al., 2023). However, the complex 

nonlinear relationships between conditioning factors 

and landslide occurrences continue to pose a challenge 

(Lee et al., 2018; Hu et al., 2021). Recently, ensemble 

learning techniques have gained much interest in 

producing landslide susceptibility maps as they can 

combine with multiple models to produce more 

accurate and robust predictions. Ensemble methods 

can expand the hypothesis space of the fitting function, 

providing better predictions than single algorithms 

(Huan et al., 2023). Generally, the single algorithm 

used to constitute an ensemble is called the “base 

learner”, which can be homogeneous or 

heterogeneous. Zeng et al. (2023a) adopted various 

ensemble ML models (bagging, boosting, and 

stacking) and found that the stacking method 

surpassed its complements. Several landslide studies 

have investigated meta-learning techniques for 

assembling homogeneous base learners (Pham et al., 

2017; Hu et al., 2021) and discovered that a stacking-

based scoring model can improve predictive 

performance by reducing overfitting and increasing 

the model’s generalization (Wang et al., 2021; Huan 

et al., 2023). The stacking method proved to be 

superior to single ML models as it yielded stronger 

robustness and optimal accuracy (Huan et al., 2023; 

Zeng et al., 2023b).  

The present study aims to investigate the 

efficacy of ML methods, including bagging (RF), 

boosting (GB and XGB), in assessing the 

susceptibility of landslide occurrences. The novel 

STK is a combination of both the bagging and 

boosting techniques, and is also employed. To the best 

of our knowledge, previously, there has been no 

research related to the STK ensemble modelling of 

landslide susceptibility in our experimental area. The 

study will be conducted in Chiang Mai Province, 

Thailand, which is known for its intermontane basin 

topography and is highly susceptible to landslides, 

particularly in hilly areas (Wattananikorn et al., 1995; 

Mankhemthong, 2019). Almost 10% of the region’s 

population lives in landslide-prone areas. In previous 

years, many landslides were reported in Thailand, with 

Chiang Mai being the most affected area (Yongsiri et 

al., 2023). Hence, the area of Chiang Mai is an 

appropriate location for constructing a landslide 

susceptibility map. To evaluate the efficiency of the 

prediction, the model and result accuracies will be 

tested statistically. The findings of this study can 

provide valuable information for land use planning 

and mitigation efforts in the study location and other 

intermontane basin regions.   

2. METHODOLOGY

2.1 Study area

The study site is in Chiang Mai, the 

westernmost part of northern Thailand province, with 

coordinates N 18°47'46.1148" and E 98°58'45.3468" 

(Figure 1). Within an area of approximately 20,200 

km2, Chiang Mai is the second-largest province in 

Thailand, consisting of 25 districts and 204 sub-

districts. Mountainous landscapes mark its topography 

with several towering peaks, including Doi Inthanon, 

which is the country’s highest mountain (2,580 m 

above mean sea level). The province’s climate falls 

under the tropical savanna climate (Aw) category of 

the Köppen-Geiger classification system, 

characterized by wet and dry seasons throughout the 

year (Peel et al., 2007). The dry season typically lasts 

from November to April, while the wet season persists 

from May to October. During the wet season in Chiang 

Mai, heavy rainfall is typical, with an average 

precipitation of 1,100 to 1,200 mm. The average 

temperature in the region is 25.4°C, with maximum 

and minimum temperatures of 31.8 and 20.1°C, 

respectively (Chittrakorn and Chakpitak, 2019). 

In addition to the mountainous landscape of 

Chiang Mai’s westernmost region, the province boasts 

a variety of other diverse terrains i.e., dense forests, 

valleys, and rolling hills. This province is the northern 

region's largest intermontane basin, characterized by 

its location within the Chiang Mai Basin 

(Mankhemthong, 2019). The area is notable for its 

complex geological processes and formations. The 

geological structure of Chiang Mai Basin, the result of 

divergent geological forces, such as tectonic activity, 

sedimentation, and erosion, has formed a distinctive 
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landscape of flat and mountainous terrains with steep 

gradients. This region is geologically diverse, 

primarily consisting of sedimentary and metamorphic 

rocks alongside igneous formations (Yongsiri et al., 

2023). These rock types' differential weathering rates 

lead to soils forming with varying cohesion and 

erosion resistance (Dechkamfoo et al., 2022). These 

geological and soil characteristics significantly 

influence the region’s susceptibility to landslides. 

2.2 Data acquisition 

2.2.1 Training and validation data 

The dataset used in this study comprised 

historical landslide incidents gathered from the 

Department of Mineral Resources’ inventory spanning 

from 1989 to 2019. A total of 4,247 points were 

extracted to represent locations at risk of landslides in 

the Chiang Mai region. An equal number of non-

landslide locations were randomly generated using a 

1,000 m buffer distance from areas where landslides 

had occurred (Huan et al., 2023). The landslide dataset 

was split into both training and validation sets, with a 

70:30 inventory sample ratio. This method ensures 

that the models can be trained using most data while 

reserving a portion for assessment purposes (Hu et al., 

2020; Wang et al., 2021). 

2.2.2 Intrinsic factors of landslide susceptibility 

In Table 1, intrinsic factors outlining landslide 

susceptibility are given. Such factors highlight the 

elevation, slope, aspect, plan curvature, profile 

curvature, lithology, normalized difference vegetation 

index (NDVI), normalized difference water index 

(NDWI), stream power index (SPI), terrain 

ruggedness index (TRI), topographic wetness index 

(TWI), distance from fault, distance from stream, and 

distance from road (Hu et al., 2020; Huan et al., 2023; 

Das et al., 2023). All data was spatially aggregated 

into a 30 m resolution raster. 

Figure 1. Location of Chiang Mai Province (the white border line 

boundary) courtesy of the satellite image from ArcGIS Pro 

software e-contract number ELC_T21-3057 (ESRI, Redlands, CA, 

USA). Red dots reveal the distribution of previous landslide 

occurrences that occurred in the province of Chiang Mai. 

Table 1. Intrinsic factors’ data format and acquired sources 

Intrinsic factors Format Data source 

Landslide occurrences Point vector Department of Mineral Resources 

Elevation (m) Raster Earth Data, NASA (https://search.earthdata.nasa.gov) 

Slope Raster DEM processing 

Aspect Raster DEM processing 

Plan curvature Raster DEM processing 

Profile curvature Raster DEM processing 

Lithology Raster Department of Mineral Resources 

NDVI Raster Landsat 8-OLI (USGS) 

NDWI Raster Landsat 8-OLI (USGS) 

SPI Raster DEM processing 
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Table 1. Intrinsic factors’ data format and acquired sources (cont.) 

Intrinsic factors Format Data source 

TRI Raster DEM processing 

TWI Raster DEM processing 

Distance from fault Raster Department of Mineral Resources 

Distance from stream Raster Department of Mineral Resources 

Distance from road Raster Department of Provincial Administration 

2.3 Multicollinearity 

Pham et al. (2020) reported that the issue of 

multicollinearity poses a significant challenge in 

selecting related variables for the susceptibility model. 

This phenomenon of high correlation among 

predictors can interfere with landslide susceptibility 

mapping, hindering the identification of significant 

contributors to landslide occurrence (Yu et al., 2023). 

The stability and reliability of susceptible models are 

also affected when independent variables exhibit 

strong interrelationships. In Equation (1), the variance 

inflation factor (VIF) is employed as a diagnostic tool 

to evaluate the extent of correlation between variables 

(Hair et al., 2010): 

VIF (Xi) =
1

1−Ri
2  (1) 

Where; VIF (Xi) represents the VIF value for 

the predictor variable Xi, and Ri
2 is the coefficient of

determination (R-squared) obtained by regressing Xi 

on all other predictor variables.  

According to Equation (1), a commonly used 

threshold of 10 indicates that variables with a VIF 

value exceeding ten may exhibit problematic 

multicollinearity (Aleotti and Chowdhury, 1999; Lee, 

2005). A tolerance (TOL), an inverted fraction of VIF, 

is also considered to support inappropriate 

independent variables. Recent studies have considered 

lower thresholds for more conservative variable 

selection, aiming to minimize the effects of 

multicollinearity and ensure precise estimation of 

regression coefficients (Yu et al., 2023). 

2.4 Ensemble machine learning algorithms 

2.4.1 Random forest (RF) method 

The RF algorithm, a bagging technique, has 

emerged as a potent ML approach for assessing 

landslide susceptibility. First developed by Breiman 

(2001), this ensemble learning method has gained 

popularity due to its capability to handle complex 

spatial relationships and capture the nonlinear nature 

of landslide occurrences. The RF algorithm combines 

the predictions of multiple decision trees to create a 

robust and accurate model. Moreover, its ability to 

handle intricate spatial relationships, capture nonlinear 

interactions, and provide essential rankings for input 

variables makes it a practical tool for prediction 

(Jhonnerie et al., 2015). Several studies have 

successfully applied the RF algorithm to landslide 

susceptibility mapping in various geographic regions 

(Van Den Eeckhaut et al., 2019). The RF model can 

be represented as shown in Equation (2): 

Ŷ = mode (Ck (x))   (2) 

Where; Ŷ represents the predicted class label for 

input x, mode is the function that selects the most 

frequent occurring class label among the decision trees 

in the RF ensemble, and Ck(x) denotes the predicted

class label by the k-th decision tree. 

2.4.2 Gradient-boosting (GB) method 

The GB method operates by iteratively training 

new models, focusing on samples that preceding 

models misclassified. The final prediction of the 

boosting ensemble is obtained by combining the 

predictions of all the models in the ensemble 

(Friedman, 2001; Schapire and Freund, 2013; Ke et 

al., 2017). GB effectively combines multiple weak 

prediction models, often decision trees, to create a 

robust predictive model. The term “gradient” in GB 

refers to the optimization technique for updating the 

model's predictions. As such, it involves computing 

the gradient (partial derivatives) of the loss function 

concerning the predictions and adjusting them in a 

direction that minimizes the loss. Typically, gradient 

descent or a similar optimization algorithm is utilized 

for this purpose (Friedman, 2001). Equation (3) 

provides a formal representation of GB: 

F(x) = F0(x) + ∑ (η × hm(x))M
m=1     (3) 

Where; Fo(x) denotes an initial prediction as a 

target value derived from 
1

N
∑ yii , and m refers to

161



Intarat K et al. / Environment and Natural Resources Journal 2024; 22(2): 158-170

iteration, M denotes the total number of iterations, η 

refers to learning rate, and hm(x) denotes weak learner. 

2.4.3 eXtreme gradient boosting (XGB) method 

The gradient-boosting ensemble method has 

been widely employed in predictive modelling to 

achieve improved accuracy. Among its many variants, 

the XGB algorithm has emerged as a widespread 

implementation of gradient-boosting classification 

(Chen and Guestrin, 2016). Hence, the algorithm 

incorporates regularization techniques like shrinkage 

and column subsampling. It also introduces both L1 

and L2 regularization terms in the objective function 

to control the model's complexity and reduce the 

influence of individual features. Additionally, the 

XGB function supports various loss functions, making 

it suitable for diverse problem domains, including 

linear regression, logistic regression, and ranking. The 

XGB function can be expressed as: 

ŷi = ∑ fk(xi)
K
k=1   (4) 

Where; ŷi  is the predicted output for the ith

sample, xi  represents the feature vector for the ith

sample, K  denotes the number of weak learners 

(decision tree), and fk(xi) reveals the output of the ith

weak learner for the ith sample.

Further, it is seen that the XGB algorithm 

employs pruning techniques during the boosting 

process to control the growth of decision trees. 

Eliminating insignificant splits can help improve the 

model's overall performance and results in more 

compact and efficient trees, as demonstrated. It is 

significant that both XGB and the other gradient 

boosting algorithms have shown success in various 

applications, including landslide susceptibility 

mapping (Ke et al., 2017; Prokhorenkova et al., 2018). 

2.4.4 Stacking ensemble (STK) method 

In 1992, Wolpert  introduced  a  comprehensive 

model (STK). Herein, the aim was to integrate 

multiple diverse algorithms into the training process. 

This approach involved using base learner classifiers 

with lower efficiency than data-independent coaching 

(Dou et al., 2020; Huan et al., 2023). In this 

experiment, RF, GB, and XGB were employed as the 

base learners. In Equation (5), a logistic regression 

(LR) is utilized (Hu et al., 2020). LR is designed to 

benefit binary classification where the outcome 

variable contains two categories (Hamid et al., 2023): 

P(Y = 1) = p̂ =
1

1+e(α̂+β̂1x1+β̂2x2+⋯+β̂ixi)
 (5) 

Where; p̂ is a landslide occurrence probability. 

The probability varies from 0 to 1 within an S-shape 

curve. α̂  is the intercept of the logistic model, β̂i

denotes the slope coefficients, and xi  represents

independent variables or intrinsic predictors used in 

our prediction. 

During the training phase, STK incorporates 

several instances of the same model. Unlike other 

ensemble techniques, the stacking algorithm is seen to 

divide the training data independently, and each base 

learner model is trained separately. After training, 

each base learner model is able to verify predictions, 

which are then combined by the meta-learner to make 

a final decision. This method leads to highly accurate 

prediction results. 

2.5 Evaluation of model performance 

The study utilized testing data split from the 

sample to collect measurement data. To assess the 

model, forecasted outcomes were matched against 

actual results, and the precise number of accurately 

identified incidents i.e., landslides and non-landslides 

were registered as true positives (TP) and true 

negatives (TN), respectively. In Table 2, the 

misclassification of incidents: landslides or non-

landslides is indicated by false positives (FP) and false 

negatives (FN).

Table 2. Confusion matrix of each ML model, containing TP, TN, FP, and FN, respectively. 

Predicted results 

Landslide (1) Non-landslide (0) 

Actual results Landslide (1) TP FP 

Non-landslide (0) FN TN 

The model’s effectiveness was evaluated using 

various metrics, such as precision, recall, overall 

accuracy (OA), area under the receiver operating 

characteristic curve (ROC), and the F1-score. The F1-

score is a critical measure used to assess the efficacy 

of machine learning models as it combines precision 
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and recall. OA, which ranges between 0 and 1, 

represents the ratio of accurately classified landslides 

and non-landslides among all occurrences. The higher 

the accuracy is to 1, the more influential the overall 

accuracy of the model is. Equation (6)-(9) express 

these metrics: 

Precision =  
TP

TP + FP
  (6) 

Recall =  
TP

TP + FN
 (7) 

F1 − score =  2 ×
(Precision × Recall)

(Precision + Recall)
 (8) 

Overall accuracy =
TP + TN

TP + TN + FP + FN
 (9) 

The ROC curve represents the relationship 

between the false positive rate (FPR) and the true 

positive rate (TPR) of a classification model 

(Muschelli, 2020). A higher FPR on the horizontal 

axis indicates that more actual negative instances are 

incorrectly classified as positive. In contrast, a higher 

TPR on the vertical axis demonstrates that more 

actual positive instances are correctly classified as 

positive. The optimal prediction scenario is when 

FPR is 0 and TPR is 1, corresponding to the point (0, 

1) on the coordinate axis. The ROC curve is an

evaluation metric for the classification model’s

accuracy, ranging from 0.5 to 1. A higher value under

curve (closer to 1) signifies better prediction

performance (Huan et al., 2023).

3. RESULTS AND DISCUSSION

3.1 Independent variables’ multicollinearity

determination and importance

To diagnose the issue of multicollinearity, this 

research utilized both VIF and TOL. Such applications 

aim to facilitate the selection of relevant factors. 

Notably, a VIF value lower than 5 and a TOL value 

above 0.2 collectively signify the absence of 

substantial collinear tendencies among landslide 

predictors (Yu et al., 2023). In Table 3, the predictors 

selected are listed. 

Table 3. Multicollinearity diagnosis: Variables selected for the susceptibility models 

Variables VIF TOL Selection 

Elevation 12.66 0.08 No 

Aspect 3.61 0.28 Yes 

Slope 2.05 0.49 Yes 

Plan curvature 52.53 0.02 No 

Profile curvature 69.67 0.01 No 

NDVI 37.14 0.03 No 

NDWI 34.96 0.03 No 

SPI 1.00 0.99 Yes 

TRI 1.09 0.99 Yes 

TWI 29.45 0.03 No 

Geology 1.03 0.97 Yes 

Distance from fault 2.31 0.43 Yes 

Distance from stream 1.91 0.52 Yes 

Distance from road 2.47 0.40 Yes 

Based on Table 3, variables with a VIF value 

greater than 5 and a TOL value less than 0.2 were 

excluded from the susceptibility model (Huan et al., 

2023). As a result, eight independent variables, 

including aspect, slope, SPI, TRI, geology, distance 

from fault, distance from stream, and distance from 

road, were selected for the model’s training. As noted 

by Pham et al. (2020), this process of removing 

insignificant factors can improve the predictive 

accuracy of landslide susceptibility models. 

Subsequently, the selected variables in each model 

were evaluated. In Figure 2, the importance of the 

variables in the different models are illustrated. 

According to Figure 2, the RF model exhibits a 

predilection for assigning substantial importance to 

variables, such as aspect, SPI, distance from fault, 

slope, and distance from stream. Conversely, the GB 

model manifests a pronounced emphasis on SPI, 

succeeded by aspect, distance from stream, slope, and 

distance from fault. The XGB model, in its evaluation, 
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accords high significance to the distance from fault, 

followed by aspect, SPI, distance from stream, and 

slope. The STK model allocates considerable 

significance to aspect, supplemented by distance from 

fault, stream, SPI, and slope. In contrast, TRI, 

geology, and distance from road are seen to be of 

minimum relative importance. Collectively, all 

models highlight the vital contribution of factors, such 

as aspect, slope, SPI, distance from fault, and distance 

from stream, as evidenced by their respective 

significant percentages about landslide susceptibility. 

Figure 2. Importance of the variables in different models 

In this research, aspect is identified as a critical 

factor across all models, focusing on the western 

region of Chiang Mai, which forms the edge of the 

intermontane basin adjoining the mountainous areas 

that extend into the Republic of the Union of 

Myanmar. This positioning leaves the eastern 

quadrant, extending from northeast to southeast 

(Yongsiri et al., 2023), more exposed to increased 

solar radiation, rainfall, and seepage, alongside other 

factors contributing to heightened landslide 

vulnerability (Zeng et al., 2023a). It is evident, 

therefore, that the intermontane basin topography 

characterizing this area of the study is quite unique. In 

different terrains, the significance of aspect varies. In 

Nepal, Tanoli et al. (2017) observed that landslide 

incidents predominantly occur on southern to western 

slopes, highlighting the directions that receive more 

intense monsoon rainfall, thereby escalating the 

likelihood of landslides. Besides, the correlation 

between steeper slope angles and the likelihood of 

Random Forest Gradient Boost 

eXtreme Gradient Boost Stacking Ensemble 
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landslides is obvious. In the context of Chiang Mai, 

many landslides are noted on slopes with angles 

ranging from 15° to 35°. This finding aligns with the 

research by Dechkamfoo et al. (2022), signifying that 

slope angles of 15° to 30° are prone to triggering 

landslides in northern Thailand. 

In the work by Sevgen et al. (2019), SPI 

demonstrates the erosive power of flowing water. As 

reported, the area’s terrain is exposed to land erosion 

caused by stream power. Herein, the landscape gives 

rise to valleys and high plains. The points of landslide 

occurrence are located near these steep ridges, where 

the water flow from rain is most intense due to the 

steep terrain and not far from the stream (Zeng et al., 

2023a). The proximity to fault lines is a significant 

factor in landslides within the study area. A number of 

landslides are observed in areas close to active faults. 

This observation is consistent with the findings of Wu 

et al. (2020), who identified a linear relationship 

between the distance from fault lines and the 

distribution of landslides. This pattern suggests an 

increased likelihood of landslides in areas closer to 

fault lines, underscoring the importance of fault 

proximity in assessing landslide risk. 

3.2 Best combination of model’s hyper parameter 

During the training of the susceptibility model, 

hyperparameter tuning was performed using a grid 

search technique (Ageenko et al., 2022; Abbas et al., 

2023). Each discrete model was evaluated using a 10-

fold cross-validation approach to determine the most 

appropriate parameter combinations. In Table 4, the 

results of this evaluation are presented, showing the 

optimal hyperparameter combination for the ML 

model. 

According to Table 4, every hyperparameter 

combination was chosen for the final model and fitted 

to the training dataset using an empirical approach, 

which achieved the most favorable results (Kuhn and 

Johnson, 2019).

Table 4. The best combination of hyperparameters in ML models’ training 

3.3 Accuracy assessment for the modeling results 

In Table 5, to evaluate the performance of the 

four ML models, several metrics, including precision, 

recall, F1-score, OA, and area under ROC curve, were 

utilized. In Figure 3, the ROC curves for each of the 

four models are shown, highlighting their respective 

areas under the curve. 

In Table 5, a comparative analysis of all the 

landslide susceptibility models under consideration is 

shown. Results demonstrate that the STK model 

outperformed the GB, XGB, and RF models, with an 

OA of 81.75%. Furthermore, the F1-score of the STK 

model (82.04%) confirmed its superior performance 

compared to the other models. These results are 

consistent with previous studies exploring landslide 

susceptibility (Hu et al., 2020; Huan et al., 2023). 

As observed in Figure 3 and Table 5, the STK 

model has been identified as the most effective 

approach for mapping landslide susceptibility, with a 

ROC value of 0.8928, represented by the dark red 

curve. In comparison, GB (dark green curve) with 

0.8914, XGB (dark orange curve) with 0.8872, and RF 

ML models Hyperparameters Value / Method 

RF max_depth 50 

min_sample_left 1 

n_estimators 200 

GB learning_rate 0.05 

n_estimators 500 

min_samples_leaf 2 

min_samples_split 10 

max_depth 20 

XGB booster gbtree 

colsample_bytree 0.7 

eta 0.2 

max_depth 10 

STK subsample 1 

final estimator logistic regression 

stack_method predict_proba 
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(dark blue curve) with 0.8762 models exhibited lower 

areas under the ROC curve. A ROC value exceeding 

0.8 indicates good prediction ability, as highlighted in 

previous research studies (Huan et al., 2023). 

Therefore, the findings of this study suggest that the 

STK model should be preferred when selecting a 

model for landslide susceptibility mapping. However, 

in cases where models exhibit comparable evaluation 

accuracy, it is essential to simultaneously consider 

accuracy metrics and areas under the ROC curve to 

select the best candidate model (Pham et al., 2016; 

Zeng et al., 2023a). 

Table 5. The models’ performance: Validation data 

Model Precision Recall F1-score OA ROC 

RF 77.43% 80.54% 78.95% 77.47% 0.8762 

GB 80.13% 81.14% 80.61% 80.63% 0.8916 

XGB 81.72% 79.24% 80.46% 80.23% 0.8872 

STK 82.92% 81.18% 82.04% 81.75% 0.8928 

Figure 3. Area under the ROC for each ML model predicting landslide susceptibility: x refers to FPR and y refers to TPR; RF model 

(dark blue curve), GB model (dark green curve), XGB model (dark orange curve), and STK model (dark red curve). 

3.4 Predicted landslide susceptibility 

During the prediction stage, the four landslide 

susceptibility models were reclassified into five 

classes: namely, very high, high, moderate, low, and 

very low, following the natural breaks (Jenks) 

principle (Anis et al., 2019; Zeng et al., 2024), as 

depicted in Figure 4. To validate the contrast of each 

predicted class between the susceptible models, the 

ratio of each susceptible class (Rs) was calculated and 

presented, as in Table 6. 

Table 6. Ratio of susceptible classes predicted from different ML models 

Class prediction Ratio of susceptible classes (Rs) 

RF GB XGB STK 

Very low 0.26 0.51 0.48 0.48 

Low 0.26 0.15 0.17 0.18 

Moderate 0.21 0.11 0.12 0.11 

High 0.17 0.10 0.11 0.10 

Very high 0.10 0.13 0.13 0.13 
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Figure 4. A comparison of predictions for the four ML landslide susceptibility models: (a) RF, (b) GB, (c) XGB, and (d) STK. The 

susceptibility of landslide is classified as very high (red), high (orange), moderate (yellow), low (light green), and very low (green), 

respectively. 

(a) (b) 

(c) (d) 
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According to Figure 4 and Table 6, the STK, 

GB, and XGB models exhibit more uniform Rs values, 

from very-low to very-high susceptibility classes. In 

the case of RF, previous works have reported the 

highest performance among its counterparts (Goetz et 

al., 2015; Yu et al., 2023). In contrast, our results 

confirm that the landslide susceptibility prediction 

from the RF model exhibited a more moderate 

susceptible area (0.21) than the other models (0.11, 

0.12, and 0.11 for GB, XGB, and STK), corresponding 

to a lower precision score (77.43%) in the RF model's 

evaluation. Conversely, the predicted results from 

STK, XGB, and GB models reveal comparable 

outcomes with better precision scores of 82.92%, 

81.72%, and 80.13%, respectively. Furthermore, 

compared with its contenders, RF reported differences 

between its low and very low class, with the low class 

Rs revealing high density. Thus, it is seen that the 

very-low class Rs value (0.26) was much lower than 

in the other models. The bagging technique is 

explicitly employed in the RF algorithm to mitigate 

variance. Contrasting this, the boosting approach 

effectively reduces bias and variance (Wu et al., 2020). 

This dual reduction capability is a cornerstone of 

boosting methods. Moreover, in the context of GB and 

XGB, the boosting framework is seen to enhance the 

ensemble model's performance (Table 5). Such an 

outcome was achieved by minimizing overfitting in 

GB and regulating model complexity in XGB, 

primarily through adjusting the minimized loss 

function (Huan et al., 2023). 

In the realm of experimental models for 

landslide prediction, the STK model emerges as 

superior in performance compared to other singular 

ML models, aligning with prior research in this field 

(Hu et al., 2020; Huan et al., 2023). This enhanced 

performance is attributed to integrating bagging and 

boosting techniques as its foundational learners, 

collaboratively diminishing bias and variance in 

classification. This synergy notably augments the STK 

model’s fitness to the training data (Wu et al., 2020). 

Critically, the primary advantage of the STK model 

lies in its amplified predictive capacity. Thus, prudent 

selection of the combination of models or base 

learners is recommended. Such a selection 

necessitates a thorough evaluation of each learner 

prior to their incorporation into ensemble models (Dou 

et al., 2020). 

4. CONCLUSION

In this paper, results demonstrated that factors 

like aspect, slope, SPI, distance from faults, and 

distance from streams play a crucial role in 

determining landslide susceptibility. Compared to its 

counterparts, the novel STK model proved to be most 

effective for predicting landslide hazards in the 

intermontane basin terrain. It is significant that the 

STK model achieved the highest ROC value of 

0.8928, validating its high prediction ability and 

justifying its selection as best candidate model. This 

model is recommended for creating landslide 

susceptibility maps in intermontane basin areas. 

Further research needs to be undertaken to refine 

model selection and base learner optimization for 

enhanced predictive accuracy. 
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