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In mountainous terrain, landslides are common, particularly in intermontane
basin locations. Such regions can adversely affect both human beings and the
environment. In the assessment of landslide susceptibility, machine learning
(ML) algorithms are increasingly popular due to their compatibility with
geospatial data and tools. Herein, this study evaluated the performance of four
ML algorithms: namely, random forest (RF), gradient boost (GB), extreme
gradient boost (XGB), and stacking ensemble (STK). These algorithms were
implemented to create a practical model of landslide susceptibility. The site under
investigation is in the province of Chiang Mai, an intermontane basin area in
northern Thailand where populations are settled. To address issues of
multicollinearity, the variance inflation factor (VIF) was used. Eight out of
fourteen factors were selected for examination; hyperparameters of each model
were tested to acquire the best combination. Results indicated that the STK model
outperforms all other models, providing evaluation metrics (precision, recall, F1-
score, and overall accuracy) of 82.92%, 81.18%, 82.04%, and 81.75%,
respectively. The area under the receiver operating characteristic (ROC) curve
also reveals the high efficiency of the model, achieving 0.8928. However, further
analysis of the appropriate model or base learner is necessary for achieving even
higher predictive results.

1. INTRODUCTION

Across the globe, natural disasters are becoming
more frequent and severe, spanning from storms and
floods to droughts, forest fires, and earthquakes.
Among these natural phenomena, landslides threaten
both human life and natural habitats, often resulting in
widespread damage and destruction of property (Sim
etal., 2022). The rise in landslides can be attributed to
changes in climate and topography, including specific
geological conditions (Kumar and Anbalagan, 2016).
With mountainous regions and ongoing changes in
urbanization and climate, Thailand is no exception to
this trend. Thunderstorms, which bring heavy rainfall
and flash floods, are the major catalysts for landslides,
while geological factors are essential in triggering
them.

The mapping of landslides has proven to be a
valuable tool in reducing the risk of landslides in
mountainous regions (Wang et al., 2021). With the
rapid development of urbanization and infrastructure,

assessing landslide susceptibility has become
increasingly crucial to ensure the safety of
communities residing in landslide-prone areas.

Geoinformatics also plays a fundamental role in the
prediction of landslide susceptibility, allowing for the
integration and analysis of various spatial data to
identify susceptibility areas and generate maps of
landslide hazard zones (Lee, 2005; VVan Westen et al.,
2008; Pham et al., 2017). However, traditional
methods regarding the mapping of landslide
susceptibility often rely on expert knowledge and
experience, which can be subjective and time-
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consuming (Kumar and Anbalagan, 2016; Myronidis
etal., 2016; Thongley and Vansarochana, 2021).

In the modelling of landslide susceptibility,
statistical approaches have been developed and
applied. Such approaches have been categorized into
classical statistics, index-based statistics, machine
learning, artificial neural networks, and multiple-
criteria decision analysis (Reichenbach et al., 2018).
Of these approaches, machine learning (ML) has
shown great promise in developing accurate and
reliable maps to predict the occurrence of landslides
(Wu et al., 2020). Many ML algorithms have been
associated with geoinformatics analytical tools and
have demonstrated the ability to predict landslide
occurrences (Pham et al., 2017; Hu et al., 2020; Wang
etal., 2021; Huan et al., 2023). However, the complex
nonlinear relationships between conditioning factors
and landslide occurrences continue to pose a challenge
(Leeetal., 2018; Hu et al., 2021). Recently, ensemble
learning techniques have gained much interest in
producing landslide susceptibility maps as they can
combine with multiple models to produce more
accurate and robust predictions. Ensemble methods
can expand the hypothesis space of the fitting function,
providing better predictions than single algorithms
(Huan et al., 2023). Generally, the single algorithm
used to constitute an ensemble is called the “base
learner’, which can be homogeneous or
heterogeneous. Zeng et al. (2023a) adopted various
ensemble ML models (bagging, boosting, and
stacking) and found that the stacking method
surpassed its complements. Several landslide studies
have investigated meta-learning techniques for
assembling homogeneous base learners (Pham et al.,
2017; Hu et al., 2021) and discovered that a stacking-
based scoring model can improve predictive
performance by reducing overfitting and increasing
the model’s generalization (Wang et al., 2021; Huan
et al.,, 2023). The stacking method proved to be
superior to single ML models as it yielded stronger
robustness and optimal accuracy (Huan et al., 2023;
Zeng et al., 2023b).

The present study aims to investigate the
efficacy of ML methods, including bagging (RF),
boosting (GB and XGB), in assessing the
susceptibility of landslide occurrences. The novel
STK is a combination of both the bagging and
boosting techniques, and is also employed. To the best
of our knowledge, previously, there has been no
research related to the STK ensemble modelling of
landslide susceptibility in our experimental area. The
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study will be conducted in Chiang Mai Province,
Thailand, which is known for its intermontane basin
topography and is highly susceptible to landslides,
particularly in hilly areas (Wattananikorn et al., 1995;
Mankhemthong, 2019). Almost 10% of the region’s
population lives in landslide-prone areas. In previous
years, many landslides were reported in Thailand, with
Chiang Mai being the most affected area (Yongsiri et
al., 2023). Hence, the area of Chiang Mai is an
appropriate location for constructing a landslide
susceptibility map. To evaluate the efficiency of the
prediction, the model and result accuracies will be
tested statistically. The findings of this study can
provide valuable information for land use planning
and mitigation efforts in the study location and other
intermontane basin regions.

2. METHODOLOGY
2.1 Study area

The study site is in Chiang Mai, the
westernmost part of northern Thailand province, with
coordinates N 18°47'46.1148" and E 98°58'45.3468"
(Figure 1). Within an area of approximately 20,200
km?, Chiang Mai is the second-largest province in
Thailand, consisting of 25 districts and 204 sub-
districts. Mountainous landscapes mark its topography
with several towering peaks, including Doi Inthanon,
which is the country’s highest mountain (2,580 m
above mean sea level). The province’s climate falls
under the tropical savanna climate (Aw) category of
the Koppen-Geiger classification system,
characterized by wet and dry seasons throughout the
year (Peel et al., 2007). The dry season typically lasts
from November to April, while the wet season persists
from May to October. During the wet season in Chiang
Mai, heavy rainfall is typical, with an average
precipitation of 1,100 to 1,200 mm. The average
temperature in the region is 25.4°C, with maximum
and minimum temperatures of 31.8 and 20.1°C,
respectively (Chittrakorn and Chakpitak, 2019).

In addition to the mountainous landscape of
Chiang Mai’s westernmost region, the province boasts
a variety of other diverse terrains i.e., dense forests,
valleys, and rolling hills. This province is the northern
region's largest intermontane basin, characterized by
its location within the Chiang Mai Basin
(Mankhemthong, 2019). The area is notable for its
complex geological processes and formations. The
geological structure of Chiang Mai Basin, the result of
divergent geological forces, such as tectonic activity,
sedimentation, and erosion, has formed a distinctive
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landscape of flat and mountainous terrains with steep
gradients. This region is geologically diverse,
primarily consisting of sedimentary and metamorphic
rocks alongside igneous formations (Yongsiri et al.,
2023). These rock types' differential weathering rates
lead to soils forming with varying cohesion and
erosion resistance (Dechkamfoo et al., 2022). These
geological and soil characteristics significantly
influence the region’s susceptibility to landslides.

2.2 Data acquisition

2.2.1 Training and validation data

The dataset used in this study comprised
historical landslide incidents gathered from the
Department of Mineral Resources’ inventory spanning
from 1989 to 2019. A total of 4,247 points were
extracted to represent locations at risk of landslides in
the Chiang Mai region. An equal number of non-
landslide locations were randomly generated using a
1,000 m buffer distance from areas where landslides
had occurred (Huan et al., 2023). The landslide dataset
was split into both training and validation sets, with a
70:30 inventory sample ratio. This method ensures
that the models can be trained using most data while
reserving a portion for assessment purposes (Hu et al.,
2020; Wang et al., 2021).

2.2.2 Intrinsic factors of landslide susceptibility

In Table 1, intrinsic factors outlining landslide
susceptibility are given. Such factors highlight the
elevation, slope, aspect, plan curvature, profile
curvature, lithology, normalized difference vegetation
index (NDVI), normalized difference water index
(NDWI), stream power index (SPI), terrain
ruggedness index (TRI), topographic wetness index
(TWI), distance from fault, distance from stream, and
distance from road (Hu et al., 2020; Huan et al., 2023;

Table 1. Intrinsic factors’ data format and acquired sources

Das et al., 2023). All data was spatially aggregated
into a 30 m resolution raster.
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Figure 1. Location of Chiang Mai Province (the white border line
boundary) courtesy of the satellite image from ArcGIS Pro
software e-contract number ELC_T21-3057 (ESRI, Redlands, CA,
USA). Red dots reveal the distribution of previous landslide

occurrences that occurred in the province of Chiang Mai.

Intrinsic factors Format

Data source

Landslide occurrences Point vector

Elevation (m) Raster
Slope Raster
Aspect Raster
Plan curvature Raster
Profile curvature Raster
Lithology Raster
NDVI Raster
NDWI Raster
SPI Raster

Department of Mineral Resources

Earth Data, NASA (https://search.earthdata.nasa.gov)
DEM processing

DEM processing

DEM processing

DEM processing

Department of Mineral Resources

Landsat 8-OLI (USGS)

Landsat 8-OLI (USGS)

DEM processing
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Table 1. Intrinsic factors’ data format and acquired sources (cont.)

Intrinsic factors Format Data source

TRI Raster DEM processing

TWI Raster DEM processing

Distance from fault Raster Department of Mineral Resources
Distance from stream Raster Department of Mineral Resources
Distance from road Raster Department of Provincial Administration

2.3 Multicollinearity

Pham et al. (2020) reported that the issue of
multicollinearity poses a significant challenge in
selecting related variables for the susceptibility model.
This phenomenon of high correlation among
predictors can interfere with landslide susceptibility
mapping, hindering the identification of significant
contributors to landslide occurrence (Yu et al., 2023).
The stability and reliability of susceptible models are
also affected when independent variables exhibit
strong interrelationships. In Equation (1), the variance
inflation factor (VIF) is employed as a diagnostic tool
to evaluate the extent of correlation between variables
(Hair et al., 2010):

1
2
1-R?

VIF (X;) = (1)

Where; VIF (X;) represents the VIF value for
the predictor variable Xi, and R? is the coefficient of
determination (R-squared) obtained by regressing X;
on all other predictor variables.

According to Equation (1), a commonly used
threshold of 10 indicates that variables with a VIF
value exceeding ten may exhibit problematic
multicollinearity (Aleotti and Chowdhury, 1999; Lee,
2005). A tolerance (TOL), an inverted fraction of VIF,
is also considered to support inappropriate
independent variables. Recent studies have considered
lower thresholds for more conservative variable
selection, aiming to minimize the effects of
multicollinearity and ensure precise estimation of
regression coefficients (Yu et al., 2023).

2.4 Ensemble machine learning algorithms

2.4.1 Random forest (RF) method

The RF algorithm, a bagging technique, has
emerged as a potent ML approach for assessing
landslide susceptibility. First developed by Breiman
(2001), this ensemble learning method has gained
popularity due to its capability to handle complex
spatial relationships and capture the nonlinear nature
of landslide occurrences. The RF algorithm combines

161

the predictions of multiple decision trees to create a
robust and accurate model. Moreover, its ability to
handle intricate spatial relationships, capture nonlinear
interactions, and provide essential rankings for input
variables makes it a practical tool for prediction
(Jnonnerie et al., 2015). Several studies have
successfully applied the RF algorithm to landslide
susceptibility mapping in various geographic regions
(Van Den Eeckhaut et al., 2019). The RF model can
be represented as shown in Equation (2):
Y = mode (Ci (x)) 2
Where; Y represents the predicted class label for
input X, mode is the function that selects the most
frequent occurring class label among the decision trees
in the RF ensemble, and Cy (x) denotes the predicted
class label by the k-th decision tree.

2.4.2 Gradient-boosting (GB) method
The GB method operates by iteratively training
new models, focusing on samples that preceding
models misclassified. The final prediction of the
boosting ensemble is obtained by combining the
predictions of all the models in the ensemble
(Friedman, 2001; Schapire and Freund, 2013; Ke et
al., 2017). GB effectively combines multiple weak
prediction models, often decision trees, to create a
robust predictive model. The term “gradient” in GB
refers to the optimization technique for updating the
model's predictions. As such, it involves computing
the gradient (partial derivatives) of the loss function
concerning the predictions and adjusting them in a
direction that minimizes the loss. Typically, gradient
descent or a similar optimization algorithm is utilized
for this purpose (Friedman, 2001). Equation (3)
provides a formal representation of GB:
F(x) = Fo(x) + Xi=1(n X hp (%)) @)
Where; Fo(x) denotes an initial prediction as a
target value derived from %Ziyi, and m refers to
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iteration, M denotes the total number of iterations, n
refers to learning rate, and hm(x) denotes weak learner.

2.4.3 eXtreme gradient boosting (XGB) method

The gradient-boosting ensemble method has
been widely employed in predictive modelling to
achieve improved accuracy. Among its many variants,
the XGB algorithm has emerged as a widespread
implementation of gradient-boosting classification
(Chen and Guestrin, 2016). Hence, the algorithm
incorporates regularization techniques like shrinkage
and column subsampling. It also introduces both L1
and L2 regularization terms in the objective function
to control the model's complexity and reduce the
influence of individual features. Additionally, the
XGB function supports various loss functions, making
it suitable for diverse problem domains, including
linear regression, logistic regression, and ranking. The
XGB function can be expressed as:

yi= 211§=1 fie (x;) (4)

Where; §; is the predicted output for the ith
sample, x; represents the feature vector for the it
sample, K denotes the number of weak learners
(decision tree), and fi (x;) reveals the output of the it?
weak learner for the i™ sample.

Further, it is seen that the XGB algorithm
employs pruning techniques during the boosting
process to control the growth of decision trees.
Eliminating insignificant splits can help improve the
model's overall performance and results in more
compact and efficient trees, as demonstrated. It is
significant that both XGB and the other gradient
boosting algorithms have shown success in various
applications, including landslide susceptibility
mapping (Ke et al., 2017; Prokhorenkova et al., 2018).

2.4.4 Stacking ensemble (STK) method
In 1992, Wolpert introduced a comprehensive

model (STK). Herein, the aim was to integrate
multiple diverse algorithms into the training process.
This approach involved using base learner classifiers
with lower efficiency than data-independent coaching
(Dou et al., 2020; Huan et al.,, 2023). In this
experiment, RF, GB, and XGB were employed as the
base learners. In Equation (5), a logistic regression
(LR) is utilized (Hu et al., 2020). LR is designed to
benefit binary classification where the outcome
variable contains two categories (Hamid et al., 2023):

a_ 1
= P = @B Baxz B ®)

P(Y=1)

Where; p is a landslide occurrence probability.
The probability varies from 0 to 1 within an S-shape
curve. @ is the intercept of the logistic model, B;
denotes the slope coefficients, and x; represents
independent variables or intrinsic predictors used in
our prediction.

During the training phase, STK incorporates
several instances of the same model. Unlike other
ensemble techniques, the stacking algorithm is seen to
divide the training data independently, and each base
learner model is trained separately. After training,
each base learner model is able to verify predictions,
which are then combined by the meta-learner to make
a final decision. This method leads to highly accurate
prediction results.

2.5 Evaluation of model performance

The study utilized testing data split from the
sample to collect measurement data. To assess the
model, forecasted outcomes were matched against
actual results, and the precise number of accurately
identified incidents i.e., landslides and non-landslides
were registered as true positives (TP) and true
negatives (TN), respectively. In Table 2, the
misclassification of incidents: landslides or non-
landslides is indicated by false positives (FP) and false
negatives (FN).

Table 2. Confusion matrix of each ML model, containing TP, TN, FP, and FN, respectively.

Predicted results

Landslide (1)

Non-landslide (0)

Actual results Landslide (1) TP

Non-landslide (0) FN

FP
N

The model’s effectiveness was evaluated using
various metrics, such as precision, recall, overall
accuracy (OA), area under the receiver operating

characteristic curve (ROC), and the F1-score. The F1-
score is a critical measure used to assess the efficacy
of machine learning models as it combines precision
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and recall. OA, which ranges between 0 and 1,
represents the ratio of accurately classified landslides
and non-landslides among all occurrences. The higher
the accuracy is to 1, the more influential the overall
accuracy of the model is. Equation (6)-(9) express
these metrics:

TP

Precision = (6)
TP + FP
TP
Recall = (7
TP + FN
Precision x Recall
F1 —score = 2 X ; (8)
(Precision + Recall)
TP + TN
Overall accuracy = ——— (9)
TP + TN + FP + FN

The ROC curve represents the relationship
between the false positive rate (FPR) and the true
positive rate (TPR) of a classification model
(Muschelli, 2020). A higher FPR on the horizontal
axis indicates that more actual negative instances are
incorrectly classified as positive. In contrast, a higher

TPR on the vertical axis demonstrates that more
actual positive instances are correctly classified as
positive. The optimal prediction scenario is when
FPR is 0 and TPR is 1, corresponding to the point (0,
1) on the coordinate axis. The ROC curve is an
evaluation metric for the classification model’s
accuracy, ranging from 0.5 to 1. A higher value under
curve (closer to 1) signifies better prediction
performance (Huan et al., 2023).

3. RESULTS AND DISCUSSION
3.1 Independent variables’ multicollinearity
determination and importance

To diagnose the issue of multicollinearity, this
research utilized both VIF and TOL. Such applications
aim to facilitate the selection of relevant factors.
Notably, a VIF value lower than 5 and a TOL value
above 0.2 collectively signify the absence of
substantial collinear tendencies among landslide
predictors (Yu et al., 2023). In Table 3, the predictors
selected are listed.

Table 3. Multicollinearity diagnosis: Variables selected for the susceptibility models

Variables VIF TOL Selection
Elevation 12.66 0.08 No
Aspect 3.61 0.28 Yes
Slope 2.05 0.49 Yes
Plan curvature 52.53 0.02 No
Profile curvature 69.67 0.01 No
NDVI 37.14 0.03 No
NDWI 34.96 0.03 No
SPI 1.00 0.99 Yes
TRI 1.09 0.99 Yes
TWI 29.45 0.03 No
Geology 1.03 0.97 Yes
Distance from fault 231 0.43 Yes
Distance from stream 1.91 0.52 Yes
Distance from road 247 0.40 Yes

Based on Table 3, variables with a VIF value
greater than 5 and a TOL value less than 0.2 were
excluded from the susceptibility model (Huan et al.,
2023). As a result, eight independent variables,
including aspect, slope, SPI, TRI, geology, distance
from fault, distance from stream, and distance from
road, were selected for the model’s training. As noted
by Pham et al. (2020), this process of removing
insignificant factors can improve the predictive
accuracy of landslide susceptibility —models.
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Subsequently, the selected variables in each model
were evaluated. In Figure 2, the importance of the
variables in the different models are illustrated.
According to Figure 2, the RF model exhibits a
predilection for assigning substantial importance to
variables, such as aspect, SPI, distance from fault,
slope, and distance from stream. Conversely, the GB
model manifests a pronounced emphasis on SPI,
succeeded by aspect, distance from stream, slope, and
distance from fault. The XGB model, in its evaluation,
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accords high significance to the distance from fault,
followed by aspect, SPI, distance from stream, and
slope. The STK model allocates considerable
significance to aspect, supplemented by distance from
fault, stream, SPI, and slope. In contrast, TRI,
geology, and distance from road are seen to be of

Random Forest

SPl

Geology

st from lauli Dist. [rom road

Dist. from stream

eXtreme Gradient Boost

St

A0%

Geology

Dist. from fault Dist. from road

Dist. [rom stream

Figure 2. Importance of the variables in different models

In this research, aspect is identified as a critical
factor across all models, focusing on the western
region of Chiang Mai, which forms the edge of the
intermontane basin adjoining the mountainous areas
that extend into the Republic of the Union of
Myanmar. This positioning leaves the eastern
guadrant, extending from northeast to southeast
(Yongsiri et al., 2023), more exposed to increased
solar radiation, rainfall, and seepage, alongside other
factors contributing to heightened landslide

Aspect

Aspect  Geology
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Geology

minimum relative importance. Collectively, all
models highlight the vital contribution of factors, such
as aspect, slope, SPI, distance from fault, and distance
from stream, as evidenced by their respective
significant percentages about landslide susceptibility.

Gradient Boost

SP1

Slope

Aspect

Disi. [rom faull Dist. from road

Dist. from stream
Stacking Ensemble

SPT

40%

Aspect

Dist. from fault Dist. from road

DisL. rom stream

vulnerability (Zeng et al., 2023a). It is evident,
therefore, that the intermontane basin topography
characterizing this area of the study is quite unique. In
different terrains, the significance of aspect varies. In
Nepal, Tanoli et al. (2017) observed that landslide
incidents predominantly occur on southern to western
slopes, highlighting the directions that receive more
intense monsoon rainfall, thereby escalating the
likelihood of landslides. Besides, the correlation
between steeper slope angles and the likelihood of
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landslides is obvious. In the context of Chiang Mai,
many landslides are noted on slopes with angles
ranging from 15° to 35°. This finding aligns with the
research by Dechkamfoo et al. (2022), signifying that
slope angles of 15° to 30° are prone to triggering
landslides in northern Thailand.

In the work by Sevgen et al. (2019), SPI
demonstrates the erosive power of flowing water. As
reported, the area’s terrain is exposed to land erosion
caused by stream power. Herein, the landscape gives
rise to valleys and high plains. The points of landslide
occurrence are located near these steep ridges, where
the water flow from rain is most intense due to the
steep terrain and not far from the stream (Zeng et al.,
2023a). The proximity to fault lines is a significant
factor in landslides within the study area. A number of
landslides are observed in areas close to active faults.
This observation is consistent with the findings of Wu
et al. (2020), who identified a linear relationship
between the distance from fault lines and the

distribution of landslides. This pattern suggests an
increased likelihood of landslides in areas closer to
fault lines, underscoring the importance of fault
proximity in assessing landslide risk.

3.2 Best combination of model’s hyper parameter

During the training of the susceptibility model,
hyperparameter tuning was performed using a grid
search technique (Ageenko et al., 2022; Abbas et al.,
2023). Each discrete model was evaluated using a 10-
fold cross-validation approach to determine the most
appropriate parameter combinations. In Table 4, the
results of this evaluation are presented, showing the
optimal hyperparameter combination for the ML
model.

According to Table 4, every hyperparameter
combination was chosen for the final model and fitted
to the training dataset using an empirical approach,
which achieved the most favorable results (Kuhn and
Johnson, 2019).

Table 4. The best combination of hyperparameters in ML models’ training

ML models Hyperparameters Value / Method
RF max_depth 50
min_sample_left 1
n_estimators 200
GB learning_rate 0.05
n_estimators 500
min_samples_leaf 2
min_samples_split 10
max_depth 20
XGB booster gbtree
colsample_bytree 0.7
eta 0.2
max_depth 10
STK subsample 1

final estimator
stack_method

logistic regression
predict_proba

3.3 Accuracy assessment for the modeling results

In Table 5, to evaluate the performance of the
four ML models, several metrics, including precision,
recall, F1-score, OA, and area under ROC curve, were
utilized. In Figure 3, the ROC curves for each of the
four models are shown, highlighting their respective
areas under the curve.

In Table 5, a comparative analysis of all the
landslide susceptibility models under consideration is
shown. Results demonstrate that the STK model
outperformed the GB, XGB, and RF models, with an
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OA of 81.75%. Furthermore, the F1-score of the STK
model (82.04%) confirmed its superior performance
compared to the other models. These results are
consistent with previous studies exploring landslide
susceptibility (Hu et al., 2020; Huan et al., 2023).

As observed in Figure 3 and Table 5, the STK
model has been identified as the most effective
approach for mapping landslide susceptibility, with a
ROC value of 0.8928, represented by the dark red
curve. In comparison, GB (dark green curve) with
0.8914, XGB (dark orange curve) with 0.8872, and RF
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(dark blue curve) with 0.8762 models exhibited lower
areas under the ROC curve. A ROC value exceeding
0.8 indicates good prediction ability, as highlighted in
previous research studies (Huan et al., 2023).
Therefore, the findings of this study suggest that the
STK model should be preferred when selecting a

Table 5. The models’ performance: Validation data

model for landslide susceptibility mapping. However,
in cases where models exhibit comparable evaluation
accuracy, it is essential to simultaneously consider
accuracy metrics and areas under the ROC curve to
select the best candidate model (Pham et al., 2016;
Zeng et al., 2023a).

Model Precision Recall F1-score OA ROC

RF 77.43% 80.54% 78.95% T77.47% 0.8762
GB 80.13% 81.14% 80.61% 80.63% 0.8916
XGB 81.72% 79.24% 80.46% 80.23% 0.8872
STK 82.92% 81.18% 82.04% 81.75% 0.8928

1.0

0.8 1

g
o
!

True Positive Rate

0.4 1

0.2 1

— RF (AUC = 0.8762)

— GB (AUC =0.8916)
XGB (AUC = 0.8872)

—— STK (AUC = 0.8928)

0.4

T
0.6 0.8 1.0

IFalse Positive Rate

Figure 3. Area under the ROC for each ML model predicting landslide susceptibility: x refers to FPR and y refers to TPR; RF model
(dark blue curve), GB model (dark green curve), XGB model (dark orange curve), and STK model (dark red curve).

3.4 Predicted landslide susceptibility

During the prediction stage, the four landslide
susceptibility models were reclassified into five
classes: namely, very high, high, moderate, low, and
very low, following the natural breaks (Jenks)

principle (Anis et al., 2019; Zeng et al., 2024), as
depicted in Figure 4. To validate the contrast of each
predicted class between the susceptible models, the
ratio of each susceptible class (Rs) was calculated and
presented, as in Table 6.

Table 6. Ratio of susceptible classes predicted from different ML models

Class prediction

Ratio of susceptible classes (Rs)

RF GB XGB STK
Very low 0.26 0.51 0.48 0.48
Low 0.26 0.15 0.17 0.18
Moderate 0.21 0.11 0.12 0.11
High 0.17 0.10 0.11 0.10
Very high 0.10 0.13 0.13 0.13
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According to Figure 4 and Table 6, the STK,
GB, and XGB models exhibit more uniform Rs values,
from very-low to very-high susceptibility classes. In
the case of RF, previous works have reported the
highest performance among its counterparts (Goetz et
al., 2015; Yu et al., 2023). In contrast, our results
confirm that the landslide susceptibility prediction
from the RF model exhibited a more moderate
susceptible area (0.21) than the other models (0.11,
0.12,and 0.11 for GB, XGB, and STK), corresponding
to a lower precision score (77.43%) in the RF model's
evaluation. Conversely, the predicted results from
STK, XGB, and GB models reveal comparable
outcomes with better precision scores of 82.92%,
81.72%, and 80.13%, respectively. Furthermore,
compared with its contenders, RF reported differences
between its low and very low class, with the low class
Rs revealing high density. Thus, it is seen that the
very-low class Rs value (0.26) was much lower than
in the other models. The bagging technique is
explicitly employed in the RF algorithm to mitigate
variance. Contrasting this, the boosting approach
effectively reduces bias and variance (Wu et al., 2020).
This dual reduction capability is a cornerstone of
boosting methods. Moreover, in the context of GB and
XGB, the boosting framework is seen to enhance the
ensemble model's performance (Table 5). Such an
outcome was achieved by minimizing overfitting in
GB and regulating model complexity in XGB,
primarily through adjusting the minimized loss
function (Huan et al., 2023).

In the realm of experimental models for
landslide prediction, the STK model emerges as
superior in performance compared to other singular
ML models, aligning with prior research in this field
(Hu et al., 2020; Huan et al., 2023). This enhanced
performance is attributed to integrating bagging and
boosting techniques as its foundational learners,
collaboratively diminishing bias and variance in
classification. This synergy notably augments the STK
model’s fitness to the training data (Wu et al., 2020).
Critically, the primary advantage of the STK model
lies in its amplified predictive capacity. Thus, prudent
selection of the combination of models or base
learners is recommended. Such a selection
necessitates a thorough evaluation of each learner
prior to their incorporation into ensemble models (Dou
et al., 2020).
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4. CONCLUSION

In this paper, results demonstrated that factors
like aspect, slope, SPI, distance from faults, and
distance from streams play a crucial role in
determining landslide susceptibility. Compared to its
counterparts, the novel STK model proved to be most
effective for predicting landslide hazards in the
intermontane basin terrain. It is significant that the
STK model achieved the highest ROC value of
0.8928, validating its high prediction ability and
justifying its selection as best candidate model. This
model is recommended for creating landslide
susceptibility maps in intermontane basin areas.
Further research needs to be undertaken to refine
model selection and base learner optimization for
enhanced predictive accuracy.
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