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The PCLake model has not previously been used for tropical reservoirs. This 

study attempted to apply the PCLake model to predict the chlorophyll a 

concentrations (Chl-a) in a tropical reservoir in Thailand. Sensitivity analyses 

were performed for the constants affecting the prediction of Chl-a in the 

phytoplankton module. The model calibration was performed by using the 

adjusted value of the most sensitive constant with the observed data from July to 

December 2020. The effects of the initial trophic state of the reservoir on the 

simulated Chl-a were evaluated. The results showed that Chl-a were sensitive to 

six constants. Among these constants, the value of the specific extinction of 

detritus (cExtSpDet) was adjusted using the calculated values from the typical 

limnological parameters of the studied reservoir. Statistical analyses of the results 

of calibration and the subsequent validation with the observed data from February 

to September 2022 were listed as follows: NSE=0.55 and 0.37, RSR=0.67 and 

0.79, and PBIAS=27% and 9%, respectively. The initial trophic state of the 

reservoir had no influence on the long-term prediction of Chl-a. This preliminary 

effort indicates that the PCLake model can be used to predict Chl-a, which is 

representative of algal biomass in tropical reservoirs and is essential to water 

quality models, without complex modifications. 
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1. INTRODUCTION

Eutrophication has many negative effects on 

aquatic ecosystems. Perhaps the most obvious 

consequence is the increased growth of algae and 

aquatic weeds that interfere with water use for fishing, 

recreational, industrial, agricultural and drinking 

purposes (Carpenter et al., 1998). Therefore, 

predictive model of eutrophication, such as the 

PCLake model, were used to predict and control 

eutrophication in various reservoirs. The model can 

estimate the temporal impacts of different reservoir 

operating policies, point/nonpoint sources of 

pollution, and land use management planning. 

PCLake used in this study is a freely distributed 

OSIRIS version released under the GNU Lesser 

General Public License (Mooij et al., 2010). PCLake 

was created for non-stratified temperate lakes in 

Northwestern Europe and has been applied 

effectively to several temperate lakes (Kuzyaka, 2015; 

Rolighed et al., 2016; Zhao et al., 2020; Zhang et al., 

2022) including those in the Mediterranean (Mellios et 

al., 2015; Laspidou et al., 2017; Coppens et al., 2020) 

and subtropical (Fragoso et al., 2011; Kong et al., 

2017) regions. However, it has never been used in the 

tropical areas. Most parameter values have been taken 

from much earlier studies with the model on a 

phytoplankton-dominated lake (Janse and Aldenberg, 

1990; Janse et al., 1992; Aldenberg et al., 1995), while 

other values were derived from experimental data and 

field research in a temperate Dutch lake and the 

remaining values were derived from literature reviews 

and from calibration based on the combined data of 

several lakes in the Netherlands (Janse et al., 1992; 

Janse et al., 1995). 

 Anthropogenic eutrophication is increasingly 

recognized as a major threat to inland and coastal 

water quality in Thailand, with frequent reports of 

increases in the frequency, duration and severity 

(Rayan et al., 2021; Thaipichitburapa and Mek-

Citation: Wongpipun P, Sirivithayapakorn S, Vongthanasunthorn N. Feasible application of PCLake model to predict water quality in tropical 

reservoirs. Environ. Nat. Resour. J. 2024;22(1):34-43.   (https://doi.org/10.32526/ennrj/22/20230251)

34



Wongpipun P et al. / Environment and Natural Resources Journal 2024; 22(1): 34-43  

sumpun, 2021; Pinmongkhonkul et al., 2022; Saetang 

and Jakmunee, 2022).  

 Although the PCLake model was mainly 

applied for natural lakes (Kuzyaka, 2015; Rolighed et 

al., 2016; Coppens et al., 2020; Zhang et al., 2022), 

this model can also be applied to artificial reservoirs 

(Mellios et al., 2015; Kong et al., 2017; Laspidou et 

al., 2017), as it has flexibility regarding the input 

constants or time series for variables. This means that 

extreme fluctuations in the variable can be captured 

throughout the year, especially in reservoirs.  

Algae play a key role in the eutrophication 

process and are essential for water quality modeling. 

In practice, total algal biomass is often represented by 

chlorophyll a (Chl-a), which is much easier to measure 

and provides a reasonable estimate of algal biomass 

(Zhen-Gang, 2017). This study attempted to 

demonstrate the potential application of the 

phytoplankton module of PCLake to predict the Chl-a 

in a tropical reservoir. 

2. METHODOLOGY

Study area 

The Khlong Luang Ratchalothorn (KLR) 

Reservoir is a reservoir providing water for 

agriculture, aquaculture, and water supply. The 

reservoir has a mean depth of 3.67 m, a surface area of 

27 km2 and a volume of 99 million m3. The average 

water retention time is 355 days. The reservoir is in a 

sub-basin of the Bang Pakong basin, located at 

13o23’00” N and 101o22’40” E in Ban Khlong sub-

district, Tha Boon Mi district, Koh Chan, Chonburi 

province, Thailand at 35.5 m above sea level. The 

climate is tropical with annual mean precipitation of 

1,302.3 mm (during 1993-2022), with the lowest mean 

monthly air temperature being in December (23oC) 

and the highest in April (35oC). The watershed areas 

(525 km2) are mostly mountains. The potential 

wavelengths in this reservoir calculated from the 

reservoir fetch was 15.10 m, half of which was greater 

than the average water depth in the reservoir, 

indicating complete mixing of the water (Dodson, 

2005; Blottiere, 2015).   

Model set-up 

From Figure 1, a monthly sampling campaign 

was conducted at the KLR Reservoir. Ten sampling 

stations were chosen, six in the reservoir (S1-S6) and 

four at the inlet (S7-S10). Surface water samples were 

collected based on grab sampling according to APHA 

et al. (1992). Originally, it was planned to collect 

samples once a month throughout the years 2020 until 

2022, but due to the outbreak of the coronavirus 

(COVID-19), the locked down was declared for 

certain periods of those years. Therefore, samples 

could not be collected continuously. As a result, water 

quality data obtained from two time periods, July-

December 2020 and February-September 2022, were 

used in the calibration and validation processes 

respectively. The analyzed water quality parameters 

were total phosphorus (TP), phosphate (PO4), 

ammonium (NH4), nitrate (NO3), Kjeldahl nitrogen 

(TKN), chlorophyll a, and suspended solids (SS). The 

standard methods from APHA et al. (1992) were used 

to measure TP, PO4, NH4, NO3, TKN, Chlorophyll a, 

and SS. A bulb thermometer was used to measure the 

water temperature. The clarity of the water was 

measured by Secchi disk. 

Figure 1. Location of sampling points (S1-S10) in Khlong Luang Ratchalothorn (KLR) Reservoir, Chonburi Province, Thailand. 
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The reservoir water level was recorded on a 

daily basis as part of the KLR Water Transmission and 

Maintenance Project of the Royal Irrigation 

Department. Meteorological data (mean daily wind 

speed and precipitation) was obtained from the 

Chonburi meteorological station of the Meteorological 

Department. The average daily global radiation was 

provided by the Department of Alternative Energy 

Development and Efficiency. 

The average load of suspended solids leached 

from the soil surrounding the reservoir was calculated 

using the universal soil loss equation (Thitirojanawat 

and Chareonsuk, 1995). The nutrient load from the soil 

surface was determined by analyzing the soluble 

nutrients of different surface soils classified by land 

use types. 

The PCLake model consists of seven 

comprehensive modules: phytoplankton (suspension), 

sedimentary phytoplankton, transport processes, 

vegetation, food webs, wetland zone (marsh zone), 

and seasonality. Current research requires the model 

to maintain mass balance of dissolved matter and 

particles in the water layer according to the amount of 

water flowing into and out of the reservoir. There is 

also a focus on simulating suspended phytoplankton in 

the form of Chl-a, therefore only the phytoplankton 

module and the transfer process module are used. 

Time step of calculation is 1 day. 

2.1 Sensitivity and model performance testing 

The constants affecting the Chl-a were identified 

in the phytoplankton module of the PCLake model. The 

sensitivity test determined the effect of changing the 

constant in the governing equation on the model output, 

based on the sensitivity coefficient (SC), as shown in 

Equation 1 (Rangel-Peraza et al., 2016): 

SC =
(% Change in output variables)

(% Change in input constants)
 (1) 

In the current study, the constant was doubled 

from the default value in the model (to represent 

extreme physical, chemical, or biological condition), 

except for maximum reduction factor of phosphorus 

adsorption affinity (fRedMax) that was increased only 

1.2 times because the model could not be run with 

higher values. For each simulation run (365 days), 

only one constant was changed, while the other 

constants used the model defaults. The model default 

initial values, input factors, and time-series data of the 

variables were also used for model initialization in the 

sensitivity tests. Constant values accounting for the 

top-10% of the most significant change in Chl-a output 

were identified. 

The Nash-Sutcliffe efficiency coefficient 

(NSE), the root-mean-square error (RMSE)-

observations standard deviation ratio (RSR), and 

percentage bias (PBIAS) were used to evaluate model 

performance based on the general performance ratings 

(Table 1) (Moriasi et al., 2007).  

NSE is a normalized measurement that assesses 

how much the residual variance differs from the 

measured data variance. NSE can be calculated using 

Equation 2: 

NSE = 1 − [
∑ (Yiobs − Yisim)

2n
i=1

∑ (Yiobs − Ymean,obs)
2n

i=1

]    (2) 

Where; Yiobs is the ith observation for the 

constituent being evaluated, Yisim is the ith simulated 

value for the constituent being evaluated,  Ymean,obs is 

the mean of observed data for the constituent being 

evaluated and n is the total number of observations. 

NSE ranges from -∞ to 1.0. If the value is equal to or 

less than 0, it is considered unacceptable.  

RSR is the RMSE normalized by the observed 

standard deviation. It is calculated as the ratio of the 

RMSE and the standard deviation of the measured data 

as shown in Equation 3: 

RSR =
RMSE

STDEVobs
=

[√∑ (Yiobs − Yisim)
2n

i=1 ]

[√∑ (Yiobs − Ymean,obs)
2n

i=1 ]

(3) 

RSR is greater than or equal to zero. The lower 

the RSR (the lower the RMSE), the better the model 

simulation performance. If RSR is equal to 0, the 

model simulation is perfect. 

PBIAS measures the average tendency of the 

simulated data to be larger or smaller than their 

observed counterparts. PBIAS is calculated with 

Equation 4: 

PBIAS = [
∑ (Yiobs − Yisim)n

i=1

∑ (Yiobs)n
i=1

× 100]   (4) 

The optimal value of PBIAS is 0; positive 

values indicate a model bias toward underestimation, 

whereas negative values indicate a bias toward 

overestimation. 
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Table 1. General performance ratings for recommended statistics for monthly time step1 

Performance Rating NSE RSR PBIAS (%) 

Very good 0.75 < NSE ≤ 1.00 0.00 ≤ RSR ≤ 0.50 PBIAS < ±25 

Good 0.65 < NSE ≤ 0.75 0.50 < RSR ≤ 0.60 ±25 ≤ PBIAS < ±40 

Satisfactory 0.50 < NSE ≤ 0.65 0.60 < RSR ≤ 0.70 ±40 ≤ PBIAS < ±70 

Acceptable/Unsatisfactory NSE ≤ 0.50 RSR > 0.70 PBIAS ≥ ±70 

Unacceptable NSE < 0 – – 

NSE=Nash-Sutcliffe efficiency coefficient; RSR=RMSE-observations standard deviation ratio; PBIAS=Percentage bias. 
1Moriasi et al. (2007) 

2.2 The effect of using a field sensitive constant as 

a computational constant in the PCLake model 

2.2.1 Calibration and validation 

In the calibration process, values of the top-10% 

sensitive constants in the phytoplankton module were 

adjusted using either calculated or literature values. 

The default initial concentration of each 

phytoplankton species, which was set in eutrophic 

state, was used in the calibration since the observed 

Chl-a in the field from the beginning of July to 

December 2020 indicated that the reservoir was in 

eutrophic state. 

The results (scenario 2) were compared with the 

simulation that used all constants as the model default 

(scenario 1).  The validation of the model with the 

chosen constants in the calibration process was 

performed using the dataset of February to September 

2022 (scenario 3). The initial concentrations of each 

phytoplankton species in model validation were 

obtained from the output of the calibration based on 

the Chl-a. The initial values, input factors and time-

series data from actual field observations in calibration 

and validation are shown in Table 2. 

2.2.2 Effect of initial concentrations of 

individual phytoplankton species 

The effects of initial concentrations of diatoms, 

green algae, and blue-green algae were investigated. 

The concentration of each phytoplankton species 

varied with the trophic state of the reservoir. The 

studied reservoir, Khlong Luang Ratchalothorn (KLR) 

Reservoir (Figure 1) has the possibility to switch 

between 3 states: mesotrophic, eutrophic and hyper-

eutrophic (Boondao et al., 2019). Because field data 

on the concentrations of individual phytoplankton 

species were not available, data from the literature 

were used for each state as shown in Table 3.  

Table 2. Initial values, input factors and time-series data of variables used for calibration and validation in PCLake model 

Description Variable Value (calibration 

step) from Jul to  

Dec 2020 

Value (validation 

step) from Feb to  

Sep 2022 

Unit 

Initial value Lake depth 2.25 2.97 m 

Initial concentration of diatoms in 

lake water 

0.5 (default) 0.0171 (from 

calibration process) 

g of dry-weight/m3 

Initial concentration of green 

algae in lake water 

0.5 (default) 0.0209 (from 

calibration process) 

g of dry-weight/m3 

Initial concentration of blue-green 

algae in lake water 

3.0 (default) 0.4095 (from 

calibration process) 

g of dry-weight/m3 

Dry-weight fraction of solid in 

sediment 

0.246 0.172 g of dry-weight/g of 

sediment 

Organic fraction of dry-weight 

sediment 

0.102 0.073 g of dry-weight/g of 

dry-weight sediment 

Input factors Lake size, expressed as fetch 5,168 5,168 m 

Iron content of inorganic matter 0.032 0.016 g of iron/g of dry-

weight 

Oxygen concentration in inflow 2.14 3.90 mg of oxygen/L

Aluminum content of inorganic 

matter 

0.021 0.019 g of aluminum/g of dry-

weight 
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Table 2. Initial values, input factors and time-series data of variables used for calibration and validation in PCLake model (cont.) 

Description Variable Value (calibration step) 

from Jul to Dec 2020 

Value (validation step) from 

Feb to Sep 2022 

Unit 

Time-series Water temperature Monthly time-series; 

Values ranging from 

24 to 30 (28±2)1 

Monthly time-series; 

Values ranging from 

28 to 32 (30±2) 

oC 

Light Daily time-series; 

Values ranging from 

519.722 to 7,548.889 

(4,719.991±1,493.247) 

Daily time-series; 

Values ranging from 

1,868.0711 to 7,590.625 

(5,405.128±1,373.210) 

W/m2 

Wind Daily time-series; 

Values ranging from 

0.5631 to 3.3786  

(1.4314±0.6489) 

Daily time-series; 

Values ranging from  

5.068 to 20.272  

(8.762±2.881) 

m/s 

Inflow Daily time-series; 

Values ranging from 

0.192 to 302.061 

(30.084±44.477) 

Daily time-series; 

Values ranging from 

0.008 to 321.953 

(33.586±43.908) 

mm/d 

Outflow Daily time-series; 

Values ranging from 0 to 

22.688 (4.051±5.950) 

Daily time-series; 

Values ranging from 1.685 

to 74.654 (22.408±20.187) 

mm/d 

Time-series Phosphorus loading Monthly time-series; 

Values ranging from 

0 to 0.225 (0.036±0.084) 

Monthly time-series; 

Values ranging from 

0 to 0.096 (0.032±0.038) 

g of phosphorus/ 

m2·d 

Phosphate loading Monthly time-series; 

Values ranging from 

0 to 0.089 (0.014±0.033) 

Monthly time-series; 

Values ranging from 

0 to 0.046 (0.015±0.019) 

g of phosphorus/ 

m2·d 

Phosphorus bound to 

organic matter 

Monthly time-series; 

Values ranging from 

0 to 0.062 (0.010±0.023) 

Monthly time-series; 

Values ranging from 

0 to 0.050 (0.017±0.019) 

g of phosphorus/ 

m2·d 

Nitrogen loading Monthly time-series; 

Values ranging from 

0 to 0.706 (0.113±0.262) 

Monthly time-series; 

Values ranging from 

0 to 0.357 (0.116±0.141) 

g of nitrogen/m2·d 

Ammonium loading Monthly time-series; 

Values ranging from 

0 to 0.09 (0.02±0.03) 

Monthly time-series; 

Values ranging from 

0 to 0.01 (0.01±0.01) 

g of nitrogen/m2·d 

Time-series Nitrate loading Monthly time-series; 

Values ranging from 

0 to 0.24 (0.04±0.09) 

Monthly time-series; 

Values ranging from 

0 to 0.14 (0.05±0.06) 

g of nitrogen/ 

m2·d 

Nitrogen bound to 

organic matter 

Monthly time-series; 

Values ranging from 

0 to 0.147  

(0.023±0.055) 

Monthly time-series; 

Values ranging from 

0 to 0.213  

(0.065±0.085) 

g of nitrogen/ 

m2·d 

Inorganic matter 

loading 

Monthly time-series; 

Values ranging from 

0.002 to 11.733  

(1.745±4.406) 

Monthly time-series; 

Values ranging from 0.002 

to 8.186  

(2.245±3.390) 

g of dry-weight/ 

m2·d 

1mean±SD 

Table 3. Initial concentration scenarios for each species of phytoplankton 

Scenario Initial concentration of phytoplankton in lake water (gDW/m3) Sources 

Diatoms Green algae Blue-green algae 

4 (eutrophic) 0.50 0.50 3.00 PCLake model’s default values 

5 (mesotrophic) 1.47 0.09 0.81 Napiórkowska-Krzebietke et al. (2013) 

6 (hyper-eutrophic) 4.29 0.95 39.81 Dantas et al. (2008) 
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3. RESULTS AND DISCUSSION

3.1 Sensitivity and model performance testing

In total, there are 59 constants related to the Chl-

a in the phytoplankton module of the PCLake model 

(except those in the Arrhenius equation and an 

optimum function). Only the sensitivity coefficients 

results of the top-10% sensitive constants are listed in 

Table 4.  

The sensitivity coefficients indicated that the 

top-10% sensitive constants of variation in the Chl-a 

output were: cChDBlueMax (maximum chlorophyll-

to-carbon ratio of blue-green algae), cTmOptBlue 

(optimum temperature of blue-green algae), 

cExtSpBlue (specific extinction of blue-green algae), 

kMortBlueW (mortality constant of blue-green algae 

in water), fPAR (fraction of photosynthetically active 

radiation), and cExtSpDet (specific extinction of 

detritus). 

Because the composition of phytoplankton in 

tropical lakes is generally similar to that of temperate 

lakes (Nilssen, 1984; Sarmento, 2012), default values 

were given to the following model constants: 

cChDBlueMax, cTmOptBlue, cExtSpBlue and 

kMortBlueW. The value of fPAR was also given by 

default because it corresponded to those measured in 

tropical regions (Noriega et al., 2021). 

The value of cExtSpDet is measured in 

m2/gDW. This constant may vary depending on the 

size and on the light-absorption and light-scattering 

properties of the detritus. The value is the reciprocal 

of the amount of detritus per square meter in the water 

column above the Secchi disk and can be calculated 

using Equation 5 (Carlson, 1977): 

cExtSpDet =
Kdet

(SS − Chla)
(5) 

Where; SS is suspended solids, defined as 

organic solids (in g/m3). Chla is the chlorophyll a 

concentration (in g/m3). Kdet is light extinction from 

detritus (in m-1), calculated from Equation 6: 

Kdet = K − Kpure − Kphyt  (6) 

Where; K is total light extinction (in m-1), 

calculated from Equation 7, Kpure and Kphyt are light 

extinctions from pure water and phytoplankton, 

respectively. Kpure was set to be 0.1 m-1 (Lewis, 1987). 

Kphyt can be calculated according to Equations 8: 

K = −1 ×
ln (SDlight)

SD
(7) 

Where; SDlight is the fraction of surface light 

penetration at the SD and is generally reported as 0.1 

of SD (Huszar et al., 2006). SD is Secchi disk (in m). 

Kphyt = (
cExtSpDiat + cExtSpGren + cExtSpBlue

3
) × Chla    (8) 

Where; cExtSpDiat, cExtSpGren, and 

cExtSpBlue are the specific extinction of diatoms, 

green algae, and blue-green algae, respectively 

(Huszar et al., 2006). 

The values of SD, SS, and Chla were known 

from field surveys on November 26, 2020 (Table 5), 

while cExtSpDiat, cExtSpGren, and cExtSpBlue were 

obtained from the literatures (Riemann et al., 1989; 

Lee et al., 2000; Fujiki and Taguchi, 2002; Reynolds, 

2006; Zhang et al., 2012; Vendruscolo et al., 2019). 

From Equations 5-8, the value of cExtSpDet would be 

2.538 m2/gDW.  

3.2 The effect of using a calculated constant as a 

computational constant in the PCLake model 

The simulated Chl-a from scenario 1 (all default 

constants) and scenario 2 (cExtSpDet, calculated from 

field data with a value of 2.538 m2/gDW and other 

constants as model default values) were compared 

with the observed data in the period from July to 

December 2020 are shown in Figure 2.  

The results show that scenario 2 (NSE=0.55, 

RSR=0.67, PBIAS=27%) is more consistent with the 

observed data than scenario 1 (NSE=-0.005, 

RSR=1.00, PBIAS=-75%). That is, the PCLake model 

satisfactorily predicted the Chl-a in the KLR Reservoir 

with only the cExtSpDet being changed from the 

model default (other constants were default values in 

the model) (NSE=0.55, RSR=0.67), but good and bias 

toward underestimated (PBIAS=27%). In the 

validation (scenario 3) with the observed data between 

February and September 2022, the performance was 

found to be acceptable (Figure 3, with NSE=0.37, 

RSR=0.79), but very good and bias toward 

underestimated (PBIAS=9%).  

3.3 Effect of initial concentrations of individual 

phytoplankton species 

The results of the simulation in reservoir with 

different initial trophic state are shown in Figure 4.
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Table 4. The top 10% sensitivity constants relate to the chlorophyll a concentrations in the phytoplankton module of the PCLake model 

Constant Unit Description Default 

constant 

Increased 

constant 

Simulated mean 

chlorophyll a 

concentrations 

calculated from the 

default constant 

simulation (mg/m3) 

Simulated mean 

chlorophyll a 

concentrations 

calculated from the 

increased constant 

simulation (mg/m3) 

Sensitivity 

coefficient 

cChDBlueMax mg Chl/ 

mg DW 

Maximum chlorophyll-

to-carbon ratio of blue-

green algae 

0.015 0.030 51.599 92.321 -0.790 

cTmOptBlue oC Optimum temperature 

of blue-green algae 

25 50 51.599 11.693 0.770 

cExtSpBlue m2/g DW Specific extinction of 

blue-green algae 

0.35 0.70 51.599 34.524 0.330 

kMortBlueW d-1 Mortality constant of 

blue-green algae in 

water  

0.01 0.02 51.599 37.278 0.280 

fPAR – Fraction of 

photosynthetically 

active radiation (PAR)

0.48 0.96 51.599 39.304 0.238 

cExtSpDet m2/g DW Specific extinction of 

detritus 

0.15 0.30 51.599 39.423 0.236 

Table 5. Secchi disk (SD), suspended solid (SS) and chlorophyll a concentration from field surveys on November 26, 2020 

Variable Value Unit 

Secchi disk 0.22 m 

Suspended solid 6.8 g/m3 

Chlorophyll a concentration 0.0034 g/m3 

Figure 2. Simulated time-series of chlorophyll a concentrations using default and calculated cExtSpDet and observed chlorophyll a 

concentrations data in Jul to Dec 2020 

Figure 3. Simulated time-series of chlorophyll a concentrations against the observed data in the validation 
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Figure 4. Simulated time-series of chlorophyll a concentrations with different initial trophic status 

The results indicated that regardless of the 

initial trophic status of the KLR Reservoir, the 

simulated Chl-a were similar from day 60 onwards. In 

other words, the initial concentrations of diatoms, 

green algae, and blue-green algae in the reservoir had 

no influence on the long-term prediction of Chl-a. 

Thus far, the PCLake model has been successful 

in simulating Chl-a and phytoplankton biomass in 

natural lakes located in the Mediterranean region 

(Coppens et al., 2020) and temperate regions (Zhao et 

al., 2020; Zhang et al., 2022), but has never been used 

in tropical areas. Therefore, the present research is the 

first attempt to apply such a model to a tropical area. 

The findings from this preliminary study indicated that 

the PCLake model could be applied to predict the Chl-

a in this reservoir. The modification on one of the most 

sensitive constant, cExtSpDet, was made based on 

typical limnological parameters of the studied 

reservoir. Therefore, this model could potentially be 

applied to the tropical reservoir without complicated 

modifications. The potential usage of this model 

provides crucial support to the prospective water 

quality management programs for the existing 

reservoirs in Thailand. There is also an opportunity to 

apply for additional budget to extend the study period 

for more accurate simulation results. 

4. CONCLUSION

The performance of the phytoplankton module 

in the PCLake model was examined for its application 

in tropical reservoir (i.e., the KLR Reservoir), in terms 

of its ability to predict Chl-a. The results show that six 

constants were sensitive to Chl-a: cChDBlueMax, 

cTmOptBlue, cExtSpBlue, kMortBlueW, fPAR, and 

cExtSpDet. To Apply the PCLake model to the KLR 

Reservoir, only the cExtSpDet was selected for 

calibration to best fit the observed Chl-a for the period 

July-December 2020 by using the calculated value 

from the typical limnological parameters of this 

reservoir. The performance results of the model were 

satisfactory to good and acceptable to very good in the 

calibration and validation process, respectively. The 

initial trophic status of the reservoir had no influence 

on the long-term prediction of Chl-a. The results 

demonstrated the potential usage of PCLake model to 

predict Chl-a in tropical reservoir with uncomplicated 

modification. 

Until now, long-term field data related to the 

sensitive parameters in the calculation of Chl-a as well 

as the concentration of each species of phytoplankton 

were not available in the Khlong Luang Ratchalothorn 

Reservoir. It is suggested that monitoring plan for 

water quality simulation is necessary for water quality 

management in this and other reservoirs. 
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