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This research investigated the roles of correlations among physical factors in the 

probabilistic simulation of volatile organic compounds (VOCs) emitted from a 

marine vessel (known as floating storage and offloading, FSO), located in the 

Gulf of Thailand. The physical factors in this study were wave height, ambient 

temperature, storage temperature, storage quantity, Reid vapor pressure, and the 

daily incoming rate. These physical factors were transformed into normally 

distributed data and a second-order multiple linear regression (MLR) with 

interaction effects, that were then used to determine the relationship between the 

transformed physical factors and the VOC venting volume from the FSO. The 

dataset of relevant predictors (transformed physical factors and interactions) that 

provided the maximum adjusted coefficient of determination was chosen for 

inclusion in the MLR. After that, two datasets of 1,000 venting volumes (one 

with and one without correlations among physical factors) were simulated. In the 

simulation, 1,000 datasets of six physical factors were generated according to 

observed averages and standard deviations. Cholesky randomization was used to 

generate the correlated physical factors for the simulation with correlation among 

physical factors. The averages of VOC venting volumes calculated from the 

generated physical factors when correlations among physical factors were and 

were not applied were 211,610 and 210,906 ft3, respectively (observed average 

was 210,984 ft3), with standard deviations of 38,828 and 40,787 ft3, respectively 

(observed standard deviation was 67,961 ft3), and skewness values of 0.74 and 

0.51, respectively (observed skewness was 0.71). Therefore, correlation among 

the physical factors improved the skewness and provided better simulation results 

for VOC emission. 
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1. INTRODUCTION

Volatile organic compounds (VOCs) contribute 

to the formation of tropospheric ozone, which causes 

negative impacts on human health and the 

environment (Shao et al., 2020). Under normal 

atmospheric conditions, the VOCs emitted from 

natural gas liquids (NGLs) comprise 2.63% ethane, 

14.60% propane, 14.87% butane, 1.96% pentane, 

0.26% hexane, and 0.17% heptane (Seekramon, 2015; 

Drysdale, 2019). While operating a marine vessel, 

called floating storage and offloading (FSO), the 

increase in incoming NGLs into the storage tank raises 

the internal pressure, leading to VOC evaporation and 

accumulation in the tanks. The accumulated VOCs are 

eventually released to the atmosphere via the FSO vent 

stack to prevent an explosion and deformation of the 

FSO storage tanks (Seekramon, 2015; Vos et al., 

2007). VOCs are key factors in forming ozone and fine 

particulates in the atmosphere. Human exposure to 

such pollutants at high concentrations over extended 
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periods has long-term adverse health effects, such as 

prolonged eye, nose, and throat irritation among the 

exposed workforce (Mo et al., 2021). 

It has been reported that VOC emissions from 

storage tanks were associated with several physical 

factors relating to the NGLs and/or oil products and 

operating conditions, including Reid vapor pressure 

(RVP), storage quantity, storage temperature, product 

incoming rate, and turbulence from NGLs or oil 

movement (Rudd and Hill, 2001). Additionally, the 

VOC emission from an FSO tank is affected by 

ambient conditions (Alam et al., 2019), including solar 

radiation, ambient temperature, and turbulence from 

wave height (Hu et al., 2020; Lin et al., 2009; Yang et 

al., 2017; Lang et al., 2017). However, there has been 

no integrated investigation of these physical factors 

and applied probabilistic simulation to predict the 

VOC emission.  

Probabilistic simulation is a statistical technique 

for exploring the impact of uncertainty in data 

(Alshanbari et al., 2023). In a probabilistic simulation, 

various inputs are used to calculate the outputs under 

different probabilities. Lynd and O’brien (2004) used 

a second-order Monte Carlo simulation to estimate 

disease risks to produce a risk-benefit acceptability 

curve. Cao et al. (2013) used a probabilistic simulation 

to model oil spilled concentration based on time, 

magnitude, and location. The obtained simulation was 

used to quantify risk analysis and to support a 

comprehensive spill management framework. Lin et 

al. (2022) used probabilistic simulation to estimate 

the exposures and risks of indoor VOCs and 

formaldehyde based on their concentrations, 

inhalation rates, exposure frequencies, and the body 

weights of the receptors. The current study used 

probabilistic simulation to predict the VOC venting 

volume based on various physical factors during the 

FSO operation. Typically, the physical factors are 

correlated with each other. Therefore, the simulation 

result may be inaccurate if such correlations are 

ignored. Thus, simulation with correlation among 

physical factors can produce more accurate results. 

In this study, six physical factors (wave height, 

ambient air temperature, storage temperature, storage 

quantity, RVP, and daily incoming rate of the NGLs) 

were used in the probabilistic simulation of the venting 

volume associated with VOC emission. In addition, 

the role was investigated of correlations among these 

physical factors in probabilistic simulation. The 

results from this study can be applied to simulate the 

venting volume of VOC-contained gas from the FSO 

stack under different probabilities, which, in turn, 

would be useful for many purposes, especially those 

involving risk assessment.   

2. METHODOLOGY

2.1 Data gathering and screening

The data used in this study consisted of the 

VOC venting volume from the stack of an FSO in the 

Gulf of Thailand and six relevant physical factors 

influencing the venting volume (wave height, ambient 

temperature, storage temperature, storage quantity, 

RVP, and daily incoming rate of the NGLs). Wave 

heights were collected using a wave buoy (Fugro; 

Norway). Data were collated 100 times per day but 

only 33 middle-range data out of 100 daily wave 

height data were used to calculate the average and 

reported as daily wave height. Ambient temperatures 

were measured using temperature sensors (PT100; 

SMA Solar Technology; Germany). Storage 

temperature was measured using a temperature sensor 

and storage quantity was measured based on a radar 

beam method. These instruments were included in the 

tank monitoring system (Kongsberg GL-300; 

Norway). The daily incoming NGL rate was 

calculated as the difference between the storage 

quantities on 2 consecutive days. RVP was defined as 

the absolute vapor pressure of the liquid at 37.8 ºC 

(100 ºF). Its value was obtained based on the ASTM-

D323 test method, using the Holler Bomb Test 

(Koehler Instrument Co. Ltd.; USA). The VOC 

venting volume from the stack of the FSO was 

measured daily using an ultrasonic flare gas flow 

meter (GF868; GE; USA). This instrument was 

installed on the vent stack of the FSO. These data were 

collected throughout 2020. However, the data on the 

VOC venting volume on some days might be 

discontinuous due to closure of the vent stack during 

bad weather or stack maintenance, resulting in less 

venting volume than usual. For this reason, venting 

volume data of less than 90,000 ft3 were excluded 

from this study. 

2.2 Determination of relationship between physical 

factors and venting volume 

Multiple linear regression (MLR) is a statistical 

technique that can be used to analyze the relationship 

between the physical factors and venting volume. 

However, since this research conducted probabilistic 

simulation and Cholesky randomization, one of the 

steps of probabilistic simulation requires the inputs to 

be normally distributed. Therefore, the data on 
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physical factors were transformed for normality before 

determining the relationship. 

2.2.1 Two-step normality transformation 

Two-step normality transformation was applied 

to transform each physical factor for normality 

(Templeton and Burney, 2017). First, the data were 

transformed for uniformity. In this step, the data of 

each physical factor were converted to a percentile 

rank (Equation 1) and uniformly distributed: 

Percentile Rank (Xi) =  
Rank(Xi)

100(n+1)
 (1) 

Where; Xi  is the ith smallest data,

Percentile Rank (Xi) is the percentile rank of Xi ,

Rank(Xi)  is an ascending rank of Xi , and n  is the

count of data. 

The second step was a transformation of data 

from uniformity to normality. In this step, the inverse 

normal distribution was used to convert the percentile 

ranks (resulting from the first step) to provide 

normally distributed z-scores (Equation 2): 

p = μ + √2   σ erf−1(−1 + 2Pr)  (2) 

Where; p is the transformed data, μ is the mean 

of the data, σ is the standard deviation of the data, 

erf−1 is the inverse of the error function, and Pr is a

probability calculated from the percentile rank. 

2.2.2 Second-order multiple linear regression 

with interaction effects and selection term of terms and 

measurement of accuracy   

MLR was used to predict the VOC venting 

volume from the six independent variables 

(transformed wave height, transformed ambient 

temperature, transformed storage temperature, 

transformed storage quantity, transformed RVP, and 

transformed daily incoming rate). Since the effect of 

each independent variable may vary, the relationships 

between the VOC venting volume and the independent 

variables were determined based on a second-order 

MLR with interaction effects, as shown in Equation 3 

(Cho and Lee, 2018; Jia et al., 2020): 

Y =  a + ∑ bi
n
i=1 xi + ∑ ∑ cij

n
j=i

n
i=1 xixj  (3) 

Where; Y is the VOC venting volume, a, bi, and 

cij are constants, n is a number of factors, and xi and xj 

are the values of ith and jth independent variables, 

respectively. 

Since not all interaction effects were necessary 

for the prediction of the VOC venting volume, the 

adjusted coefficient of determination (adjusted R2) 

was calculated to determine the usefulness of each 

term in the MLR. The adjusted R2 was calculated 

using Equation 4 (Alam et al., 2019; Pham, 2019): 

Radj
2 = 1 − (1 − R2) (

n−1

n−p−1 
)          (4) 

Where; Radj
2  is the adjusted coefficient of

determination (adjusted R2), R2  is the coefficient of

determination, n is the number of data, and p is the 

number of predictors. 

The terms in the MLR were selected by 

maximizing the adjusted R2. In other words, only the 

terms that improved the value of the adjusted R2 were 

included in the MLR. After the selection of terms, the 

root mean squared error (RMSE) and coefficient of 

determination (R2) were calculated to evaluate the 

accuracy of the MLR. Finally, the significance of each 

term in the MLR was appraised based on a t-test at a 

significance level of 0.05 (Cho and Lee, 2018). 

2.3 Probabilistic simulation of venting volume 

Probabilistic simulation was used to generate 

different values of the venting volume. First, the 

average and standard deviation of each physical factor 

were calculated, as well as the correlation coefficients 

among physical factors. Then, 1,000 datasets of 

relevant physical factors were generated according to 

the calculated averages, standard deviations, and 

correlations. After that, the 1,000 datasets were used 

to calculate 1,000 venting volumes. The distribution of 

these 1,000 venting volumes represented the venting 

volume at different probabilities. The diagram of 

probabilistic simulation is shown in Figure 1. 

In generating the 1,000 datasets of physical 

factors, the Cholesky randomization method was used 

to create a dataset with specified correlation 

coefficients. First, the physical factors (wave height, 

ambient air temperature, storage temperature, storage 

quantity, daily incoming rate, RVP) were transformed 

to normally distributed data. After that, the correlation 

matrix was determined (the matrix containing the 

correlation coefficients among variables-transformed 

wave height, transformed ambient air temperature, 

transformed storage temperature, transformed storage 

quantity, transformed daily incoming rate, and 

transformed RVP-calculated from the MLR). Then, 

the Cholesky decomposition process was used to 

decompose the correlation matrix into a triangular 

matrix and its transpose, as shown in Equation 5 

(Golub and Loan, 1983; Trefethen and Bau, 1997):  
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A = LLT     (5) 

Where; A  is the correlation matrix, L  is the 

lower triangular matrix with real and positive diagonal 

entries, and LT is the transpose of L.

After that, a 6 × 1,000 matrix, containing random 

numbers between 0 and 1, was created (denoted as P). 

The six columns in matrix P represented the six 

variables (transformed wave height, transformed 

ambient air temperature, transformed storage 

temperature, transformed storage quantity, 

transformed daily incoming rate, and transformed 

RVP). Then, a matrix containing the inverse of the 

standard normal distribution of the elements of the 

matrix P was generated (denoted as X). After that, 

matrix X was multiplied by matrix L, as shown in 

Equation 6. The result was a matrix (denoted as X*) 

containing random numbers, the correlation 

coefficients of which are matrix A: 

X∗ = XL  (6) 

Finally, each column of matrix X* was 

multiplied by the standard deviation of each variable 

(the variable each column represented) and the 

average of each variable was added to the product (the 

multiplication result). This process yielded 1,000 sets 

of random variables, the average, standard deviation, 

and correlation of which were according to those of 

the observed values. In the step of calculating venting 

volumes, 1,000 sets of random variables were used in 

the MLR to calculate the VOC venting volumes. 

Figure 1. Flowchart of probabilistic simulation 
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2.4 Evaluation of role of correlation among 

physical factors 

To evaluate the role of correlation among the 

physical factors, 2 probabilistic simulations were 

conducted. The first simulation was conducted 

without correlation among the physical factors. In that 

simulation, matrix X in section 2.3 was not multiplied 

by matrix L . The variables were generated by the 

multiplication of each column of matrix X using the 

standard deviation of each variable and the addition 

of the average of each variable to the multiplication 

result. The second simulation applied correlation 

among physical factors, which followed all the steps 

mentioned in section 2.3. The difference between 

moments (averages, standard deviations, and 

skewness) and percentiles of the VOC venting 

volumes from these 2 simulations were used to 

determine the role of correlation among physical 

factors.  

3. RESULTS AND DISCUSSION

3.1 Data transformation

In the gathered data, there were 40 days for 

which the VOC venting volumes were less than 

90,000 ft3 due to closure of the vent stack, resulting 

from poor weather conditions or stack maintenance. 

Therefore, the data on these 40 days were excluded 

and only the data on the remaining 326 days were 

used. The summarized values of physical factors, 

both before and after the two-step normality 

transformation, during the study period are shown in 

Table 1. The ambient air temperature (average of 

28.4°C and standard deviation of 0.9°C) was higher 

and had less variability than those from other studies 

because the study area was located in the tropical zone 

(Gjesteland et al., 2019; Hu et al., 2020; Stricklin, 

2014). The RVP value had low variability because the 

NGLs of each batch had a consistent composition. 

Because of the application of the two-step normality 

transformation, the transformed data followed a 

normal distribution. The comparison between the 

non-transformed and transformed data revealed that 

the skewness of the transformed data was close to 

zero. 

3.2 Relationship between VOC venting volume 

and physical factors   

The set of terms producing the highest adjusted 

R2 of the MLR and the coefficients of these terms, 

together with the  results  of the t-test, are  shown  in  

Seekramon C et al. / Environment and Natural Resources Journal 2024; 22(4): 335-345 
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Table 2. The significant terms were: 1) transformed 

RVP; 2) transformed wave height; 3) transformed 

storage temperature; 4) transformed daily incoming 

rate; 5) transformed RVP × transformed daily 

incoming rate; 6) transformed RVP × transformed 

wave height; and 7) transformed RVP2. Therefore, 

these sets of terms in the MLR were the best to 

estimate the VOC venting volume. The significant 

factors were consistent with those determined using 

the non-transformed data, as described by Seekramon 

(2023), except for the addition of the daily incoming 

rate, which was significant in the current study. The 

daily incoming rate related to the liquid velocity 

feeding into the tank. (A high daily incoming rate 

caused a high velocity and enhanced the turbulence of 

NGLs, leading to high VOCs venting volume). The 

other significant factors have been discussed in 

Seekramon (2023). The significance of the terms 5-7 

above (transformed RVP × transformed daily 

incoming rate, transformed RVP × transformed wave 

height, and transformed RVP2) suggested that the 

effects of RVP, wave height, and daily incoming rate 

were not constant. For example, a high RVP promoted 

NGL evaporation, corresponding to the VOC venting 

volume (Rudd and Hill, 2001; Stricklin, 2014), and at 

a high daily incoming rate and wave height promoted 

VOC venting volume (Deligiannis et al., 2016).

Table 2. Terms from MLR between transformed physical factors and VOC venting volume providing highest value of adjusted R2 

Term Coefficient Standard error t- statistic p-value

Intercept (ft3) 24,539,128 8,158,959.184 -3.008 0.003 

Transformed RVP (psi) -1,570,508 765,865.167 -2.051 0.041* 

Transformed wave height (m) -681,298.9 328,061.780 -2.077 0.039* 

Transformed storage temperature (ºC) -1,017,555 506,203.820 -2.010 0.045* 

Transformed daily incoming rate (bbl) 43.547 20.554 2.119 0.035* 

Transformed RVP (psi) × transformed 

daily incoming rate (bbl) 

-3.372 1.696 -1.989 0.048* 

Transformed wave height (m) × 

transformed storage quantity (bbl) 

0.064 0.046 1.391 0.165 

Transformed storage temperature (ºC)2 16,673.849 8,158.886 1.957 0.051 

Transformed RVP (psi) × transformed 

wave height (m) 

69,035.092 17,789.893 3.881 <0.001* 

Transformed storage quantity (bbl)2 -9.59×10-8 6.13×10-8 -1.565 0.119 

Transformed wave height (m) × 

transformed ambient temperature (ºC) 

5,453.376 3,288.785 -1.658 0.098 

Transformed wave height (m) × 

transformed storage temperature (ºC) 

-11,429.679 9,310.032 -1.228 0.221 

Transformed RVP (psi)2 68,773.81 31,713.808 2.169 0.031* 

* p-value<0.05 (significant); The abbreviation “bbl” stands for “barrel”.

The observed and modeled venting volumes are 

shown in Figure 2. The model produced increases and 

decreases in the venting volume consistent with the 

observed values. However, the standard deviation of 

the modeled data was less than that of the observed 

data. The MLR had values for R2 of 0.370, adjusted R2 

of 0.345, and standard error of 54,863 ft3. The venting 

volume was high during September-December (days 

274-366) because of the influence of the northeast 

monsoon, which led to an increased wave height. This 

proved that wave height significantly increased the 

VOC venting volume. 

3.3 Estimation of VOC venting volume based on 

probabilistic simulation 

3.3.1 Cholesky decomposition of correlation 

matrix 

Correlations among the transformed physical 

factors are shown in Table 3. There were positive 

correlations between transformed wave height and 

transformed storage quantity, between transformed 

wave height and transformed daily incoming rate, 

between transformed ambient air temperature and 

transformed storage temperature, between 

transformed  temperature  (both  ambient  and storage 
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temperatures) and transformed RVP, and between 

transformed storage quantity and transformed daily 

incoming rate. In addition, there were negative 

correlations between transformed wave height and 

transformed temperature (both ambient and storage 

temperatures), between transformed wave height and 

transformed RVP, between transformed temperature 

(both ambient and storage temperatures) and 

transformed storage quantity, between transformed 

temperature (both ambient and storage temperatures) 

and transformed daily incoming rate, between 

transformed storage quantity and transformed RVP, 

and between transformed RVP and transformed daily 

incoming rate.

Figure 2. Observed and modeled VOC venting volume from FSO 

Table 3. Correlations between each pair of observed transformed physical factors 
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wave height 
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Based on Table 3, the correlation matrix (A)

can be written as shown below:  

A = 

1.000
−0.326
−0.403
0.052
0.188

−0.046

−0.326
1.000
0.592

−0.116
−0.330
0.144

−0.403
0.592
1.000

−0.206
−0.194
0.189

0.052
−0.116
−0.206
1.000
0.240

−0.020

0.188
−0.330
−0.194
0.240
1.000

−0.070

−0.046
0.144
0.189

−0.020
−0.070
1.000

Which yields the result of Cholesky 

decomposition (L), as shown below: 

L =

1.000
−0.326
−0.403
0.052
0.188

−0.046

0.000
0.945
0.487

−0.104
−0.284
0.137

0.000
0.000
0.775

−0.173
0.026
0.133

0.000
0.000
0.000
0.978
0.210
0.020

0.000
0.000
0.000
0.000
0.916

−0.033

0.000
0.000
0.000
0.000
0.000
0.980 

3.3.2 Randomized physical factors 

The average, standard deviation, and skewness 

of the uncorrelated and correlated randomized 

variables are shown in Table 4. It can be seen that the 

averages, standard deviations, and skewness were 

close to those of the observed transformed variables 

(Table 1).  

Tables 5 and 6 show the correlations among 

randomized variables when the actual correlations 

among physical factors were and were not applied in 

the randomization, respectively. When the actual 

correlations were applied, the correlations among 

randomized variables (Table 5) were close to those 

among the observed variables (Table 3). However, 

when the actual correlations were not applied, the 

correlations among randomized variables (Table 6) 

and those among the observed variables differed. 

Therefore, the Cholesky randomization successfully 

represented the correlations among physical factors. 

3.4 Probabilistic simulation of VOC venting volume 

Comparisons between the observed VOC 

venting volume and the probabilistic simulated VOC 

venting volumes with and without correlation among 

physical factors are shown in Table 7. It was found 

that regardless of whether or not correlations among 

physical factors were applied, the average simulated 

venting volumes were close to the observed venting 

volumes (approximately 210,000 ft3), and the 

standard deviations of the simulated venting volumes 

(approximately 40,000 ft3) were lower than those for 

the observed venting volumes (approximately 67,961 

ft3). However, when the correlations were applied, the 

skewness of the VOC venting volume was more 

accurate than when the correlations were not applied. 
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Table 5. Correlation between each pair of randomized variables with correlations among physical factors 

Transformed 

wave height 
1 

Transformed 

ambient air 

temperature 

-0.343 1 

Transformed 

storage 

temperature 

-0.405 0.557 1 

Transformed 

Storage quantity 
0.067 -0.098 -0.196 1 

Transformed 

daily incoming 

rate 

0.137 -0.309 -0.168 0.228 1 

Transformed 

RVP 
-0.023 0.104 0.139 -0.015 -0.050 1 

Transformed 

wave height 

Transformed 

Ambient air 

temperature 

Transformed 

storage 

temperature 

Transformed 

storage 

quantity 

Transformed 

daily 

incoming rate 

Transformed 

RVP 

Table 6. Correlation between each pair of randomized variables without correlation among physical factors 

Transformed 

wave height 
1 

Transformed 

ambient air 

temperature 

0.004 1 

Transformed 

storage 

temperature 

0.013 -0.034 1 

Transformed 

storage quantity 
0.018 0.011 0.004 1 

Transformed 

daily incoming 

rate 

-0.064 -0.009 -0.014 -0.017 1 

Transformed 

RVP 
0.020 -0.027 -0.032 -0.009 0.009 1 

Transformed 

wave height 

Transformed 

ambient air 

temperature 

Transformed 

storage 

temperature 

Transformed 

storage 

quantity 

Transformed 

daily 

incoming rate 

Transformed 

RVP 

Table 7. Comparison between observed and probabilistic simulated venting volumes 

Statistic Observed venting volume Venting volume from 

probabilistic simulation 

(correlation applied) 

Venting volume from 

probabilistic simulation 

(correlation not applied) 

Mean (ft3) 210,984 211,610 210,906 

Maximum (ft3) 436,548 369,461 372,812 

Minimum (ft3) 94,052 120,958 78,711 

Standard deviation (ft3) 67,961 38,828 40,787 

Skewness 0.71 0.74 0.51 

This finding coincided with other studies that used 

probabilistic simulation to generate non-normally 

distributed data (Cao et al., 2013; Headrick and 

Kowalchuk, 2007; Lin et al., 2022).  

The standard deviations of the simulated 

venting volumes were low because the MLR 

accounted for only 37.0% of the variability of the 

venting volume (R2=0.370). For this reason, the 

variability of the simulated value was less than that of 
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the observed value (Figure 2). It can be seen in Figure 

3 that the simulated venting volumes were accurate at 

the 54th-63rd percentiles. At lower percentiles, the 

simulated venting volumes appeared to be higher than 

the observed venting volumes, while at higher 

percentiles, the simulated venting volumes appeared 

to be lower than the observed venting volumes. 

The skewness of the simulated VOC venting 

volume was improved when the correlations among 

physical factors were applied, because of the natural 

characteristics of the physical factors that were 

correlated with each other. Ignoring the correlations 

among physical factors could result in unrealistic 

occurrence probability estimates for physical factors, 

leading to unrealistic skewness. When the correlations 

were not applied at low percentiles, the simulated 

venting volumes decreased with decreasing percentile 

at a higher rate than the observed data. However, when 

the correlations were applied, the rate of decrease was 

less, which was more accurate. Therefore, the results 

of the current study showed that applying correlations 

among physical factors in the probabilistic simulation 

of venting volume could improve simulation accuracy 

by improving the skewness of the simulated VOC 

venting volume, which was consistent with Batterman 

et al. (2014). Nevertheless, it should be noted that the 

observed and simulated venting volumes may not be 

close to each other when the venting volume is low 

because days with venting volumes of less than 90,000 

ft3 were excluded from the current study. 

Figure 3. Percentiles of observed and probabilistic simulated venting volumes 

4. CONCLUSION

This research highlighted the importance of 

implementing correlations among physical factors in 

predicting VOC venting volume emitted from the 

FSO. Physical factors affecting VOC venting volume, 

including wave height, ambient temperature, storage 

temperature, storage quantity, RVP, and daily 

incoming rate, were transformed to normally 

distributed data. Second-order MLR with interaction 

effects was used to determine the relationship between 

the transformed physical factors and the VOC venting 

volume. The selection of terms (transformed physical 

factors and interaction effects) in the MLR was based 

on maximizing the adjusted R2, with the significance 

of each term being tested using a t-test. The significant 

terms for the prediction of VOC venting volume were: 

1) transformed RVP; 2) transformed wave height; 3)

transformed storage temperature; 4) transformed daily

incoming rate; 5) transformed RVP × transformed

daily incoming rate; 6) transformed RVP ×

transformed wave height; and 7) transformed RVP2.

The MLR had values for R2 of 0.370, for adjusted R2

of 0.345, and for standard error of 54,863 ft3. Then,

probabilistic simulation was applied to generate 1,000

sets of probable physical factors in 2 scenarios

(implementing and not implementing the correlations

among physical factors). The generated physical

factors were used to estimate 1,000 VOC venting

volumes. The averages of the estimated VOC venting

volumes corresponded to the observed data for all

scenarios. However, the standard deviations of the

estimated VOC venting volumes were low because of
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the low goodness of fit of the MLR. Nevertheless, the 

skewness of the simulated VOC venting volume was 

improved when the correlations among physical 

factors were applied. Therefore, the implementation of 

correlations among physical factors provided better 

simulation results. This improvement should benefit 

many works using probabilistic simulation, such as 

benefit-risk assessment. 
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