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This research investigated the roles of correlations among physical factors in the
probabilistic simulation of volatile organic compounds (VOCs) emitted from a
marine vessel (known as floating storage and offloading, FSO), located in the
Gulf of Thailand. The physical factors in this study were wave height, ambient
temperature, storage temperature, storage quantity, Reid vapor pressure, and the
daily incoming rate. These physical factors were transformed into normally
distributed data and a second-order multiple linear regression (MLR) with
interaction effects, that were then used to determine the relationship between the
transformed physical factors and the VOC venting volume from the FSO. The
dataset of relevant predictors (transformed physical factors and interactions) that
provided the maximum adjusted coefficient of determination was chosen for
inclusion in the MLR. After that, two datasets of 1,000 venting volumes (one
with and one without correlations among physical factors) were simulated. In the
simulation, 1,000 datasets of six physical factors were generated according to
observed averages and standard deviations. Cholesky randomization was used to
generate the correlated physical factors for the simulation with correlation among
physical factors. The averages of VOC venting volumes calculated from the
generated physical factors when correlations among physical factors were and
were not applied were 211,610 and 210,906 ft2, respectively (observed average
was 210,984 ft®), with standard deviations of 38,828 and 40,787 ft, respectively
(observed standard deviation was 67,961 ft), and skewness values of 0.74 and
0.51, respectively (observed skewness was 0.71). Therefore, correlation among
the physical factors improved the skewness and provided better simulation results
for VOC emission.

1. INTRODUCTION

Volatile organic compounds (VOCSs) contribute
to the formation of tropospheric ozone, which causes
negative impacts on human health and the
environment (Shao et al., 2020). Under normal
atmospheric conditions, the VOCs emitted from
natural gas liquids (NGLs) comprise 2.63% ethane,
14.60% propane, 14.87% butane, 1.96% pentane,
0.26% hexane, and 0.17% heptane (Seekramon, 2015;
Drysdale, 2019). While operating a marine vessel,

called floating storage and offloading (FSO), the
increase in incoming NGLs into the storage tank raises
the internal pressure, leading to VOC evaporation and
accumulation in the tanks. The accumulated VOCs are
eventually released to the atmosphere via the FSO vent
stack to prevent an explosion and deformation of the
FSO storage tanks (Seekramon, 2015; Vos et al.,
2007). VOCs are key factors in forming ozone and fine
particulates in the atmosphere. Human exposure to
such pollutants at high concentrations over extended
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periods has long-term adverse health effects, such as
prolonged eye, nose, and throat irritation among the
exposed workforce (Mo et al., 2021).

It has been reported that VOC emissions from
storage tanks were associated with several physical
factors relating to the NGLs and/or oil products and
operating conditions, including Reid vapor pressure
(RVP), storage quantity, storage temperature, product
incoming rate, and turbulence from NGLs or oil
movement (Rudd and Hill, 2001). Additionally, the
VOC emission from an FSO tank is affected by
ambient conditions (Alam et al., 2019), including solar
radiation, ambient temperature, and turbulence from
wave height (Hu et al., 2020; Lin et al., 2009; Yang et
al., 2017; Lang et al., 2017). However, there has been
no integrated investigation of these physical factors
and applied probabilistic simulation to predict the
VOC emission.

Probabilistic simulation is a statistical technique
for exploring the impact of uncertainty in data
(Alshanbarietal., 2023). In a probabilistic simulation,
various inputs are used to calculate the outputs under
different probabilities. Lynd and O’brien (2004) used
a second-order Monte Carlo simulation to estimate
disease risks to produce a risk-benefit acceptability
curve. Cao et al. (2013) used a probabilistic simulation
to model oil spilled concentration based on time,
magnitude, and location. The obtained simulation was
used to quantify risk analysis and to support a
comprehensive spill management framework. Lin et
al. (2022) used probabilistic simulation to estimate
the exposures and risks of indoor VOCs and
formaldehyde based on their concentrations,
inhalation rates, exposure frequencies, and the body
weights of the receptors. The current study used
probabilistic simulation to predict the VOC venting
volume based on various physical factors during the
FSO operation. Typically, the physical factors are
correlated with each other. Therefore, the simulation
result may be inaccurate if such correlations are
ignored. Thus, simulation with correlation among
physical factors can produce more accurate results.

In this study, six physical factors (wave height,
ambient air temperature, storage temperature, storage
quantity, RVP, and daily incoming rate of the NGLS)
were used in the probabilistic simulation of the venting
volume associated with VOC emission. In addition,
the role was investigated of correlations among these
physical factors in probabilistic simulation. The
results from this study can be applied to simulate the
venting volume of VOC-contained gas from the FSO
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stack under different probabilities, which, in turn,
would be useful for many purposes, especially those
involving risk assessment.

2. METHODOLOGY
2.1 Data gathering and screening

The data used in this study consisted of the
VOC venting volume from the stack of an FSO in the
Gulf of Thailand and six relevant physical factors
influencing the venting volume (wave height, ambient
temperature, storage temperature, storage quantity,
RVP, and daily incoming rate of the NGLs). Wave
heights were collected using a wave buoy (Fugro;
Norway). Data were collated 100 times per day but
only 33 middle-range data out of 100 daily wave
height data were used to calculate the average and
reported as daily wave height. Ambient temperatures
were measured using temperature sensors (PT100;
SMA Solar Technology; Germany). Storage
temperature was measured using a temperature sensor
and storage quantity was measured based on a radar
beam method. These instruments were included in the
tank monitoring system (Kongsberg GL-300;
Norway). The daily incoming NGL rate was
calculated as the difference between the storage
quantities on 2 consecutive days. RVP was defined as
the absolute vapor pressure of the liquid at 37.8 °C
(100 °F). Its value was obtained based on the ASTM-
D323 test method, using the Holler Bomb Test
(Koehler Instrument Co. Ltd.; USA). The VOC
venting volume from the stack of the FSO was
measured daily using an ultrasonic flare gas flow
meter (GF868; GE; USA). This instrument was
installed on the vent stack of the FSO. These data were
collected throughout 2020. However, the data on the
VOC venting volume on some days might be
discontinuous due to closure of the vent stack during
bad weather or stack maintenance, resulting in less
venting volume than usual. For this reason, venting
volume data of less than 90,000 ft® were excluded
from this study.

2.2 Determination of relationship between physical
factors and venting volume

Multiple linear regression (MLR) is a statistical
technique that can be used to analyze the relationship
between the physical factors and venting volume.
However, since this research conducted probabilistic
simulation and Cholesky randomization, one of the
steps of probabilistic simulation requires the inputs to
be normally distributed. Therefore, the data on
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physical factors were transformed for normality before
determining the relationship.

2.2.1 Two-step normality transformation

Two-step normality transformation was applied
to transform each physical factor for normality
(Templeton and Burney, 2017). First, the data were
transformed for uniformity. In this step, the data of
each physical factor were converted to a percentile
rank (Equation 1) and uniformly distributed:

Rank(Xj)

Percentile Rank (X;) = To0Gr )

1)
Where; X; is the i smallest data,
Percentile Rank (X;) is the percentile rank of X;,
Rank(X;) is an ascending rank of X;, and n is the
count of data.

The second step was a transformation of data
from uniformity to normality. In this step, the inverse
normal distribution was used to convert the percentile
ranks (resulting from the first step) to provide
normally distributed z-scores (Equation 2):

p=u++v2 cerf1(-1+2P,) )

Where; p is the transformed data, p is the mean
of the data, o is the standard deviation of the data,
erf~1 is the inverse of the error function, and P, is a
probability calculated from the percentile rank.

2.2.2 Second-order multiple linear regression
with interaction effects and selection term of terms and
measurement of accuracy

MLR was used to predict the VOC venting

volume from the six independent variables
(transformed wave height, transformed ambient
temperature, transformed storage temperature,

transformed storage quantity, transformed RVP, and
transformed daily incoming rate). Since the effect of
each independent variable may vary, the relationships
between the VOC venting volume and the independent
variables were determined based on a second-order
MLR with interaction effects, as shown in Equation 3
(Cho and Lee, 2018; Jia et al., 2020):

Y=a+XL,

b; x; + XLy Xk ¢ XiX; (3)

Where; Y is the VOC venting volume, a, bi, and
cij are constants, n is a number of factors, and x; and x;

are the values of i"" and j" independent variables,
respectively.
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Since not all interaction effects were necessary
for the prediction of the VOC venting volume, the
adjusted coefficient of determination (adjusted R?)
was calculated to determine the usefulness of each
term in the MLR. The adjusted R? was calculated
using Equation 4 (Alam et al., 2019; Pham, 2019):

RZ; =1-(1-R) (=)

n—-p-—-1

(4)

Where; RZg; is the adjusted coefficient of

determination (adjusted R?), R? is the coefficient of
determination, n is the number of data, and p is the
number of predictors.

The terms in the MLR were selected by
maximizing the adjusted R?. In other words, only the
terms that improved the value of the adjusted R were
included in the MLR. After the selection of terms, the
root mean squared error (RMSE) and coefficient of
determination (R?) were calculated to evaluate the
accuracy of the MLR. Finally, the significance of each
term in the MLR was appraised based on a t-test at a
significance level of 0.05 (Cho and Lee, 2018).

2.3 Probabilistic simulation of venting volume

Probabilistic simulation was used to generate
different values of the venting volume. First, the
average and standard deviation of each physical factor
were calculated, as well as the correlation coefficients
among physical factors. Then, 1,000 datasets of
relevant physical factors were generated according to
the calculated averages, standard deviations, and
correlations. After that, the 1,000 datasets were used
to calculate 1,000 venting volumes. The distribution of
these 1,000 venting volumes represented the venting
volume at different probabilities. The diagram of
probabilistic simulation is shown in Figure 1.

In generating the 1,000 datasets of physical
factors, the Cholesky randomization method was used
to create a dataset with specified correlation
coefficients. First, the physical factors (wave height,
ambient air temperature, storage temperature, storage
quantity, daily incoming rate, RVP) were transformed
to normally distributed data. After that, the correlation
matrix was determined (the matrix containing the
correlation coefficients among variables-transformed
wave height, transformed ambient air temperature,
transformed storage temperature, transformed storage
quantity, transformed daily incoming rate, and
transformed RVP-calculated from the MLR). Then,
the Cholesky decomposition process was used to
decompose the correlation matrix into a triangular
matrix and its transpose, as shown in Equation 5
(Golub and Loan, 1983; Trefethen and Bau, 1997):
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A=LLT ®)

Where; A is the correlation matrix, L is the
lower triangular matrix with real and positive diagonal
entries, and LT is the transpose of L.

After that, a 6 x 1,000 matrix, containing random
numbers between 0 and 1, was created (denoted as P).
The six columns in matrix P represented the six
variables (transformed wave height, transformed
ambient air temperature, transformed storage
temperature,  transformed  storage  quantity,
transformed daily incoming rate, and transformed
RVP). Then, a matrix containing the inverse of the
standard normal distribution of the elements of the
matrix P was generated (denoted as X). After that,
matrix X was multiplied by matrix L, as shown in

Equation 6. The result was a matrix (denoted as X")

containing random numbers, the correlation
coefficients of which are matrix A:
X* =XL (6)

Finally, each column of matrix X" was
multiplied by the standard deviation of each variable
(the variable each column represented) and the
average of each variable was added to the product (the
multiplication result). This process yielded 1,000 sets
of random variables, the average, standard deviation,
and correlation of which were according to those of
the observed values. In the step of calculating venting
volumes, 1,000 sets of random variables were used in
the MLR to calculate the VOC venting volumes.

Observed physical
factors

Average and

standard deviation

Correlation matrix

Cholesky
1,000 Generated physical

randomization

A

1,000 Generated
physical factors

factors (correlated)

Multiple linear regression

1,000
Venting
volumes

(uncorrelated)

Figure 1. Flowchart of probabilistic simulation
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2.4 Evaluation of role of correlation among
physical factors

To evaluate the role of correlation among the
physical factors, 2 probabilistic simulations were
conducted. The first simulation was conducted
without correlation among the physical factors. In that
simulation, matrix X in section 2.3 was not multiplied
by matrix L. The variables were generated by the
multiplication of each column of matrix X using the
standard deviation of each variable and the addition
of the average of each variable to the multiplication
result. The second simulation applied correlation
among physical factors, which followed all the steps
mentioned in section 2.3. The difference between
moments (averages, standard deviations, and
skewness) and percentiles of the VOC venting
volumes from these 2 simulations were used to
determine the role of correlation among physical
factors.

3. RESULTS AND DISCUSSION
3.1 Data transformation

In the gathered data, there were 40 days for
which the VOC venting volumes were less than
90,000 ft* due to closure of the vent stack, resulting
from poor weather conditions or stack maintenance.
Therefore, the data on these 40 days were excluded
and only the data on the remaining 326 days were
used. The summarized values of physical factors,
both before and after the two-step normality
transformation, during the study period are shown in
Table 1. The ambient air temperature (average of
28.4°C and standard deviation of 0.9°C) was higher
and had less variability than those from other studies
because the study area was located in the tropical zone
(Gjesteland et al., 2019; Hu et al., 2020; Stricklin,
2014). The RVP value had low variability because the
NGLs of each batch had a consistent composition.
Because of the application of the two-step normality
transformation, the transformed data followed a
normal distribution. The comparison between the
non-transformed and transformed data revealed that
the skewness of the transformed data was close to
zero.

3.2 Relationship between VOC venting volume
and physical factors

The set of terms producing the highest adjusted
R? of the MLR and the coefficients of these terms,
together with the results of the t-test, are shown in
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Table 1. Summary of non-transformed and transformed physical factors

Daily incoming rate

RVP

Storage quantity

Storage temperature

Non-

Ambient air temperature

Wave height

Statistic

Transformed

Non-

Transformed

Non-

Transformed

Non-

Transformed

Transformed

Non-

Transformed

Non-

transformed
43,163 bbls

transformed
12.1 psi

0.3 psi
0.75

transformed

transformed
29.4°C

0.6°C
0.57

transformed
28.5°C
0.9°C

transformed

1.1m

0.7m

43,181 bbls

12.1 psi
0.3 psi
0.33

493,508 bbls
92,919 bbls

0.17

492,012 bbls
94,768 bbls
0.33

29.4°C
0.6°C
0.01

28.5°C
0.9°C
0.10

11m

0.7m
-0.05

Average

7,142 bbls
0.00

7,160 bbls
-0.06

Standard deviation

-0.54

1.30

The abbreviation “bbls” stands for “barrels”.

Skewness
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Table 2. The significant terms were: 1) transformed
RVP; 2) transformed wave height; 3) transformed
storage temperature; 4) transformed daily incoming
rate; 5) transformed RVP x transformed daily
incoming rate; 6) transformed RVP x transformed
wave height; and 7) transformed RVP2. Therefore,
these sets of terms in the MLR were the best to
estimate the VOC venting volume. The significant
factors were consistent with those determined using
the non-transformed data, as described by Seekramon
(2023), except for the addition of the daily incoming
rate, which was significant in the current study. The
daily incoming rate related to the liquid velocity
feeding into the tank. (A high daily incoming rate

caused a high velocity and enhanced the turbulence of
NGLs, leading to high VOCs venting volume). The
other significant factors have been discussed in
Seekramon (2023). The significance of the terms 5-7
above (transformed RVP x transformed daily
incoming rate, transformed RVP x transformed wave
height, and transformed RVP?) suggested that the
effects of RVP, wave height, and daily incoming rate
were not constant. For example, a high RVP promoted
NGL evaporation, corresponding to the VOC venting
volume (Rudd and Hill, 2001; Stricklin, 2014), and at
a high daily incoming rate and wave height promoted
VOC venting volume (Deligiannis et al., 2016).

Table 2. Terms from MLR between transformed physical factors and VOC venting volume providing highest value of adjusted R?

Term Coefficient Standard error t- statistic p-value
Intercept (ft%) 24,539,128 8,158,959.184 -3.008 0.003
Transformed RVP (psi) -1,570,508 765,865.167 -2.051 0.041*
Transformed wave height (m) -681,298.9 328,061.780 -2.077 0.039*
Transformed storage temperature (°C) -1,017,555 506,203.820 -2.010 0.045*
Transformed daily incoming rate (bbl) 43.547 20.554 2.119 0.035*
Transformed RVP (psi) x transformed -3.372 1.696 -1.989 0.048*
daily incoming rate (bbl)

Transformed wave height (m) x 0.064 0.046 1.391 0.165
transformed storage quantity (bbl)

Transformed storage temperature (°C)? 16,673.849 8,158.886 1.957 0.051
Transformed RVP (psi) x transformed 69,035.092 17,789.893 3.881 <0.001*
wave height (m)

Transformed storage quantity (bbl)? -9.59x108 6.13x108 -1.565 0.119
Transformed wave height (m) x 5,453.376 3,288.785 -1.658 0.098
transformed ambient temperature (°C)

Transformed wave height (m) x -11,429.679 9,310.032 -1.228 0.221
transformed storage temperature (°C)

Transformed RVP (psi)? 68,773.81 31,713.808 2.169 0.031*

* p-value<0.05 (significant); The abbreviation “bbl” stands for “barrel”.

The observed and modeled venting volumes are
shown in Figure 2. The model produced increases and
decreases in the venting volume consistent with the
observed values. However, the standard deviation of
the modeled data was less than that of the observed
data. The MLR had values for R? of 0.370, adjusted R®
of 0.345, and standard error of 54,863 ft*. The venting
volume was high during September-December (days
274-366) because of the influence of the northeast
monsoon, which led to an increased wave height. This
proved that wave height significantly increased the
VOC venting volume.
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3.3 Estimation of VOC venting volume based on
probabilistic simulation

3.3.1 Cholesky decomposition of correlation
matrix

Correlations among the transformed physical
factors are shown in Table 3. There were positive
correlations between transformed wave height and
transformed storage quantity, between transformed
wave height and transformed daily incoming rate,
between transformed ambient air temperature and
transformed storage  temperature, between
transformed temperature (both ambient and storage
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temperatures) and transformed RVP, and between
transformed storage quantity and transformed daily
incoming rate. In addition, there were negative
correlations between transformed wave height and
transformed temperature (both ambient and storage
temperatures), between transformed wave height and
transformed RVP, between transformed temperature

(both ambient and storage temperatures) and
transformed storage quantity, between transformed
temperature (both ambient and storage temperatures)
and transformed daily incoming rate, between
transformed storage quantity and transformed RVP,
and between transformed RVP and transformed daily
incoming rate.

500,000
Venting volume (model)
450,000 + O Venting volume (observed) o
ol
9]
400,000 - (] g
. o) q
£ 350,000 1 & “lap
@ o O o Oqp
£ o o o O 2%
S 300,000 - S o o % opl
= o I° Po° Q, © o e © @ o[’ W 0
£ oY o o C@& o © o 2 N}
2 250000 4 O 0 C%DO © ® L Co 4 oo % © Oy OO Cpoo@O O@g
> AR ICATR R AR o) a oS pe 9 4
H PO roxes] 00 0 3 ® i WRONe)
200,000 Noxe oR Blo i d q q 0. C 0 o
09 © © og S e OOO %%@8@0 G ks o qreo oG o
) @)
150,000 { © Q @0 o QY o%% PIpoo o ©
O OQ (@) @(@@O (©) 8 O 0(9
o© o % o O 0 o® o o o 0 5 5
100,000 4 o o o 5 So b
50,000 -
0 T T T T T T T T T T T T
1 32 60 91 121 152 182 213 244 274 305 335 366
Day in 2020
Figure 2. Observed and modeled VOC venting volume from FSO
Table 3. Correlations between each pair of observed transformed physical factors
Transfor_med 1.000
wave height
Transformed
ambient air -0.326 1.000
temperature
Transformed
storage -0.403 0.592 1.000
temperature
Transformed
. 0.052 -0.116 -0.206 1.000
storage quantity
Transformed
daily incoming 0.188 -0.330 -0.194 0.240 1.000
rate
;@gﬁormed -0.046 0.144 0.189 -0.020 -0.070 1.000
Transformed Transformed  Transformed Transformed Transformed Transformed
wave height ambient air storage storage daily RVP
temperature  temperature quantity incoming rate
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Based on Table 3, the correlation matrix (A)
can be written as shown below:

1.000 -0.326 —-0.403 0.052 0.188 —0.046
—-0.326 1.000 0.592 —0.116 -0.330 0.144
—0.403 0.592 1.000 -0.206 —0.194 0.189

0.052 -0.116 -0.206 1.000 0.240 —0.020
0.188 —0.330 -—-0.194 0.240 1.000 -0.070

—-0.046 0.144 0.189 -—0.020 -0.070 1.000

Which vyields the result of Cholesky
decomposition (L), as shown below:

1.000 0.000 0.000 0.000 0.000 0.000
—0.326 0945 0.000 0.000 0.000 0.000
—0.403 0.487 0.775 0.000 0.000 0.000

0.052 -0.104 -0.173 0.978 0.000 0.000

0.188 —0.284 0.026 0.210 0916 0.000
—-0.046 0.137 0.133 0.020 -0.033 0.980J

3.3.2 Randomized physical factors

The average, standard deviation, and skewness
of the uncorrelated and correlated randomized
variables are shown in Table 4. It can be seen that the
averages, standard deviations, and skewness were
close to those of the observed transformed variables
(Table 1).

Tables 5 and 6 show the correlations among
randomized variables when the actual correlations
among physical factors were and were not applied in
the randomization, respectively. When the actual
correlations were applied, the correlations among
randomized variables (Table 5) were close to those
among the observed variables (Table 3). However,
when the actual correlations were not applied, the
correlations among randomized variables (Table 6)
and those among the observed variables differed.
Therefore, the Cholesky randomization successfully
represented the correlations among physical factors.

3.4 Probabilistic simulation of VOC venting volume

Comparisons between the observed VOC
venting volume and the probabilistic simulated VOC
venting volumes with and without correlation among
physical factors are shown in Table 7. It was found
that regardless of whether or not correlations among
physical factors were applied, the average simulated
venting volumes were close to the observed venting
volumes (approximately 210,000 ft®), and the
standard deviations of the simulated venting volumes
(approximately 40,000 ft3) were lower than those for
the observed venting volumes (approximately 67,961
ft3). However, when the correlations were applied, the
skewness of the VOC venting volume was more
accurate than when the correlations were not applied.
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Table 4. Average, standard deviation, and skewness of the correlated and uncorrelated randomized variables

Transformed RVP

Transformed daily
incoming rate
Correlated
43,134.8

bbls

Transformed storage

quantity

Transformed storage

temperature
Correlated
29.4°C

Transformed ambient air

temperature
Correlated
28.5°C

Transformed wave height

Randomized
variable

Uncorrelated

12.1 psi

Correlated
12.1 psi

Uncorrelated
43,071.8
bbls

Uncorrelated
495,386.4
bbls

Correlated
495,266.9

bbls

Uncorrelated
29.4°C

Uncorrelated
28.5°C

Uncorrelated

1.1m

Correlated

1.1m

Average

7,154.8 0.3 psi 0.3 psi

bbls

7,041.7
bbls

94,9204
bbls

94,650.3
bbls

0.7m 0.7m 0.9°C 0.9°C 0.6°C 0.6°C

Standard

deviation
Skewness

-0.017 0.001 0.005 0.016 0.003 0.129 0.136 0.070 0.121 0.030 0.046

-0.017

The abbreviation “bbls” stands for “barrels”.
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Table 5. Correlation between each pair of randomized variables with correlations among physical factors

Transformed 1

wave height

Transformed

ambient air -0.343 1

temperature

Transformed

storage -0.405 0.557 1

temperature

Transformed 1 67 -0.098 -0.196 1

Storage quantity

Transformed

daily incoming 0.137 -0.309 -0.168 0.228 1

rate

Transformed 1 5 93 0.104 0.139 -0.015 -0.050 1

RVP
Transformed Transformed Transformed Transformed Transformed Transformed
wave height Ambient air storage storage daily RVP

temperature temperature quantity incoming rate

Table 6. Correlation between each pair of randomized variables without correlation among physical factors

Transformed 1

wave height

Transformed

ambient air 0.004 1

temperature

Transformed

storage 0.013 -0.034 1

temperature

Transformed 1 518 0.011 0.004 1

storage quantity

Transformed

daily incoming -0.064 -0.009 -0.014 -0.017 1

rate

Transformed | 9 -0.027 0,032 -0.009 0.009 1

RVP
Transformed Transformed Transformed Transformed Transformed Transformed
wave height ambient air storage storage daily RVP

temperature temperature quantity incoming rate

Table 7. Comparison between observed and probabilistic simulated venting volumes

Statistic Observed venting volume Venting volume from Venting volume from
probabilistic simulation probabilistic simulation
(correlation applied) (correlation not applied)

Mean (ft) 210,984 211,610 210,906

Maximum (ft) 436,548 369,461 372,812

Minimum (ft3) 94,052 120,958 78,711

Standard deviation (ft%) 67,961 38,828 40,787

Skewness 0.71 0.74 0.51

This finding coincided with other studies that used
probabilistic simulation to generate non-normally
distributed data (Cao et al., 2013; Headrick and

Kowalchuk, 2007; Lin et al., 2022).

The standard deviations of the simulated
venting volumes were low because the MLR
accounted for only 37.0% of the variability of the
venting volume (R?=0.370). For this reason, the
variability of the simulated value was less than that of
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the observed value (Figure 2). It can be seen in Figure
3 that the simulated venting volumes were accurate at
the 54"-63 percentiles. At lower percentiles, the
simulated venting volumes appeared to be higher than
the observed venting volumes, while at higher
percentiles, the simulated venting volumes appeared
to be lower than the observed venting volumes.

The skewness of the simulated VOC venting
volume was improved when the correlations among
physical factors were applied, because of the natural
characteristics of the physical factors that were
correlated with each other. Ignoring the correlations
among physical factors could result in unrealistic
occurrence probability estimates for physical factors,
leading to unrealistic skewness. When the correlations

were not applied at low percentiles, the simulated
venting volumes decreased with decreasing percentile
at a higher rate than the observed data. However, when
the correlations were applied, the rate of decrease was
less, which was more accurate. Therefore, the results
of the current study showed that applying correlations
among physical factors in the probabilistic simulation
of venting volume could improve simulation accuracy
by improving the skewness of the simulated VOC
venting volume, which was consistent with Batterman
et al. (2014). Nevertheless, it should be noted that the
observed and simulated venting volumes may not be
close to each other when the venting volume is low
because days with venting volumes of less than 90,000
ft3 were excluded from the current study.

500,000.00
Observed venting volume
450,000.00 1 Probabilistic simulated correlated physical factors
__400,000.00 - Probabilistic simulated uncorrelated physical factors
3
o 350,000.00 -
S
§ 300,000.00 -
(=]
.S 250,000.00 -
3
> 200,000.00 -
150,000.00 -
100,000.00 -
50,000.00 -
0.00
XIS IEER
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Percentile of venting volume

Figure 3. Percentiles of observed and probabilistic simulated venting volumes

4. CONCLUSION

This research highlighted the importance of
implementing correlations among physical factors in
predicting VOC venting volume emitted from the
FSO. Physical factors affecting VOC venting volume,
including wave height, ambient temperature, storage
temperature, storage quantity, RVP, and daily
incoming rate, were transformed to normally
distributed data. Second-order MLR with interaction
effects was used to determine the relationship between
the transformed physical factors and the VOC venting
volume. The selection of terms (transformed physical
factors and interaction effects) in the MLR was based
on maximizing the adjusted R?, with the significance
of each term being tested using a t-test. The significant
terms for the prediction of VOC venting volume were:
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1) transformed RVP; 2) transformed wave height; 3)
transformed storage temperature; 4) transformed daily
incoming rate; 5) transformed RVP x transformed
daily incoming rate; 6) transformed RVP x
transformed wave height; and 7) transformed RVP2,
The MLR had values for R? of 0.370, for adjusted R?
of 0.345, and for standard error of 54,863 ft3. Then,
probabilistic simulation was applied to generate 1,000
sets of probable physical factors in 2 scenarios
(implementing and not implementing the correlations
among physical factors). The generated physical
factors were used to estimate 1,000 VOC venting
volumes. The averages of the estimated VOC venting
volumes corresponded to the observed data for all
scenarios. However, the standard deviations of the
estimated VOC venting volumes were low because of
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the low goodness of fit of the MLR. Nevertheless, the
skewness of the simulated VOC venting volume was
improved when the correlations among physical
factors were applied. Therefore, the implementation of
correlations among physical factors provided better
simulation results. This improvement should benefit
many works using probabilistic simulation, such as
benefit-risk assessment.
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