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Climate change significantly impacts living organisms, leading to alterations in 

their range, distribution, and abundance. This study estimates the potential 

distribution of representatives of the family Musaceae, noted for their large size 

and importance to tropical ecosystems. We focus on Musa ingens Simmonds 

1960 and employ bioclimatic variables and in situ datasets to model its species 

distribution. We differentiate potential distribution areas for M. ingens and 

present a prognostic map of its distribution under four climate change scenarios. 

Precipitation during the warmest quarter emerges as the primary factor 

influencing the spatial distribution of M. ingens. Under the RCP (Representative 

Concentration Pathway) 6.0 scenario, the potential distribution shows an initial 

decrease, followed by a significant increase by 2070. Meanwhile, the RCP 8.5 

scenario indicates an increase in 2050, with a subsequent six percent decrease in 

2070. Under the RCP 4.5 scenario for 2050, the species distribution shifts 

regionally, particularly around the Osua Trikora Mountains and the highlands of 

the Giluwe Mountains to Mount Victoria. By 2070, the feasible area is expected 

to expand. Notably, the RCP 2.6 scenario for 2070 predicts a dramatic reduction 

in habitable area around Mount Bintang Lestari, on the border between Indonesia 

and Papua New Guinea, rendering the entire lowland region of Papua 

uninhabitable. Consequently, a sharp decline in the population of M. ingens in 

this area is predicted. 
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1. INTRODUCTION

Climate projections indicate that tropical  regions 

are expected to experecience significantly warmer and 

more severe compared to other part of the world 

(Gasparrini et al., 2017; Serdeczny et al., 2017; Siyum, 

2020). According to the IPCC’s recent multi-model 

mean, Northeastern United States, Central America, 

West and South Africa, and Southeast Asia are 

projected to become drier by 2100, while other already 

wet tropical regions will become even wetter (Lee et al., 

2021). Studies by Feng and Zhang (2015) and Greve 

and Seneviratne (2015) suggest that wet areas will 

experience increased precipitation, whereas dry areas 

will see reduced rainfall. However, Knutti and Sedláček 

(2013) and McSweeney and Jones (2013) have noted 

that tropical regions show the lowest consensus among 

climate models regarding future weather changes. This 

uncertainty is compounded by smaller-scale 

assessments (Platts et al., 2015; Rahn et al., 2018). 

Given the prejected increase in temperatures, reduced 

rainfall intensity represents a potential worst-case 

scenario for future crop growth. 

Climatic factors have long been recognized as 

influential in ecological studies (Thiele, 1977). 

Determining optimal temperature and humidity across 

season is crucial for understanding species habitats 

predicting changes in their distribution area. Musa 

ingens Simmonds 1960 is an important component of 

tropical ecosystems, producing over 125 million tons 

annually and ranking among the world’s most 

Citation: Aldiansyah S, Risna. Modeling the bioclimatic range of Musa ingens (giant highland banana) under conditions of climate change scenarios. 
Environ. Nat. Resour. J. 2024;22(5):394-407.  (https://doi.org/10.32526/ennrj/22/20240002)

394



Aldiansyah S and Risna / Environment and Natural Resources Journal 2024; 22(5): 394-407

important fruit crops (FAO, 2018). Every parts of the 

plant is utilized in daily life (Kennedy, 2009). M. 

ingens can reach heights of 15 m (Argent, 1976; 

WCSP, 2018), thriving in the highlands of Papua New 

Guinea’s main island within primary montane 

rainforest and exhibiting intolerance to high 

temperatures (Simmonds, 1960; Argent, 1976). Such 

topographic conditions are influenced by biotic and 

abiotic stresses, including climate factors such as 

salinity (8.0), relative humidity (15%), heat stress 

(>15oC), and cold temperature stress (<0oC). As a 

native plant of tropical regions, M. ingens thrives best 

at temperature between 31oC and 32oC with adequate 

nutrient and water availability (Kallow et al., 2020; 

Joshi et al., 2023), facilitating early flowering and 

higher yields in favorable environments (Ravi and 

Vaganan, 2016). Recorded collections indicate its 

presence predominantly in the Central Range montane 

rainforests ecoregion, with occurence also noted in the 

Huon Peninsula montane rainforests and Southeastern 

Papuan rainforests ecoregions (Olson et al., 2001). 

Studies have additionaly documented its presence in 

the Arfak Mountains, Indonesia (Sadsoeitoeboen et 

al., 2021). 

The population of M. ingens significantly 

surpasses the threshold for threatened status, owing to 

its widespread distribution ascross numerouslocations. 

While specific population trends remains unclear, it is 

believed to be abundant in the central highlands of 

Papua New Guinea (Plummer et al., 2020), thus 

classified as Least Concern by conservation standards. 

However, habitat fragmentation poses a significant 

threat to this species (Butler, 2006; WWF, 2019; 

Mongabay, 2019). Factors such as timber extraction, 

subsistence, and industrial agriculture expansion, 

mining activities (Butler, 2006; WWF, 2019; 

Mongabay, 2019), along with local cultural practices 

(Sterly, 1997; Kennedy, 2009; Lentfer, 2009) 

contribute to this fragmentation. Furthermore, while 

M. ingens holds holticultural value, its cultivation

outside its native climate presents considerable

challenges (Plummer et al., 2020).

Although the anthropogenic factors mentioned 

are a concern for the survival of this species (Plummer 

et al., 2020), it appears that climate change has 

significantly altered the distribution of species such as 

bananas in the wild and has the potential to affect 

interactions between plants, pests, and diseases and 

the humans, animal, and plants hosts (Bebber, 2019; 

Watts et al., 2023; Abdoussalami et al., 2023). 

Empirical studies show that competition for water 

resources between trees may worsen under 

increasingly hot and dry climate conditions, thereby 

impacting distribution and productivity (Lott et al., 

2009; Abdulai et al., 2018; Blaser et al., 2018). 

Bebber’s (2019) in-depth study found that the increase 

in risk to the survival of banana species over the last 

60 years was influenced by temperature. Therefore, 

little is known about the influence of climate change 

on the distribution of bananas, especially M. ingens. 

Climate change is seen to affect the cycle and 

habitat range of the M. ingens species. In this contex, 

investigating the potential distribution of species 

becomes interesting, although some rare species are no 

less important. The species studied in this research has 

Least Concern (LC) status according to the IUCN Red 

List. It is very interesting to predict changes in the 

potential distribution of this species range in the next 

30-50 years due to the influence of global climate 

change. This research aims to predict trends in changes 

in the potential distribution of M. ingens under various 

global climate change scenarios for 2050 and 2070.   

2. METHODOLOGY

Research material was obtained from the Global 

Biodiversity Information Facility (GBIF) open 

database, initially comprising data from 37 sites. 

However, only 19 sites were used after eliminating 

duplicate data, coordinate errors, and data without 

coordinates (GBIF, 2023). We then validate these 

data with our colleagues through the framework of 

the Scientific Collaboration Agreement. The data 

collection covered the time range from 1963 to 2023, 

with occurences distributed in Indonesia (5 

occurrences) and Papua New Guinea (14 occurrences) 

(Figure 1). 

Bioclimatic modeling (Aldiansyah and Wahid, 

2023; Aldiansyah and Wahid, 2024) uses 2.5 km 

resolution WorldClim        data from the global climate 

database (www.worldclim.org) with 19 bioclimatic 

variables. The model is built from the Community 

Climate System Model 4 (CCSM 4). This data was 

chosen considering the development of all CCSM 

components from the previous version, particularly in 

the annual water storage cycle in tropical regions 

which is much improved (Gent et al., 2011). To 

enchance the prediction quality of the CSSM dataset, 

we first reduce the long-term bias and then compare it 

with the adequate Climate Forecast System Reanalysis 

(CFSR) dataset. Bearing in mind that varying degrees 
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Figure 1. Study area 

of bias can be found throughout the atmosphere at 

the study location for each of these variables, both 

spatially and temporally. This is due to the CCSM grid 

being too coarse, which produced significant biases 

for surface variables such as temperature, relative 

humidity, geopotential height, wind, and 

meridionality, especially in complex orographic 

conditions. We found consistency between CCSM and 

CFSR mixing ratio climatologies, particularly over 

complex terrain across the study area. Although it did 

not directly correct the mixing ratio data, the 

temperature and relative humidity corrections and 

subsequent mixing ratio calculations produce a 

climatology consistent with CFSR. This research 

calculates future climate predictions through 

representative concentration pathway (RCP) 

scenarios. The model provides four scenarios by 

dividing the radiation dose based on greenhouse gas 

concentrations: RCP2.6 (implies temperature increase 

on the planet to 0.9ºC on an average); RCP4.5 

(increase to 1.9ºC); RCP6.0 (increase to 2.4ºC); 

RCP8.5 (increase to 4.1ºC). This model was chosen 

considering the resulting statistical similarity of the 

current climate compared to previous climate models 

(Lee et al., 2014; Ruosteenoja et al., 2016). We 

selected historical periods according to the latest 

recommendations of the World Meteorological 

Organization (WMO, 2017). Applying timeline scales 

in the past, we modeled for the 2050s and 2070s in 

each scenario and compared them with the present 

time model. 

This research uses ArcGIS 10.4.1 for layer 

work and estimated potential reach using the SDM 

package in R (RStudio Team, 2020), identifying the 

most influential variables in each scenario. Several R 

packages were employed in bioclimatic modeling. 

Package “dismo” is used to load climate variables, 

while “mapview” is used to see the point of 

occurrences. Package “usdm” to test collinearity 

among the climatic variables by providing functions 

“vifstep” and “vifcor”. We use the Variance Inflation 

Factor (VIF) to overcome the collinearity problem 

between predictor variables. Therefore, we did not 

include highly correlated variables to obtain an 

accurate model (Aldiansyah and Wahid, 2023; 

Aldiansyah and Wahid, 2024). A total of 19 

bioclimatic variables were selected using VIF values. 

VIF reflects how much the standard error increases 

due to the multicollinearity of the variables included 

in the model. The correlation threshold was set at 0.7 

(Table 1). Library “sdm” is used to run the algorithm 

of species distribution models. This package combines 

different parallel implementations of niche ecology 

and machine learning models on a single platform and 

uses an object-oriented, reproducible, and extensible 

approach in R (Naimi and Araújo, 2016). To predict 
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species probabilities, the “sdmData” package was 

used to generate 200 pseudo-absence records which 

were used against 19 presence-only records to 

calibrate the model. The algorithm is run using 

bootstrap with two replications and applied to all 

scenarios. We used the Learning Vector Quantization 

(LVQ) algorithm to determine the most important 

factors from each selected predictor variable. LVQ is 

a supervised classifier that was introduced by 

Kohonen (1995). LVQ has been used in various 

studies for environmental sciences (Pourghasemi and 

Kerle, 2016), flood susceptibility mapping (Termeh et 

al., 2018; Aldiansyah and Wardani, 2023), landslide 

susceptibility mapping (Rahmati et al., 2016; 

Aldiansyah and Wardani, 2024), wildfire mapping 

(Aldiansyah and Madani, 2024) species distribution 

mapping (Aldiansyah and Risna, 2023; Aldiansyah et 

al., 2024). The LVQ was worked by searching for the 

shortest distance to the value and eliminating the 

noise, which could potentially interfere with the 

process of convergence in the forecasting system in 

large data (Kohonen, 1995). 

Table 1. Bioclimatic variables and their computed variance inflation factor (VIF) obtained from the Worldclim database for modeling the 

bioclimatic range of Musa ingens 

Bioclimatic variable Variable description Unit VIF 

Bio1 Annual mean temperature oC 304.41 

Bio2 Mean diurnal range [mean of monthly (maximum temp.-minimum temp.)] oC 1.82 

Bio3 Isothermality (Bio2/Bio7) (× 100) oC 17.33 

Bio4 Temperature seasonality (standard deviation × 100) oC 51.69 

Bio5 Maximum temperature of the warmest month oC 11.12 

Bio6 Minimum temperature of the coldest month oC 28.13 

Bio7 Temperature annual range (Bio5-Bio6) oC 66.07 

Bio8 Mean temperature of wettest quarter oC 1.45 

Bio9 Mean temperature of driest quarter oC 2.43 

Bio10 Mean temperature of warmest quarter oC 521.09 

Bio11 Mean temperature of coldest quarter oC 80.91 

Bio12 Annual precipitation mm 19.32 

Bio13 Precipitation of wettest month mm 2.78 

Bio14 Precipitation of driest month mm 2.08 

Bio15 Precipitation seasonality (coefficient of variation) mm 1.94 

Bio16 Precipitation of wettest quarter mm 117.25 

Bio17 Precipitation of driest quarter mm 242.24 

Bio18 Precipitation of warmest quarter mm 1.84 

Bio19 Precipitation of coldest quarter mm 2.13 

Note: The variables in bold text are those that were selected based on VIF for predicting the bioclimatic range of Musa ingens. 

Model verification in this study employs several 

metrics includin Receiver Operating Characteristics-

Area Under Curve (ROC-AUC) (Shabani et al., 2016), 

Correlation (COR), True Skill Statistics (TSS) 

(Fourcade et al., 2018) Deviance (Agresti, 2018), 

Prevalence (Allouche et al., 2006), and Calibration 

(Fieberg et al., 2018). The ROC-AUC evaluates the 

model’s ability to distinguish between presence and 

absence data, with values ranging from 0 to 1; an 

AUC>0.7 indicates good model performance. COR 

assesses the strength of the relationship between 

climate variables and species presence. TSS measures 

relationship between observations and predictions, 

with values ranging from-1 to +1; a TSS closer to +1 

indicates stronger the relationship between the two 

variables. Deviance represents model error, with 

values closer to 0 indicating lower error rates. 

Prevalence measures the proportion of sites where the 

species is present. Calibration tests the accuracy of 

model estimates, with values closer to 1 indicating 

better model calibration. Model accuracy was verified 

using a random split of presence data: 70% for model 

training and 30% for testing. A binarization prediction 

threshold was set based on model performance, 

considering predictions above the 10th percentile 

threshold as potential distribution for species. This 

approach identifies 90% of analyzed presence point 

within the “potential” range, while disregarding 10% 

classified as unpotential for climate niche modeling. 
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3. RESULTS AND DISCUSSION

AUC is used to estimate the model’s 

performance in recognizing the presence or absence of 

a species in a location. The obtained maps reliably 

characterize the peculiarities of the distribution of the 

studied species. In this research model, the average 

AUC obtained was 0.96, indicating a high model 

significance with a 97% probability of correctly 

predicting the presence of the studied species at the 

recorded points (Table 2). Meanwhile, the average 

values of COR, TSS, Deviance, Prevalence, and 

Calibration are 0.91, 0.93, 0.13, 0.14, and 0.80 

respectively. 

Table 2. Evaluation model of Musa ingens according to each scenario 

Scenario AUC COR TSS Deviance Prevalence Calibration 

Present time 0.98 0.95 0.92 0.09 0.16 0.79 

RCP2.6 2050 0.97 0.96 0.93 0.21 0.10 0.89 

RCP2.6 2070 0.94 0.93 0.92 0.11 0.10 0.80 

RCP4.5 2050 0.97 0.93 0.93 0.10 0.19 0.81 

RCP4.5 2070 0.96 0.81 0.96 0.17 0.05 0.74 

RCP6.0 2050 0.97 0.79 0.97 0.13 0.21 0.77 

RCP6.0 2070 0.93 0.92 0.92 0.09 0.02 0.91 

RCP8.5 2050 0.97 0.95 0.91 0.08 0.17 0.81 

RCP8.5 2070 0.96 0.93 0.95 0.15 0.27 0.66 

Modeling problems generally suggest 

supplementing the constructed model with points of 

absence. In this study, the number of absence points 

was randomly selected as 200 points. According to 

Phillips et al. (2017), model adequacy will be 

determined by the choice of traits. This method used all 

bioclimatic parameters from the WorldClim dataset for 

this purpose. In case of limited species presence, 

resampling techniques are generally applied to 

duplicate the presence data, for example, N=100. 

However, this is greatly influenced by regional 

coverage in different cases. Thus, there is considerable 

variation depending on the type of modeling approach, 

species, and regional coverage. Modelers therefore 

need to be aware that the results obtained will include 

some degree of uncertainty, particularly due to climate 

(Thuiller et al., 2004; Araújo et al., 2005; IPCC, 2013; 

Casajus et al., 2016; Quillfeldt et al., 2017). Casajus et 

al. (2016) proposed an objective approach to selecting 

climate scenarios for a species. However, there are no 

definite guidelines for choosing the best type of setting 

or climate variable, which also depends on the specific 

periods to be considered and the magnitude of 

environmental changes (Araújo et al., 2004). This 

implies that when climate change occurs, the dynamics 

of the home range can be influenced by intrinsic 

population dynamics (Lawton, 1993). However, if 

strong environmental changes occur, species 

distribution dynamics will be strongly influenced by 

these changes (Araújo et al., 2004). Many invasive 

plant species have characteristics that can increase their 

dominance in transitional climate scenarios (Dukes and 

Mooney, 1999), as seen in several relatives of the Musa 

species. Additionally, potential new areas may emerge 

in previously unsuitable or marginal areas, while 

previously suitable areas may become unsuitable or 

marginal habitats (Araújo et al., 2004; Hirzel et al., 

2002; Hirzel et al., 2006). 

This research found that only in the RCP6.0 

2070s scenario was the bio13 variable used along with 

other variables. Meanwhile, other present-time and 

future scenarios ignore Bio13 variables. The 

contributing variables in the present time variables are 

precipitation of warmest quarter, precipitation of 

driest month, and precipitation of coldest quarter. This 

contribution analysis remains the same in RCP2.6 and 

RCP8.5 in 2070, and RCP6.0 in 2070. 

Analysis of variables contributions to the 2050 

projections across all scenarios highlights the highest 

significance of precipitation in the warmest quarter, 

particularly under RCP6.0. Precipitation in the driest 

month also show significant influence across all 

scenarios for 2050, whereas in RCP4.5, precipitation 

of coldest quarter becomes more significant compared 

to other scenarios. Moving to 2070, precipitation of 

warmest quarter emerges as most significant under 

RCP2.6, RCP6.0, and RCP8.5, alongside continued 

significant of precipitation in the driest month. 

Notably, precipitation in the driest month takes 

precendence in importance under RCP4.5. Overall, the 
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contribution of bioclimatic variables is likely to vary 

in shaping the future spatial distribution of M. ingens. 

Nonetheless, across all models, precipitation of 

warmest quarter and driest month consistently emerge 

as crucial variables, except in RCP4.5 where the driest 

month takes precedence (Figure 2).  

This research models nine bioclimatic regions, 

including projection for 2050 and 2070 under four 

climate scenarios. Each model identifies four regions 

with varying probabilities of species presence: 0.8-1.0 

-the most probable presence likelihood; 0.6-0.8 -high

presence likelihood; 0.5-0.6 -moderate presence

likelihood; 0.3-0.5 -low presence likelihood; and value

below 0.3 -indicatingno presence likelihood. The

threshold value 0.3 corresponds of the 10 percentiles.

Figure 2. Variable importance 

The current bioclimatic model of M. ingens 

identifies several key areas with high likelihood of 

species presence, including the Arfak mountains 

(2,955 m.a.s.l.), the Weyland mountains (3,891 

m.a.s.l.), from Angemuk Peak (3,949 m.a.s.l.) to Osua

Trikora Peak (4,750 m.a.s.l.) in Indonesia, as well as

Mount Kabangama (4,104 m.a.s.l.), Mount Wilhelm

(4,509 m.a.s.l.), Mount Michael (3,647 m.a.s.l.),

Mount Piora (1,722 m.a.s.l.), Mount Victoria (4,038

m.a.s.l.), Mount Sibium (2,295 m.a.s.l.), Mount

Suckling (3,676 m.a.s.l.), Mount Simpson (2,883

m.a.s.l.), including McAdam National Park (1.18 km2)

in Papua New Guinea. This area zones with a high

probability of species presence (Figure 3). The

Gauttier Mountains (2,230 m.a.s.l.), Cyclops

Mountains (2,160 m.a.s.l.), and Wondiwoi Mountains

(2,251 m.a.s.l.) are area with a moderate probability of

species presence. The bioclimatic area with the highest

probability of species presence covers 233,628 km2, 

with moderate presence covering 97,653 km2, and 

with low presence covering 447,407 km2. 

In the context of the RCP 2.6 scenario, there is 

a notable shift in the zone of high probability of 

species presence towards the western part of the 

region, centered around Weyland and Undundi-

Wandandi (3,640 m.a.s.l.) (Figure 4). While the area 

with a very high probability remains with in the 

contemporary model, there is regional expansion into 

the high probability zone, notably across the temperate 

zone. Changes from McAdam National Park to the 

Simpson Mountains are expected to reduce the 

bioclimatic range of the region. Areas classified as 

high and medium probability of species presence have 

expanded to 341,840 km2 and 107,874 km2 

respectively, while those with a low probability have 

decreased to 328,975 km2. 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

Present time RCP 2.6,

2050s

RCP 2.6,

2070s

RCP 4.5,

2050s

RCP 4.5,

2070s

RCP 6.0,

2050s

RCP 6.0,

2070s

RCP 8.5,

2050s

RCP 8.5,

2070s

Scenarios

Bio2 Bio8 Bio9 Bio13 Bio14 Bio15 Bio18 Bio19

399



Aldiansyah S and Risna / Environment and Natural Resources Journal 2024; 22(5): 394-407

Figure 3. Present bioclimatic area in Musa ingens 

According to the RCP 2.6 model scenario in 

2070, the total area of the bioclimatic area significant 

changes, resulting in a notable shift in the ratio of area 

to potential distribution (Figure 4). Areas with high 

probability decreased by half to 161,091 km2, while 

areas with low probability increased nearly double to 

594,596 km2 (Table 3). This change is driven by the 

RCP 2.6 climate scenario, which predicts rising 

temperatures due to increased greenhouse gas 

emissions until 2070. The bioclimatic conditions in 

2070 are anticipated to differ significantly from 

current conditions, with a marked decline in potential 

area. This decrease is influenced by varying emissions 

scenarios, predicting a reduction in CO2 levels from 

380 to 100 ppm (IPCC, 2013). This reduction is 

associated with temperature increases ranging from 

0.3oC to 2.6oC and 0.9oC to 6.8oC by 2100. Extreme 

low CO2 levels (<100 ppm) can threaten plant growth, 

leading to slow growth and increased drought 

susceptibility even under optimal conditions near the 

equator. Consequently, only a few plant species may 

thrive even in the best conditions. 

According to the scenario 4.5 projections for 

2050, adecline in areas of moderate potential 

probability is observed compared to the contemporary 

model. This indicates changes in bioclimatic 

parameters and deteriorating environmental conditions 

in most areas, except around Puncak Jaya (4,884 

m.a.s.l.). These changes may result from increased 

seasonal temperature contrasts. The most potential area 

for the studied species have decrease significantly 

compared to the current distribution, now covering 

only 55,482 km2, with some regions becoming 

unsuitable (Figure 5). High potential probability is now 

primarily confined to the Osua Trikora Mountains and 

the highlands of the Giluwe Mountains (4,367 m.a.s.l.) 

to Mount Victoria. This scenario represents the most 

severe changes, with the sharpest decline in potential 

area. 

In the 2070 scenario 4.5, the potential area 

expands compared to 2050 (high: 139,169 km2) and the 

current distribution area (moderate: 307,264 km2) 

(Figure 5). The area with low potential decreases to 

332,254 km2, extending its probability to the eastern 

and southern sides of the region. The most significant 

changes were observed in the amplitude of the driest 

monthly temperatures and the average precipitation 

during the warmest and coldest months. Compared to 

the current climate, future projections (PACCSAP, 

2011) suggest a warmer and wetter, with the rainfall 

expected to change by ±25%, temperature increase by 

1.4oC to 3.1oC, and sea level rising by 19 cm to 85 cm. 

These changes imply an increase in surface temperature 

of 1.0oC to 4.2oC, contributing to a sea level rise of 

1.0oC to 3.0oC. Additionally, sea water is predicted to 

become more acidic, dropping by 0.3 to 0.4 pH units 

due to the increasing CO2 absortion. Many plant and 

animal species may struggle to adapt to the impacts of 

RCP 4.5 (IPCC, 2014). In this scenario, carbon levels 

are estimated to reach 600 ppm by 2070. Small plants 

are predicted to decompose and released CO2 while 

larger plants may survive longer by absorbing carbon 

from decaying vegetation. This dynamic explains the 

observed improvement in this scenario. 
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Figure 4. Bioclimatic range of Musa ingens to 2050 and 2070 according to RCP 2.6 scenario 

Figure 5. Bioclimatic range of Musa ingens to 2050 and 2070 according to RCP 4.5 scenario 
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According to the prognostic model of the 

RCP.6.0 scenario, areas with a marginal distribution 

index of 0.5-0.6 will decrease by 2050 (Figure 6). 

The area with the highest potential distribution index 

covers 124,294 km2, which is 2.5 times lower than 

the previous model. In contrast, the area with 

marginal index has decreased significantly, covering 

only 28,312 km2. The main contribution to this 

significant change is influenced by three factors, 

namely precipitation of warmest quarter, mean 

temperature of wettest quarter, and precipitation of 

driest month. The territorial reach is very limited, 

concentrated around Mount Bintang Lestari (3,745 

m.a.s.l.) on the border of Indonesia and Papua New

Guinea. Therefore, there is a trend similar to the RCP

4.5 scenario for 2050, where the high potential area

decreases, but recovers by 2070 (Figure 6). A similar 

pattern is observed in areas with marginal potential; 

however, this is inversely proportional to the RCP 6.0 

scenario for 2070, which shows a decrease in 

probability, covering 26,323 km2. The difference in 

altitude, coupled with a gradual but significant 

increase in temperature from highlands to lowlands, 

indicates that M. ingens doest not grow well. This 

observation is supported by Argent (1976), who 

reported a very high intolerance to continuous 

temperature changes. However, with even sunlight as 

projected, the canopy of M. ingens will receive 

prolonged shade from largertrees in lowland areas. 

Unlike other banana subspecies that struggle in low 

light conditions (Simmonds, 1962), M. ingens is 

relatively shade tolerant. 

Figure 6. Bioclimatic range of Musa ingens to 2050 and 2070 according to RCP 6.0 scenario 

The RCP 8.5 scenario shows the most 

favorablechanges, with minimal significant changes 

occurring in each region, and an expansion of the 

bioclimatic area. The highland areas along the island 

of Papua significantly influence the surrounding lower 

land areas (Figure 7). 

The model in this study shows that the total 

range does not change significantly. Some factors also 

show a higher level of importance, and regional 

distribution is improving. In the “lower” scenario, the 

area with conditions that have the potential to worsen 

decrease  significantly.  However,  this  area  is  larger 
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than areas with high potential. This means that by 

2070, the average annual temperature for inland, and 

higher mountain areas will increase by 28.10oC to 

30.20oC, and 25.10oC to 37.2oC respectively. This 

implies that spatial and temporal variability in 

temperature will be small (>1.2oC) compared to 

current variability, supporting an average annual 

temperature of around 30±2oC throughout the region. 

The temperature increase is estimated at 0.32oC by 

2050 and 0.46oC by 2070. This change is expected to 

continue due to increasing greenhouse gas emissions 

(Canadell and Raupach, 2008; Rahmstorf et al., 2007). 

Annual and seasonal rainfall is expected to increase 

consistently with the intensification of the rainy 

season and the convergence of inter-tropical zones. 

This suggests that higher areas will receive more than 

280 cm of rainfall per year in the current climate, 

reaching 1,000 cm per year by 2070 until 

environmental stability is achieved. The temperature 

required for optimal leaf growth and development is 

31.6oC with a relatively humid climate, which can be 

achieved year round in tropical areas. 

In this study, areas with a high level of 

probability indicate regions with the most potential 

and tend to be stable. This stability is influenced by the 

location’s altitude above 1,000 m.a.s.l. (Argent, 1976). 

The large size of this species allows it to compete for 

sunlight from the surrounding trees. However, there 

are significant changes based on each scenario. Areas 

with moderate probability tend to be less stable, and 

their condition worsens when bioclimatic parameters 

change. This situation is exacerbated by complex 

topographic conditions, which result in higher 

hydraulic resistance (Domec et al., 2019) because 

water needs to be transported over long distances as 

the temperature increases. It is reasonable to assume 

that M. ingens is limited to the highlands because the 

relatively low temperatures, frequent fog, and low 

evaporation requirements create favorable conditions 

for transporting water 15 m upwards without 

damaging its xylem vessels. The central part of the 

island of Papua changed significantly, with an increase 

in precipitation during the warmest quarter. The 

continental index may rise due to climate change, and 

this impact seems to affect the highland areas as well. 

This suggests that the temperature differences in the 

region are very pronounced.  

Changes in temperature and rainfall, relative 

humidity will significantly affect terrestrial 

biodiversity. The biodiversity we see today is the 

result of co-evolutionary processes and mechanisms 

that developed to coexist through spatial and temporal 

climate variability. Future tolerance to climate change 

will bring significant changes to many species, as it 

will take a long time for them to adapt. These pressures 

will also alter the composition of soil microbes, 

impacting the soil as a growth medium and affecting 

the soil ecosystem. This is crucial because soil 

microbes play an essential role in the decomposition 

of dead organic matter and the cycle of soil nutrients, 

both of which are vital for soil productivity and 

sustainable use. 

The climate change scenario in this study 

illustrates that bananas require a warm subtropical 

climate and sufficient humidity. Adequate rainfall and 

soil moisture are necessary for plant growth (Pabst et 

al., 2016). Changes in soil moisture will reduce 

microbial activity, decreased leading to 

decomposition, and consequently, a reduction in total 

soil carbon (Meisner et al., 2021). According to 

Gunina et al. (2018), soil biota biomass is positively 

correlated with higher rainfall. However, the results of 

this research simulated a gradual increase in 

temperature and an indirect reduction inrainfall. This 

research indicates that climate changes affecting M. 

ingens plants influencethe distribution of soil nutrients 

fand changes in groundwater as a growing medium. 

This finding aligns with Becker (2017), who reported 

that in warm and dry climates (<1,900 m.a.s.l.), 

variations in total carbon and total nitrogen content in 

the soil are determined by climatic conditions, 

whereas in wet climates (>1,900 m.a.s.l.), these 

variations arestrongly controlled by tree biomass, 

which produces nutrients in the soil. 

Changes in climate conditions have a 

significant negative impact on banana distribution. In 

cooler areas, banana distribution is limited, but higher 

temperatures caused by climate change can benefit 

productivity (Ramirez et al., 2011). This indicates that 

annual precipitation can be beneficial for plants, 

excessively high annual precipitation can be 

detrimental. High mean annual precipitation can 

increase the prevalence fungal diseases in bananas, 

reducing their ability to survive in the wild and 

lowering their productivity (Nyombi, 2010; Bebber, 

2019). In contrast, some drier areas may experience 

positive effect. However, Bebber (2019) argues that 

temperature is a significant driving factor for this 

increased risk of fungal diseases. Climate change has 

created air temperatures more favorable for fungal 

spore growth. 

403



Aldiansyah S and Risna / Environment and Natural Resources Journal 2024; 22(5): 394-407

Figure 7. Bioclimatic range of Musa ingens to 2050 and 2070 according to RCP 8.5 scenario 

Table 3. Bioclimatic area size (km2) in Musa ingens according to RCP 2.6, RCP 4.5, RCP 6.0 and RCP 8.5 scenarios 

Period Bioclimatic range index 

<0.30 0.30-0.49 0.50-0.59 0.60-0.79 0.80-1.00 

Present time 134,980 312,427 97,653 109,037 124,590 

RCP2.6 2050 160,626 168,349 107,874 222,497 119,342 

RCP2.6 2070 473,667 120,929 23,001 98,796 62,295 

RCP4.5 2050 621,765 67,225 34,216 24,609 30,872 

RCP4.5 2070 219,937 112,317 307,264 71,478 67,691 

RCP6.0 2050 293,193 332,889 28,312 77,340 46,954 

RCP6.0 2070 25,561 61,935 26,323 508,813 156,055 

RCP8.5 2050 75,732 79,477 19,213 476,925 127,341 

RCP8.5 2070 77,890 109,884 22,112 472,926 95,876 

Climate change is not the only factor that 

increases fungal infections in bananas. Diseases that 

reduce the fruit production tree may also be influenced 

by other factors. Besides fungal infections, water 

stress due to inadequate water intake will reduce 

banana yields. Under water stress, bananas close their 

stomata to conserve water, reducing carbon 

assimilation and crop yields (Turner et al., 2007). 

Most Banana varieties grow best with 12 hours of 

bright light and high humidity of 50% or higher. The 

ideal temperature range is around 26 to 30°C. Growth 

begins at 18ºC, reaches optimal growth at 27ºC, and 

stops completely when the temperature reaches 38ºC. 

This suggests that while tropical plants, including 

bananas, can tolerate temperatures near freezing, the 

cannot tolerate excessively high temperatures, which 

they rarely experience in the wild. Although Bananas 

grow best in bright sunlight, high temperatures will 

scorch the leaves and fruit, indirectly affecting their 

survival in the wild. 

This research indicates that environmental 

parameter dynamics within the same distribution 
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across different years can influence the environmental 

suitability of M. ingens, although the long-term 

population abundance cycle remains unknown. Some 

scenarios suggest less concerning outcomes; areas to 

become drier in the future may experience reduce 

disease infections, but bananas need require 

amplewater to thrive. Therefore, addressing infection 

issues through drying out may necessitate effective 

water management for banana distribution in the 

future. These factors are crucial in shaping the 

bioclimatic range of this species. Lastly, this research 

can inform IUCN about the potential impact of climate 

change on M. ingens in the future. We believe this 

study is the first report to model the potential 

bioclimatic range of M. ingens across the mainland of 

Papua Island. Further research on the Musa species 

incorporating biophysical variables, distribution 

aspects, and habitat history could provide valuable 

insights for future management of this species. 

4. CONCLUSION

The distribution of M. ingens, modeled through 

maximum entropy species distribution modeling, 

reveals that the key factors influencing its distribution 

including precipitation of warmest quarter, 

precipitation of driest month, precipitation of coldest 

quarter, and mean temperature of wettest quarter. 

Bioclimatic changes under the RCP 4.5 scenario are 

projected to result in a fourfold decrease in the current 

area of high abundance, with a shift towards isolated 

optimal climate areas in highlands spanning from the 

Osua Trikora Mountains to the Giluwe Mountains and 

Mount Victoria. Many areas areas became 

uninhabitable. Map forecasting species distributions 

under modeled scenarios ilustrate species-specific 

responses to potential climate change, indicating a 

significant reduction in current distribution range and 

a shift towards the central region, with fewer locations 

across the island of Papua. 
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