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Climate change significantly impacts living organisms, leading to alterations in
their range, distribution, and abundance. This study estimates the potential
distribution of representatives of the family Musaceae, noted for their large size
and importance to tropical ecosystems. We focus on Musa ingens Simmonds
1960 and employ bioclimatic variables and in situ datasets to model its species
distribution. We differentiate potential distribution areas for M. ingens and
present a prognostic map of its distribution under four climate change scenarios.
Precipitation during the warmest quarter emerges as the primary factor
influencing the spatial distribution of M. ingens. Under the RCP (Representative
Concentration Pathway) 6.0 scenario, the potential distribution shows an initial
decrease, followed by a significant increase by 2070. Meanwhile, the RCP 8.5
scenario indicates an increase in 2050, with a subsequent six percent decrease in
2070. Under the RCP 4.5 scenario for 2050, the species distribution shifts
regionally, particularly around the Osua Trikora Mountains and the highlands of
the Giluwe Mountains to Mount Victoria. By 2070, the feasible area is expected
to expand. Notably, the RCP 2.6 scenario for 2070 predicts a dramatic reduction
in habitable area around Mount Bintang Lestari, on the border between Indonesia
and Papua New Guinea, rendering the entire lowland region of Papua
uninhabitable. Consequently, a sharp decline in the population of M. ingens in
this area is predicted.

1. INTRODUCTION

Climate projections indicate that tropical regions
are expected to experecience significantly warmer and
more severe compared to other part of the world
(Gasparrini et al., 2017; Serdeczny et al., 2017; Siyum,
2020). According to the TPCC’s recent multi-model
mean, Northeastern United States, Central America,
West and South Africa, and Southeast Asia are
projected to become drier by 2100, while other already
wet tropical regions will become even wetter (Lee et al.,
2021). Studies by Feng and Zhang (2015) and Greve
and Seneviratne (2015) suggest that wet areas will
experience increased precipitation, whereas dry areas
will see reduced rainfall. However, Knutti and Sedlacek
(2013) and McSweeney and Jones (2013) have noted

that tropical regions show the lowest consensus among
climate models regarding future weather changes. This
uncertainty is compounded by smaller-scale
assessments (Platts et al., 2015; Rahn et al., 2018).
Given the prejected increase in temperatures, reduced
rainfall intensity represents a potential worst-case
scenario for future crop growth.

Climatic factors have long been recognized as
influential in ecological studies (Thiele, 1977).
Determining optimal temperature and humidity across
season is crucial for understanding species habitats
predicting changes in their distribution area. Musa
ingens Simmonds 1960 is an important component of
tropical ecosystems, producing over 125 million tons
annually and ranking among the world’s most
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important fruit crops (FAO, 2018). Every parts of the
plant is utilized in daily life (Kennedy, 2009). M.
ingens can reach heights of 15 m (Argent, 1976;
WCSP, 2018), thriving in the highlands of Papua New
Guinea’s main island within primary montane
rainforest and exhibiting intolerance to high
temperatures (Simmonds, 1960; Argent, 1976). Such
topographic conditions are influenced by biotic and
abiotic stresses, including climate factors such as
salinity (8.0), relative humidity (15%), heat stress
(>15°C), and cold temperature stress (<0°C). As a
native plant of tropical regions, M. ingens thrives best
at temperature between 31°C and 32°C with adequate
nutrient and water availability (Kallow et al., 2020;
Joshi et al., 2023), facilitating early flowering and
higher yields in favorable environments (Ravi and
Vaganan, 2016). Recorded collections indicate its
presence predominantly in the Central Range montane
rainforests ecoregion, with occurence also noted in the
Huon Peninsula montane rainforests and Southeastern
Papuan rainforests ecoregions (Olson et al., 2001).
Studies have additionaly documented its presence in
the Arfak Mountains, Indonesia (Sadsoeitoeboen et
al., 2021).

The population of M. ingens significantly
surpasses the threshold for threatened status, owing to
its widespread distribution ascross numerouslocations.
While specific population trends remains unclear, it is
believed to be abundant in the central highlands of
Papua New Guinea (Plummer et al., 2020), thus
classified as Least Concern by conservation standards.
However, habitat fragmentation poses a significant
threat to this species (Butler, 2006; WWEF, 2019;
Mongabay, 2019). Factors such as timber extraction,
subsistence, and industrial agriculture expansion,
mining activities (Butler, 2006; WWEF, 2019;
Mongabay, 2019), along with local cultural practices
(Sterly, 1997; Kennedy, 2009; Lentfer, 2009)
contribute to this fragmentation. Furthermore, while
M. ingens holds holticultural value, its cultivation
outside its native climate presents considerable
challenges (Plummer et al., 2020).

Although the anthropogenic factors mentioned
are a concern for the survival of this species (Plummer
et al., 2020), it appears that climate change has
significantly altered the distribution of species such as
bananas in the wild and has the potential to affect
interactions between plants, pests, and diseases and
the humans, animal, and plants hosts (Bebber, 2019;
Watts et al., 2023; Abdoussalami et al., 2023).

395

Empirical studies show that competition for water
resources between trees may worsen under
increasingly hot and dry climate conditions, thereby
impacting distribution and productivity (Lott et al.,
2009; Abdulai et al., 2018; Blaser et al., 2018).
Bebber’s (2019) in-depth study found that the increase
in risk to the survival of banana species over the last
60 years was influenced by temperature. Therefore,
little is known about the influence of climate change
on the distribution of bananas, especially M. ingens.
Climate change is seen to affect the cycle and
habitat range of the M. ingens species. In this contex,
investigating the potential distribution of species
becomes interesting, although some rare species are no
less important. The species studied in this research has
Least Concern (LC) status according to the IUCN Red
List. It is very interesting to predict changes in the
potential distribution of this species range in the next
30-50 years due to the influence of global climate
change. This research aims to predict trends in changes
in the potential distribution of M. ingens under various
global climate change scenarios for 2050 and 2070.

2. METHODOLOGY

Research material was obtained from the Global
Biodiversity Information Facility (GBIF) open
database, initially comprising data from 37 sites.
However, only 19 sites were used after eliminating
duplicate data, coordinate errors, and data without
coordinates (GBIF, 2023). We then validate these
data with our colleagues through the framework of
the Scientific Collaboration Agreement. The data
collection covered the time range from 1963 to 2023,
with occurences distributed in Indonesia (5
occurrences) and Papua New Guinea (14 occurrences)
(Figure 1).

Bioclimatic modeling (Aldiansyah and Wahid,
2023; Aldiansyah and Wahid, 2024) uses 2.5 km
resolution WorldClim  data from the global climate
database (www.worldclim.org) with 19 bioclimatic
variables. The model is built from the Community
Climate System Model 4 (CCSM 4). This data was
chosen considering the development of all CCSM
components from the previous version, particularly in
the annual water storage cycle in tropical regions
which is much improved (Gent et al., 2011). To
enchance the prediction quality of the CSSM dataset,
we first reduce the long-term bias and then compare it
with the adequate Climate Forecast System Reanalysis
(CFSR) dataset. Bearing in mind that varying degrees
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Figure 1. Study area

of bias can be found throughout the atmosphere at
the study location for each of these variables, both
spatially and temporally. This is due to the CCSM grid
being too coarse, which produced significant biases
for surface variables such as temperature, relative
humidity,  geopotential  height, wind, and
meridionality, especially in complex orographic
conditions. We found consistency between CCSM and
CFSR mixing ratio climatologies, particularly over
complex terrain across the study area. Although it did
not directly correct the mixing ratio data, the
temperature and relative humidity corrections and
subsequent mixing ratio calculations produce a
climatology consistent with CFSR. This research
calculates future climate predictions through
representative  concentration  pathway (RCP)
scenarios. The model provides four scenarios by
dividing the radiation dose based on greenhouse gas
concentrations: RCP2.6 (implies temperature increase
on the planet to 0.9°C on an average); RCP4.5
(increase to 1.9°C); RCP6.0 (increase to 2.4°C);
RCP8.5 (increase to 4.1°C). This model was chosen
considering the resulting statistical similarity of the
current climate compared to previous climate models
(Lee et al., 2014; Ruosteenoja et al., 2016). We
selected historical periods according to the latest
recommendations of the World Meteorological
Organization (WMO, 2017). Applying timeline scales
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in the past, we modeled for the 2050s and 2070s in
each scenario and compared them with the present
time model.

This research uses ArcGIS 10.4.1 for layer
work and estimated potential reach using the SDM
package in R (RStudio Team, 2020), identifying the
most influential variables in each scenario. Several R
packages were employed in bioclimatic modeling.
Package “dismo” is used to load climate variables,
while “mapview” is used to see the point of
occurrences. Package “usdm” to test collinearity
among the climatic variables by providing functions
“vifstep” and “vifcor”. We use the Variance Inflation
Factor (VIF) to overcome the collinearity problem
between predictor variables. Therefore, we did not
include highly correlated variables to obtain an
accurate model (Aldiansyah and Wahid, 2023;
Aldiansyah and Wahid, 2024). A total of 19
bioclimatic variables were selected using VIF values.
VIF reflects how much the standard error increases
due to the multicollinearity of the variables included
in the model. The correlation threshold was set at 0.7
(Table 1). Library “sdm” is used to run the algorithm
of species distribution models. This package combines
different parallel implementations of niche ecology
and machine learning models on a single platform and
uses an object-oriented, reproducible, and extensible
approach in R (Naimi and Araljo, 2016). To predict
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species probabilities, the “sdmData” package was
used to generate 200 pseudo-absence records which
were used against 19 presence-only records to
calibrate the model. The algorithm is run using
bootstrap with two replications and applied to all
scenarios. We used the Learning Vector Quantization
(LVQ) algorithm to determine the most important
factors from each selected predictor variable. LVQ is
a supervised classifier that was introduced by
Kohonen (1995). LVQ has been used in various
studies for environmental sciences (Pourghasemi and

Kerle, 2016), flood susceptibility mapping (Termeh et
al., 2018; Aldiansyah and Wardani, 2023), landslide
susceptibility mapping (Rahmati et al., 2016;
Aldiansyah and Wardani, 2024), wildfire mapping
(Aldiansyah and Madani, 2024) species distribution
mapping (Aldiansyah and Risna, 2023; Aldiansyah et
al., 2024). The LVQ was worked by searching for the
shortest distance to the value and eliminating the
noise, which could potentially interfere with the
process of convergence in the forecasting system in
large data (Kohonen, 1995).

Table 1. Bioclimatic variables and their computed variance inflation factor (VIF) obtained from the Worldclim database for modeling the

bioclimatic range of Musa ingens

Bioclimatic variable Variable description Unit VIF
Biol Annual mean temperature °C 304.41
Bio2 Mean diurnal range [mean of monthly (maximum temp.-minimum temp.)] °C 1.82
Bio3 Isothermality (Bio2/Bio7) (x 100) °C 17.33
Bio4 Temperature seasonality (standard deviation x 100) °C 51.69
Bio5 Maximum temperature of the warmest month °C 11.12
Bio6 Minimum temperature of the coldest month °C 28.13
Bio7 Temperature annual range (Bio5-Bio6) °C 66.07
Bio8 Mean temperature of wettest quarter °C 1.45
Bio9 Mean temperature of driest quarter °C 2.43
Biol0 Mean temperature of warmest quarter °C 521.09
Bioll Mean temperature of coldest quarter °C 80.91
Biol2 Annual precipitation mm 19.32
Biol3 Precipitation of wettest month mm 2.78
Biol4 Precipitation of driest month mm 2.08
Biol5 Precipitation seasonality (coefficient of variation) mm 1.94
Biol6 Precipitation of wettest quarter mm 117.25
Biol7 Precipitation of driest quarter mm 242.24
Biol8 Precipitation of warmest quarter mm 1.84
Biol9 Precipitation of coldest quarter mm 2.13

Note: The variables in bold text are those that were selected based on VIF for predicting the bioclimatic range of Musa ingens.

Model verification in this study employs several
metrics includin Receiver Operating Characteristics-
Area Under Curve (ROC-AUC) (Shabani et al., 2016),
Correlation (COR), True Skill Statistics (TSS)
(Fourcade et al., 2018) Deviance (Agresti, 2018),
Prevalence (Allouche et al., 2006), and Calibration
(Fieberg et al., 2018). The ROC-AUC evaluates the
model’s ability to distinguish between presence and
absence data, with values ranging from 0 to 1; an
AUC>0.7 indicates good model performance. COR
assesses the strength of the relationship between
climate variables and species presence. TSS measures
relationship between observations and predictions,
with values ranging from-1 to +1; a TSS closer to +1
indicates stronger the relationship between the two
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variables. Deviance represents model error, with
values closer to 0 indicating lower error rates.
Prevalence measures the proportion of sites where the
species is present. Calibration tests the accuracy of
model estimates, with values closer to 1 indicating
better model calibration. Model accuracy was verified
using a random split of presence data: 70% for model
training and 30% for testing. A binarization prediction
threshold was set based on model performance,
considering predictions above the 10" percentile
threshold as potential distribution for species. This
approach identifies 90% of analyzed presence point
within the “potential” range, while disregarding 10%
classified as unpotential for climate niche modeling.
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3. RESULTS AND DISCUSSION

AUC is used to estimate the model’s
performance in recognizing the presence or absence of
a species in a location. The obtained maps reliably
characterize the peculiarities of the distribution of the
studied species. In this research model, the average
AUC obtained was 0.96, indicating a high model

Table 2. Evaluation model of Musa ingens according to each scenario

significance with a 97% probability of correctly
predicting the presence of the studied species at the
recorded points (Table 2). Meanwhile, the average
values of COR, TSS, Deviance, Prevalence, and
Calibration are 0.91, 0.93, 0.13, 0.14, and 0.80
respectively.

Scenario AUC COR TSS Deviance Prevalence Calibration
Present time 0.98 0.95 0.92 0.09 0.16 0.79
RCP2.6 2050 0.97 0.96 0.93 0.21 0.10 0.89
RCP2.6 2070 0.94 0.93 0.92 0.11 0.10 0.80
RCP4.5 2050 0.97 0.93 0.93 0.10 0.19 0.81
RCP4.5 2070 0.96 0.81 0.96 0.17 0.05 0.74
RCP6.0 2050 0.97 0.79 0.97 0.13 0.21 0.77
RCP6.0 2070 0.93 0.92 0.92 0.09 0.02 0.91
RCP8.5 2050 0.97 0.95 0.91 0.08 0.17 0.81
RCP8.5 2070 0.96 0.93 0.95 0.15 0.27 0.66
Modeling  problems  generally  suggest  plant species have characteristics that can increase their

supplementing the constructed model with points of
absence. In this study, the number of absence points
was randomly selected as 200 points. According to
Phillips et al. (2017), model adequacy will be
determined by the choice of traits. This method used all
bioclimatic parameters from the WorldClim dataset for
this purpose. In case of limited species presence,
resampling techniques are generally applied to
duplicate the presence data, for example, N=100.
However, this is greatly influenced by regional
coverage in different cases. Thus, there is considerable
variation depending on the type of modeling approach,
species, and regional coverage. Modelers therefore
need to be aware that the results obtained will include
some degree of uncertainty, particularly due to climate
(Thuiller et al., 2004; Araujo et al., 2005; IPCC, 2013;
Casajus et al., 2016; Quillfeldt et al., 2017). Casajus et
al. (2016) proposed an objective approach to selecting
climate scenarios for a species. However, there are no
definite guidelines for choosing the best type of setting
or climate variable, which also depends on the specific
periods to be considered and the magnitude of
environmental changes (Aradjo et al., 2004). This
implies that when climate change occurs, the dynamics
of the home range can be influenced by intrinsic
population dynamics (Lawton, 1993). However, if
strong environmental changes occur, species
distribution dynamics will be strongly influenced by
these changes (Aradjo et al., 2004). Many invasive

398

dominance in transitional climate scenarios (Dukes and
Mooney, 1999), as seen in several relatives of the Musa
species. Additionally, potential new areas may emerge
in previously unsuitable or marginal areas, while
previously suitable areas may become unsuitable or
marginal habitats (Aradjo et al., 2004; Hirzel et al.,
2002; Hirzel et al., 2006).

This research found that only in the RCP6.0
2070s scenario was the bio13 variable used along with
other variables. Meanwhile, other present-time and
future scenarios ignore Biol3 variables. The
contributing variables in the present time variables are
precipitation of warmest quarter, precipitation of
driest month, and precipitation of coldest quarter. This
contribution analysis remains the same in RCP2.6 and
RCP8.5 in 2070, and RCP6.0 in 2070.

Analysis of variables contributions to the 2050
projections across all scenarios highlights the highest
significance of precipitation in the warmest quarter,
particularly under RCP6.0. Precipitation in the driest
month also show significant influence across all
scenarios for 2050, whereas in RCP4.5, precipitation
of coldest quarter becomes more significant compared
to other scenarios. Moving to 2070, precipitation of
warmest quarter emerges as most significant under
RCP2.6, RCP6.0, and RCP8.5, alongside continued
significant of precipitation in the driest month.
Notably, precipitation in the driest month takes
precendence in importance under RCP4.5. Overall, the
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contribution of bioclimatic variables is likely to vary
in shaping the future spatial distribution of M. ingens.
Nonetheless, across all models, precipitation of
warmest quarter and driest month consistently emerge
as crucial variables, except in RCP4.5 where the driest
month takes precedence (Figure 2).

This research models nine bioclimatic regions,
including projection for 2050 and 2070 under four

0.3

climate scenarios. Each model identifies four regions
with varying probabilities of species presence: 0.8-1.0
-the most probable presence likelihood; 0.6-0.8 -high
presence likelihood; 0.5-0.6 -moderate presence
likelihood; 0.3-0.5 -low presence likelihood; and value
below 0.3 -indicatingno presence likelihood. The
threshold value 0.3 corresponds of the 10 percentiles.
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Figure 2. Variable importance

The current bioclimatic model of M. ingens
identifies several key areas with high likelihood of
species presence, including the Arfak mountains
(2,955 m.as.l), the Weyland mountains (3,891
m.a.s.l.), from Angemuk Peak (3,949 m.a.s.l.) to Osua
Trikora Peak (4,750 m.a.s.l.) in Indonesia, as well as
Mount Kabangama (4,104 m.a.s.l.), Mount Wilhelm
(4,509 m.as.l.), Mount Michael (3,647 m.as.l.),
Mount Piora (1,722 m.a.s.l.), Mount Victoria (4,038
m.a.s.l.), Mount Sibium (2,295 m.a.s.l.), Mount
Suckling (3,676 m.a.s.l.), Mount Simpson (2,883
m.a.s.l.), including McAdam National Park (1.18 km?)
in Papua New Guinea. This area zones with a high
probability of species presence (Figure 3). The
Gauttier Mountains (2,230 m.a.s.l.), Cyclops
Mountains (2,160 m.a.s.l.), and Wondiwoi Mountains
(2,251 m.a.s.l.) are area with a moderate probability of
species presence. The bioclimatic area with the highest
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Scenarios

probability of species presence covers 233,628 km?,
with moderate presence covering 97,653 km?, and
with low presence covering 447,407 km?.

In the context of the RCP 2.6 scenario, there is
a notable shift in the zone of high probability of
species presence towards the western part of the
region, centered around Weyland and Undundi-
Wandandi (3,640 m.a.s.l.) (Figure 4). While the area
with a very high probability remains with in the
contemporary model, there is regional expansion into
the high probability zone, notably across the temperate
zone. Changes from McAdam National Park to the
Simpson Mountains are expected to reduce the
bioclimatic range of the region. Areas classified as
high and medium probability of species presence have
expanded to 341,840 km? and 107,874 km?
respectively, while those with a low probability have
decreased to 328,975 km?,
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Figure 3. Present bioclimatic area in Musa ingens

According to the RCP 2.6 model scenario in
2070, the total area of the bioclimatic area significant
changes, resulting in a notable shift in the ratio of area
to potential distribution (Figure 4). Areas with high
probability decreased by half to 161,091 km?, while
areas with low probability increased nearly double to
594,596 km? (Table 3). This change is driven by the
RCP 2.6 climate scenario, which predicts rising
temperatures due to increased greenhouse gas
emissions until 2070. The bioclimatic conditions in
2070 are anticipated to differ significantly from
current conditions, with a marked decline in potential
area. This decrease is influenced by varying emissions
scenarios, predicting a reduction in CO; levels from
380 to 100 ppm (IPCC, 2013). This reduction is
associated with temperature increases ranging from
0.3°C to 2.6°C and 0.9°C to 6.8°C by 2100. Extreme
low CO; levels (<100 ppm) can threaten plant growth,
leading to slow growth and increased drought
susceptibility even under optimal conditions near the
equator. Consequently, only a few plant species may
thrive even in the best conditions.

According to the scenario 4.5 projections for
2050, adecline in areas of moderate potential
probability is observed compared to the contemporary
model. This indicates changes in bioclimatic
parameters and deteriorating environmental conditions
in most areas, except around Puncak Jaya (4,884
m.a.s.l.). These changes may result from increased
seasonal temperature contrasts. The most potential area
for the studied species have decrease significantly
compared to the current distribution, now covering
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only 55,482 km? with some regions becoming
unsuitable (Figure 5). High potential probability is now
primarily confined to the Osua Trikora Mountains and
the highlands of the Giluwe Mountains (4,367 m.a.s.l.)
to Mount Victoria. This scenario represents the most
severe changes, with the sharpest decline in potential
area.

In the 2070 scenario 4.5, the potential area
expands compared to 2050 (high: 139,169 km?) and the
current distribution area (moderate: 307,264 km?)
(Figure 5). The area with low potential decreases to
332,254 km?, extending its probability to the eastern
and southern sides of the region. The most significant
changes were observed in the amplitude of the driest
monthly temperatures and the average precipitation
during the warmest and coldest months. Compared to
the current climate, future projections (PACCSAP,
2011) suggest a warmer and wetter, with the rainfall
expected to change by +25%, temperature increase by
1.4°C to 3.1°C, and sea level rising by 19 cm to 85 cm.
These changes imply an increase in surface temperature
of 1.0°C to 4.2°C, contributing to a sea level rise of
1.0°C to 3.0°C. Additionally, sea water is predicted to
become more acidic, dropping by 0.3 to 0.4 pH units
due to the increasing CO, absortion. Many plant and
animal species may struggle to adapt to the impacts of
RCP 4.5 (IPCC, 2014). In this scenario, carbon levels
are estimated to reach 600 ppm by 2070. Small plants
are predicted to decompose and released CO, while
larger plants may survive longer by absorbing carbon
from decaying vegetation. This dynamic explains the
observed improvement in this scenario.
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Figure 4. Bioclimatic range of Musa ingens to 2050 and 2070 according to RCP 2.6 scenario
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According to the prognostic model of the
RCP.6.0 scenario, areas with a marginal distribution
index of 0.5-0.6 will decrease by 2050 (Figure 6).
The area with the highest potential distribution index
covers 124,294 km?, which is 2.5 times lower than
the previous model. In contrast, the area with
marginal index has decreased significantly, covering
only 28,312 km2 The main contribution to this
significant change is influenced by three factors,
namely precipitation of warmest quarter, mean
temperature of wettest quarter, and precipitation of
driest month. The territorial reach is very limited,
concentrated around Mount Bintang Lestari (3,745
m.a.s.l.) on the border of Indonesia and Papua New
Guinea. Therefore, there is a trend similar to the RCP
4.5 scenario for 2050, where the high potential area

decreases, but recovers by 2070 (Figure 6). A similar
pattern is observed in areas with marginal potential;
however, this is inversely proportional to the RCP 6.0
scenario for 2070, which shows a decrease in
probability, covering 26,323 km?. The difference in
altitude, coupled with a gradual but significant
increase in temperature from highlands to lowlands,
indicates that M. ingens doest not grow well. This
observation is supported by Argent (1976), who
reported a very high intolerance to continuous
temperature changes. However, with even sunlight as
projected, the canopy of M. ingens will receive
prolonged shade from largertrees in lowland areas.
Unlike other banana subspecies that struggle in low
light conditions (Simmonds, 1962), M. ingens is
relatively shade tolerant.

RCP 6.0, 2070s

(124.294)  High
-53 ® Present time
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Figure 6. Bioclimatic range of Musa ingens to 2050 and 2070 according to RCP 6.0 scenario

The RCP 8.5 scenario shows the most
favorablechanges, with minimal significant changes
occurring in each region, and an expansion of the
bioclimatic area. The highland areas along the island
of Papua significantly influence the surrounding lower
land areas (Figure 7).
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The model in this study shows that the total
range does not change significantly. Some factors also
show a higher level of importance, and regional
distribution is improving. In the “lower” scenario, the
area with conditions that have the potential to worsen
decrease significantly. However, this area is larger



Aldiansyah S and Risna / Environment and Natural Resources Journal 2024; 22(5): 394-407

than areas with high potential. This means that by
2070, the average annual temperature for inland, and
higher mountain areas will increase by 28.10°C to
30.20°C, and 25.10°C to 37.2°C respectively. This
implies that spatial and temporal variability in
temperature will be small (>1.2°C) compared to
current variability, supporting an average annual
temperature of around 30+2°C throughout the region.
The temperature increase is estimated at 0.32°C by
2050 and 0.46°C by 2070. This change is expected to
continue due to increasing greenhouse gas emissions
(Canadell and Raupach, 2008; Rahmstorf et al., 2007).
Annual and seasonal rainfall is expected to increase
consistently with the intensification of the rainy
season and the convergence of inter-tropical zones.
This suggests that higher areas will receive more than
280 cm of rainfall per year in the current climate,
reaching 1,000 cm per year by 2070 until
environmental stability is achieved. The temperature
required for optimal leaf growth and development is
31.6°C with a relatively humid climate, which can be
achieved year round in tropical areas.

In this study, areas with a high level of
probability indicate regions with the most potential
and tend to be stable. This stability is influenced by the
location’s altitude above 1,000 m.a.s.l. (Argent, 1976).
The large size of this species allows it to compete for
sunlight from the surrounding trees. However, there
are significant changes based on each scenario. Areas
with moderate probability tend to be less stable, and
their condition worsens when bioclimatic parameters
change. This situation is exacerbated by complex
topographic conditions, which result in higher
hydraulic resistance (Domec et al., 2019) because
water needs to be transported over long distances as
the temperature increases. It is reasonable to assume
that M. ingens is limited to the highlands because the
relatively low temperatures, frequent fog, and low
evaporation requirements create favorable conditions
for transporting water 15 m upwards without
damaging its xylem vessels. The central part of the
island of Papua changed significantly, with an increase
in precipitation during the warmest quarter. The
continental index may rise due to climate change, and
this impact seems to affect the highland areas as well.
This suggests that the temperature differences in the
region are very pronounced.

Changes in temperature and rainfall, relative
humidity ~ will  significantly affect terrestrial
biodiversity. The biodiversity we see today is the
result of co-evolutionary processes and mechanisms
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that developed to coexist through spatial and temporal
climate variability. Future tolerance to climate change
will bring significant changes to many species, as it
will take a long time for them to adapt. These pressures
will also alter the composition of soil microbes,
impacting the soil as a growth medium and affecting
the soil ecosystem. This is crucial because soil
microbes play an essential role in the decomposition
of dead organic matter and the cycle of soil nutrients,
both of which are vital for soil productivity and
sustainable use.

The climate change scenario in this study
illustrates that bananas require a warm subtropical
climate and sufficient humidity. Adequate rainfall and
soil moisture are necessary for plant growth (Pabst et
al., 2016). Changes in soil moisture will reduce
microbial  activity, decreased leading to
decomposition, and consequently, a reduction in total
soil carbon (Meisner et al., 2021). According to
Gunina et al. (2018), soil biota biomass is positively
correlated with higher rainfall. However, the results of
this research simulated a gradual increase in
temperature and an indirect reduction inrainfall. This
research indicates that climate changes affecting M.
ingens plants influencethe distribution of soil nutrients
fand changes in groundwater as a growing medium.
This finding aligns with Becker (2017), who reported
that in warm and dry climates (<1,900 m.as.l),
variations in total carbon and total nitrogen content in
the soil are determined by climatic conditions,
whereas in wet climates (>1,900 m.as.l.), these
variations arestrongly controlled by tree biomass,
which produces nutrients in the soil.

Changes in climate conditions have a
significant negative impact on banana distribution. In
cooler areas, banana distribution is limited, but higher
temperatures caused by climate change can benefit
productivity (Ramirez et al., 2011). This indicates that
annual precipitation can be beneficial for plants,
excessively high annual precipitation can be
detrimental. High mean annual precipitation can
increase the prevalence fungal diseases in bananas,
reducing their ability to survive in the wild and
lowering their productivity (Nyombi, 2010; Bebber,
2019). In contrast, some drier areas may experience
positive effect. However, Bebber (2019) argues that
temperature is a significant driving factor for this
increased risk of fungal diseases. Climate change has
created air temperatures more favorable for fungal
spore growth.
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Figure 7. Bioclimatic range of Musa ingens to 2050 and 2070 according to RCP 8.5 scenario

Table 3. Bioclimatic area size (km?) in Musa ingens according to RCP 2.6, RCP 4.5, RCP 6.0 and RCP 8.5 scenarios

Period Bioclimatic range index
<0.30 0.30-0.49 0.50-0.59 0.60-0.79 0.80-1.00

Present time 134,980 312,427 97,653 109,037 124,590
RCP2.6 2050 160,626 168,349 107,874 222,497 119,342
RCP2.6 2070 473,667 120,929 23,001 98,796 62,295
RCP4.5 2050 621,765 67,225 34,216 24,609 30,872
RCP4.5 2070 219,937 112,317 307,264 71,478 67,691
RCP6.0 2050 293,193 332,889 28,312 77,340 46,954
RCP6.0 2070 25,561 61,935 26,323 508,813 156,055
RCP8.5 2050 75,732 79,477 19,213 476,925 127,341
RCP8.5 2070 77,890 109,884 22,112 472,926 95,876

Climate change is not the only factor that
increases fungal infections in bananas. Diseases that
reduce the fruit production tree may also be influenced
by other factors. Besides fungal infections, water
stress due to inadequate water intake will reduce
banana yields. Under water stress, bananas close their
stomata to conserve water, reducing carbon
assimilation and crop yields (Turner et al., 2007).
Most Banana varieties grow best with 12 hours of
bright light and high humidity of 50% or higher. The
ideal temperature range is around 26 to 30°C. Growth
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begins at 18°C, reaches optimal growth at 27°C, and
stops completely when the temperature reaches 38°C.
This suggests that while tropical plants, including
bananas, can tolerate temperatures near freezing, the
cannot tolerate excessively high temperatures, which
they rarely experience in the wild. Although Bananas
grow best in bright sunlight, high temperatures will
scorch the leaves and fruit, indirectly affecting their
survival in the wild.

This research indicates that environmental
parameter dynamics within the same distribution
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across different years can influence the environmental
suitability of M. ingens, although the long-term
population abundance cycle remains unknown. Some
scenarios suggest less concerning outcomes; areas to
become drier in the future may experience reduce
disease infections, but bananas need require
amplewater to thrive. Therefore, addressing infection
issues through drying out may necessitate effective
water management for banana distribution in the
future. These factors are crucial in shaping the
bioclimatic range of this species. Lastly, this research
can inform IUCN about the potential impact of climate
change on M. ingens in the future. We believe this
study is the first report to model the potential
bioclimatic range of M. ingens across the mainland of
Papua Island. Further research on the Musa species
incorporating biophysical variables, distribution
aspects, and habitat history could provide valuable
insights for future management of this species.

4, CONCLUSION

The distribution of M. ingens, modeled through
maximum entropy species distribution modeling,
reveals that the key factors influencing its distribution
including precipitation of warmest quarter,
precipitation of driest month, precipitation of coldest
quarter, and mean temperature of wettest quarter.
Bioclimatic changes under the RCP 4.5 scenario are
projected to result in a fourfold decrease in the current
area of high abundance, with a shift towards isolated
optimal climate areas in highlands spanning from the
Osua Trikora Mountains to the Giluwe Mountains and
Mount Victoria. Many areas areas became
uninhabitable. Map forecasting species distributions
under modeled scenarios ilustrate species-specific
responses to potential climate change, indicating a
significant reduction in current distribution range and
a shift towards the central region, with fewer locations
across the island of Papua.
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