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Mixed subtropical forests possess a high amount of carbon pool owing to their 

rich species diversity and carbon sequestration potential. The Dhaulasidh forest 

is located in Himachal Pradesh within the subtropical Himalayan region. This 

research aimed to identify: (1) Optimal satellite-derived Sentinel-2A indices for 

predicting biomass, (2) the best-fitting model for biomass estimation, and (3) 

changes in above-ground carbon stock due to biomass loss, using satellite remote 

sensing and quadrat-based approaches. Results indicated that Band 3 (Green), 

Band 5 (Red edge), the vegetation (VEG) index, and the Carotenoid reflectance 

index (CRI) were suitable for estimating above-ground biomass (AGB). Shannon 

and Simpson’s diversity indices were calculated as 0.89 and 0.73, respectively. 

Significant contributors to AGB included Mallotus philippensis, Emblica 

officinalis, Cassia fistula, Acacia catechu, Ehretia laevis, Kydia calycina, and 

Lannea coromandelica. The AGB prediction model based on vegetation indices 

demonstrated a strong correlation between observed and predicted biomass 

(R²=0.65, p<0.001), with a mean absolute percentage error of 20% and root mean 

square error of 7.33 tonnes per pixel. The study predicted a total loss of 22,917.15 

tonnes of CO2 in mixed subtropical forests, representing a 12.04% reduction in 

carbon stock within the study area. These findings offer critical baseline data for 

environmental management and carbon balance in the forest ecosystem, 

recommending that forest management practices after deforestation should be 

reviewed for remedial measures for any developmental activities. 
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1. INTRODUCTION

The estimation of carbon loss is a crucial element 

for national carbon accounting. The United Nations 

Framework Convention on Climate Change 

(UNFCCC) recommends that developing countries 

should adhere to the Intergovernmental Panel on 

Climate Change (IPCC) protocol for CO2 emission 

estimation (UNFCCC, 2009). Preparation of a 

parametric model for measuring these changes requires 

the collection of plot-level activity data, such as forests 

under degradation, carbon loss into the atmosphere due 

to forest degradation, and forests required to be 

monitored after degradation. This information may be 

retrieved from forest inventory data and remote sensing 

techniques. Forest degradation can be attributed to the 

loss of carbon stock within forest land (UNFCCC, 

2008), mostly due to deforestation (Peres et al., 2006). 

To a larger extent, forest degradation contributes to 12-

20% of greenhouse gas (GHG) emissions globally 

(CFU, 2020). Pearson et al. (2017), estimate that due to 

annual forest degradation, 2.1 billion tonnes of CO2 

were emitted across developing countries. From various 

anthropogenic activities, about 10.34% of the global 

forest cover was lost between 1990 and 2020 (Lousada 

et al., 2022). In Euthopia, Moisa et al. (2023), reported 

that from 1992 to 2022, forest degradation resulted in a 
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decline in the carbon stock of 58,883.4 tonnes/km2, and 

the past three decades exhibited 2,418,083.91 tonnes of 

carbon emission annually. 

The functioning of the ecosystem is influenced 

by the change in regional biomass due to forest 

degradation as per the Reducing Emissions from 

Deforestation and Forest Degradation (REDD+) 

programme. The biomass changes are a combination of 

five carbon pools: above-ground biomass (AGB), 

below-ground biomass, soil organic matter (SOM), 

deadwood, and litter (IPCC, 2003). Among these, AGB 

accounts for CO2 emitted due to deforestation, 

ultimately responsible for climatic changes (Lu et al., 

2005). Carbon losses exert a substantial impact on 

ecosystems, posing significant threats to ecological 

stability and function, underscoring the critical need for 

evaluation (Lingbing and Jing, 2022). Research on 

land-use carbon emissions primarily focuses on carbon 

emission accounting (Luo et al., 2024; Zhang and 

Zhang, 2023) and low-carbon optimisation (Yan et al., 

2023). In these scenarios, accurate estimation of AGB 

loss is central for precise quantification of CO2 

emission. 

Initially, species-specific allometric equations 

were used for AGB estimation (Navar, 2009; Pearson 

et al., 2005). Allometric equations estimate biomass 

using parameters measured from trees (e.g., height, 

diameter at breast height (DBH), and wood density). 

These equations establish a scaling relationship 

between tree form and function to predict total 

biomass (West et al., 1999). Later, remote sensing 

technology gained attention for forest biomass 

estimation after the launch of resource-monitoring 

satellites (Lu et al., 2016). Consequently, allometric 

equations derived from the field, along with modelled 

remote sensing equations, were used for AGB and 

carbon stock estimation in forest ecosystems (Brown, 

1993; Vashum and Jayakumar, 2012). 

Remote sensing-based methods are widely 

utilised for AGB estimation due to their advantages, 

such as the repeatability of data collection and high 

correlations between spectral bands and vegetation 

parameters. However, selecting the spatial resolution 

of data is crucial as it influences the performance of 

image texture and discrimination of land covers, 

especially in complex forest stand structures 

(Lingbing and Jing, 2022). 

According to Houghton et al. (2009), satellite 

missions  provided  the  opportunity  for  measurement 

and mapping of biomass and carbon emission changes 

on local to global scales. Data retrieved from satellite 

sensors were used in measurements of different 

vegetation traits estimations such as the leaf area 

index, tree density, tree volume, tree crown size, and 

tree height. These traits are used in biomass estimation 

(Isbaex and Coelho, 2021). Information derived from 

the amalgamation of quadrats laid in the forest with 

remote sensing images is widely used in forest studies 

(Chen et al., 2019), embedding predictive models for 

monitoring AGB and carbon estimation (Castillo et 

al., 2017). Satellite images provide varied spatial, 

temporal, and spectral resolutions (Timothy et al., 

2016). Low spatial resolution images with broad 

bandwidth were found inappropriate for AGB 

estimation of subtropical forests consisting of high 

species diversity (Mutanga and Skidmore, 2004; 

Pandit et al., 2018) and require high spatial resolution, 

narrow-bandwidth spectral images that provide 

comparatively more accurate AGB estimation. 

The multispectral sensor of Sentinel 2 is the 

types of high spatial resolution (<10 m) images that 

are resampled to match sample plot field data. Thus, 

vegetation indices (VI), spectral bands, and 

biophysical variables (Isbaex and Coelho, 2021; 

Zhang et al., 2017) derived from Sentinel images can 

improve the accuracy of AGB predictor models. 

Sentinel 2 images are freely accessible at the European 

Space Agency (ESA) hub (Zhang et al., 2017). 

Chrysafis et al. (2017), found a significant relationship 

between growing stock volume and VI (R2=0.63; 

RMSE of 63.11 m3/ha) of Sentinel 2 MSI imagery for 

the heterogeneous forest in northeastern Greece. 

Accurate biomass estimation is crucial for analysing 

the impact of deforestation on regional environmental 

degradation in the global climate change scenario. 

Biomass loss estimation is also important to meet 

compensation actions of the REDD+ programme and 

the net-zero carbon emission plan of UNFCCC. These 

targets can be achieved using Sentinel 2 imagery, 

which provides an opportunity for improved and 

accurate AGB estimation with modelling of image-

driven VI and field-measured vegetation traits 

(Castillo et al., 2017). 

In the above background, we aimed to find 

Sentinel-derived best predictive indices for biomass 

estimation, the best-fitting model for biomass 

estimation, and changes in carbon stock in terms of 

AGB loss in the study area. 
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2. METHODOLOGY

2.1 Study area

Dhaulasidh is part of the subtropical Himalayan 

forest located at 31.80477 N latitude and 76.43964 E 

longitude in the Hamirpur District of Himachal 

Pradesh, India (Figure 1). Annual mean temperature 

and rainfall of the region vary from 17.96 to 27.9°C 

and 42.86 mm, respectively. A total of 142.6 ha area 

is under forest cover, having an elevation of 469-869 

m AMSL. A 66W hydel power project is proposed to 

build on Beas River flowing in the study area. This 

hydel project will generate hydroelectricity and will 

add 304 million units of energy to the national budget. 

It will provide irrigation facilities to over 200 village 

surroundings. Worldwide hydroelectric projects 

contribute to approximately 16% of global electricity 

(IHA, 2024). For developing countries, these 

renewable sources are crucial to meet energy 

demands, but at the same time, environmental loss due 

to the hydel projects need to be taken care. For dam 

construction, a connecting road, and related 

infrastructure of this hydel project, tree felling was 

permitted by the local Himachal Pradesh government. 

It is assumed that approximately 10,000 trees were cut 

in this exercise (SIAU, 2019).

Figure 1. (a) Study area located on country map, (b) state map, (c) Google Earth imagery, and (d) in the field 

2.2 Materials and methods 

The overall methodology for estimating AGB 

of the Dhaulasidh forest is shown in Figure 2. An 

extensive field survey was conducted before the start 

of tree felling on 15-16 March 2021. A total of 15 

quadrats (10×10 m) were established at 300-m 
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intervals to adequately represent the tree felling area 

(Figure 3). The geographical coordinates of each plot 

were recorded using a handheld Global Positioning 

System device. The DBH of each tree was measured 

using a tape measure, and tree height was measured 

using a clinometer.  Soil samples from the study area 

were collected and analysed for nutrient availability, 

including nitrogen, phosphorus, potassium, and SOM. 

Figure 2. Flow diagram of the methodology for the biomass estimation 

Before tree felling, Sentinel-2A MSI image 

Level-1C (16 June 2020) of the study area was 

acquired from the ESA for AGB estimation. Raw 

images were downloaded and pre-processed in the 

Sentinel Application Platform (SNAP) software, 

containing 13 spectral bands with spatial resolutions 

of 20 m and 60 m. In the radiometric correction 

process, the raw Digital number (DN) values of the 

Level1-C product were converted into Top of 

Atmosphere (TOA) radiance using sensor-specific 

calibration coefficients provided in the metadata. 

Subsequently, TOA radiance was converted to TOA 

reflectance. Additionally, the data required resampling 

and subsetting to match the field variables. Therefore, 

in the geometric correction method of SNAP, the 

radiometric corrected images were resampled to 10-m 

resolution to match the size of the field quadrats. 

Sentinel images (6 July 2022) were used for AGB loss 

AGB estimation of each species 

Correlation and 

regression 

analysis between 

observed AGB 

and vegetation 

indices  

Development of AGB estimation model 

AGB estimation of Dhaulasidh Forest 

Methodology of AGB 

estimation 

Sentinel 2A MSI before and 

after tree felling 

(06-16-2020,06-06-2022) 

Field plot sampling (Measurement 

of DBH and Height) 

Image Pre-processing 

(Resampling of images etc.) 

Layer stacking of bands & 

making of band composite 

Phytodiversity analysis (Simpson 

and Shannon diversity Index 

calculations) 

 Literature review for suitable mixed 

species allometric equation and 

specific gravity of species   

Extraction  

of vegetation indices  

(NDVI, TNDVI, EVI, etc.) 
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estimation after tree felling. Using the supervised 

classification method, these satellite images were 

classified (Figure 4) in Erdas Imagine software 

version 16, and the land cover map was prepared. The 

training dataset for classification was identified 

through visual image interpretation. The maximum 

likelihood parametric decision rule was applied to 

image pixels and the land cover map prepared, 

resulting in forest classes mixed with open/barren 

lands. Forest canopy cover >70% was categorised as 

very dense forest, 50-70% as dense forest, 40-50% as 

moderately dense forest, 10-40% as open forest, and 

<10% canopy cover as scrub forest (Farooq and 

Rashid, 2010).

Figure 3. 10×10-meter quadrat-based vegetation sampling in the study area 

The accuracy of the classified image was 

assessed using sensitivity, specificity, and true skill 

statistical (TSS) analysis in the R software package. A 

2×2 confusion matrix was applied to the classified 

images to determine true positives (a), false positives 

(b), false negatives (c), and true negatives (d) using 

Equations (1-3) (Allouche et al., 2006). 

Sensitivity  = 
a

a + c
(1) 

Specificity  = 
d

b + d
 (2) 

TSS  =  Sensitivity + Specificity ˗ 1   (3) 

The phytodiversity of the study area was 

calculated using Simpson (Simpson, 1949) and 

Shannon-Weiner Indices (Shannon and Weaver, 1949) 

using Equations 4 and 5. The Simpson diversity index 

measures the presence and abundance of species in 

their habitat, while the Shannon-Weiner index 

measures uncertainty of the species and community 

diversity. Lower uncertainty indicates lower 

community diversity and vice versa. 

Simpson diversity index (D) = 1/∑ pi
2s

i=1 (4) 

Where; p = proportion (n/N) of individuals of 

one particular species (n) divided by total number of 

individuals (N), Σ is the sum of the calculations, and 

s=number of species. 

Shannon-Weiner Index (H) = -∑ pi In pi
s
i=1 (5) 

Where; p=proportion (n/N) of individuals of 

one particular species (n) divided by the total number 

of individuals (N), ln is natural log, Σ is the sum of the 

calculations, and s=number of species. 

Global, regional, and local biomass estimations 

are influenced by the choice of biomass estimation 

equation. Therefore, the selection of an equation is 
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crucial as it affects accuracy when applied with remote 

sensing data for regional biomass prediction (Mitchard 

et al., 2013). Several allometric equations are available 

for AGB estimation (Chaturvedi and Raghubanshi, 

2013; Rawat and Singh, 1988); among them, the 

equation proposed by Nath et al. (2019), (Equation 6) 

was considered the most accurate for AGB estimation 

of mixed woody species and was used in this study. 

AGB (kg/m3) = 0.32*p*D^2* H^0.75 *1.34   (6) 

Where; p=wood density, D=diameter at breast 

height, H=height. 

Wood density or wood specific gravity (WSG) 

is an important factor in forest biomass calculations 

(Fearnside, 1997). It represents the density of oven-

dried wood relative to water density and varies 

between species due to water content differences 

(Kuyah et al., 2012; Mukuralinda et al., 2021). In this 

study, WSG values for plant species (Table 1) were 

obtained from a subtropical species-based wood 

density database (Reyes, 1992) and literature on 

Himalayan woody species. These WSG values were 

used for quadrat-wise AGB estimation (Equation 6). 

The carbon stock of the study area was 

calculated using Equation 7 by multiplying biomass 

with a carbon fraction value of 0.47 (IPCC, 2006).  

C = AGB × CF                               (7) 

Where; C=carbon stock, CF=carbon fraction 

value. 

A review of literature was conducted to identify 

spectral VI used in biomass estimation (Table 2). 

These indices were calculated for Sentinel images 

before tree felling. The shapefile of the quadrat 

overlaid on the spectral vegetation index image 

allowed the retrieval of indices for each quadrat. An 

AGB prediction model was developed by correlating 

spectral VI with biomass for each quadrat. This model 

was applied to the Sentinel image of the study area for 

regional biomass estimation.

Table 1. Various wood specific gravity values used in the present study 

Serial No. Species with wood specific gravity values Source 

1 Bauhinia veriegata=0.59, Lannea coromandelica=0.46, 

Bombax malabaricum=0.33, Casearia elliptica=0.64,  

Toona ciliata=0.55, Ehretia laevis=0.56,  

Melia azedarach=0.69, Acacia catechu=0.77,  

Ficus auriculata=0.44, Dalbergia sissoo=0.68,  

Cassia fistula=0.81, Ougeniao ojeinensis=0.60,  

Grewia optiva=0.71, Syzygium cumini=0.66,  

Mallotus philippinensis=0.64, Emblica officinalis=0.61 

Sheikh et al. (2011) 

2 Terminalia chebula=0.96, Kydia calycina=0.72,  

Crataeva religiosa=0.53, Albizia lebbeck=0.55,  

Zanthoxylum rhetsa=0.33 

Reyes (1992) 

3 Ehretia laevis=0.56, Eugenia jambolana Lam.=0.89 ICRAF (2007) 

4 Ficus religiosa L.=0.51, Ziziphus mauritiana=0.49 Bisleshna et al. (2019) 

Table 2. Spectral vegetation indices for biomass estimation used in the present study 

Vegetation Indices Formula Reference 

Woebbecke index (WI) G–B/R–G Woebbecke et al. (1995) 

Normalized Difference Vegetation Index (NDVI) (NIR–R)/(NIR+R) Rouse et al. (1974) 

Wide Dynamic Range Vegetation Index (WDRVI) (0.1*NIR–R)/(0.1*NIR+R) Gitelson (2004) 

Colour Index of Vegetation (CIVE) 0.441*R0.881*G+0.385*B+18.78745 Kataoka et al. (2003) 

Vegetative (VEG) G/(RaB(1-a)); a= 0.66 Marchant and Onyango (2000) 

Excess Green Index (ExG) 2*G–R –B Woebbecke et al. (1995) 

Visible Atmospherically Resistant Index (VARI) G–R/G+R–B Gitelson et al. (2003) 

Excess Green minus Excess Red (ExGR) ExG –1.4*R – G Meyer and Neto (2008) 

Ratio Vegetation Index (RVI) NIR/R Pearson and Miller (1972) 

Green Leaf Index (GLI) 2*G–R–B)/(2*G+R+B) Hunt et al. (2011) 

Normalized Green Red Difference Index (NGRDI) G–R/G+R Gitelson et al. (2002a) 

Carotenoid Reflectance Index (CRI) 1/RG+1/RNIR Gitelson et al. (2002b) 
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Table 2. Spectral vegetation indices for biomass estimation used in the present study (cont.) 

Vegetation Indices Formula Reference 

Transformational Vegetation Index(TVI) √NDVI + 0.5 Broge et al. (2001) 

SAVI (Soil-Adjusted Vegetation Index) (RNIR–RR)/(RNIR+RR+0.5)×1.5 Huete (1988) 

Optimized Soil-Adjusted Vegetation Index (OSAVI) (RNIR–RR)/(RNIR+RR+1.6)×1.16 Rondeaux et al. (1996) 

Green-NDVI (GNDVI) (RNIR–RG)/(RNIR+RG) Gitelson (1996) 

Ratio Vegetation Index (RVI) RNIR/RR Baret et al. (1991) 

Enhanced Vegetation Index (EVI) 2.5×(RNIR–RR)/(1+RNIR+6×RR–7.5×RB) Liu and Huete (1995) 

Modified Simple Ratio Index (MSR) ((RNIR/RR)–1)/√RNIR/RR + 1 Chen (1996) 

Nonlinear Vegetation Index (NLI) (RNIR×RNIR–RR)/(RNIR×RNIR+RR) Goel and Qin (1994) 

Re-normalized Difference Vegetation Index (RDVI) (RNIR–RR)/√RNIR+RR
Ke et al. (1998) 

Modified Triangular Vegetation Index 2 (MTVI2) 1.5×[1.2×(RNIR–RG)–2.5×(RR–RG)/ 

√2 × (RNIR + 1)2 − 6 × RNIR + 5 × √RR − 0.5 

Haboudane et al. (2004) 

3. RESULTS

Analysis of the land cover map of the 

Dhaulasidh forest before and after deforestation 

(Figure 4, Figure 5, and Table 3) revealed significant 

decreases in forest types post-tree felling: a 2.55% 

decrease in very dense forests (from 196.18 ha in 2020 

to 186.06 ha in 2022), 1.25% reduction in dense 

forests (from 160.26 ha to 155.05 ha), 1.71% decrease 

in moderately dense forests (from 43.51 ha to 36.43 

ha), 0.26% decline in open forests (from 9.56 ha to 

8.45 ha), and 0.29% reduction in barren land (from 

6.23 ha to 5.02 ha). 

Figure 4. Classified land cover map of 2020 of the study area before tree felling 
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Table 3. Forest type and representation area of land cover map of 2020 before tree felling 

Land cover type 2020 before tree felling area (ha) 2022 after tree felling area (ha) Change (%) 

Very dense forest 196.18 186.06 -2.55%

Dense forest 160.26 155.05 -1.25%

Moderately dense forest 43.51 36.43 -1.71%

Open forest 9.56 8.45 -0.26%

Barren land 6.23 5.02 -0.29%

Figure 5. Classified land cover map of 2022 of the study area after 

tree felling 
Figure 6. Forest area underwent tree felling for hydel project 

The accuracy assessment of the classified image 

provided sensitivity, specificity, and TSS values of 

0.8633, 0.9420, and 0.8059, respectively. It was 

unaffected by the occurrence and size of the validation 

set (Allouche et al., 2006), calculated commission and 

omission errors, and assessed results ranging from –1 

to +1, where +1 indicates ideal agreement and values 

towards 0 and below indicate poorer results. 

3.1 Quadrat-wise AGB 

The quadrat-wise AGB of the Dhaulasidh forest 

was estimated (Table 4) using Equation 6 with WSG 

values (Table 1) of individual species. The 13th quadrat 

had the lowest AGB (2.56 tonnes/ha), whereas the 5th 

quadrat had the highest AGB (25.5 tonnes/ha). 

Phytodiversity analysis found Simpson diversity index 

(D) ranging from 0 to 0.89 and Shannon-Weiner

Index (H) from 0 to 0.73. The 2nd quadrat showed zero 

diversity due to dominance by Mallotus philippinensis. 

The 9th quadrat possessed the highest species diversity, 

hosting six species: Cassia fistula, Bombax 

malabaricum, Emblica officinalis, Acacia catechu, 

Mallotus philippinensis, and Crataeva religiosa. 

A total of 25 woody species were recorded 

across 15 quadrats during field surveys. These species 

were Ziziphus mauritiana, Zanthoxylum rhetsa, 

Mallotus philippinensis, Albizia lebbeck, Ficus 

religiosa, Syzygium cumini, Grewia optiva, Ougenia 

oojeinensis, Eugenia jambolana, Cassia fistula, 

Emblica officinalis, Dalbergia sissoo, Mangifera 

indica, Acacia catechu, Ehretia laevis, Melia 

azedarach, Ficus auriculata, Casearia tomentosa, 

Toona ciliata, Bombax malabaricum, Crataeva 
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religiosa, Kydia calycina, Lannea coromandelica, 

Terminalia Chebula, and Bauhinia variegata. 

Table 4. Quadrat-wise biomass of the study area 

Quadrat No. Area (m2) AGB (ton/ha) 

1 100 17.94 

2 100 23.04 

3 100 7.79 

4 100 7.29 

5 100 25.5 

6 100 6.91 

7 100 3.47 

8 100 4.93 

9 100 2.72 

10 100 3.86 

11 100 5.83 

12 100 15.72 

13 100 2.56 

14 100 4.33 

15 100 12.98 

3.2 Derivation of AGB from Sentinel image 

Polynomial R2 values of Sentinel image-based 

spectral bands and vegetation indices (Table 2) with 

field-observed AGB ranged from 0.13 to 0.68. 

Second-order polynomial regression was chosen 

because AGB values for forest species were nonlinear, 

and a linear regression model would not provide the 

best-fit line, limiting prediction accuracy. 

Predictive variables Green (Band 3), VNIR 

(Band 5), VEG, and CRI yielded significant 

coefficient values (Ostertagova, 2012): R2=0.59, 0.51, 

0.59, and 0.68, respectively (Figure 7). Other indices 

(EVI, NDVI, NDVI45, NLI, ExG, and GLI) showed 

lower coefficients of determination R2=0.18, 0.36, 

0.26, 0.41, 0.34, and 0.30. Therefore, insignificant 

predictive variables were excluded from the regression 

analysis due to multicollinearity, resulting in high 

variance in prediction (Chen et al., 2018). 

Using significant predictor variables, a 

polynomial regression model (Equation 8) was 

developed for AGB prediction. Equation 8 was used 

to calculate AGB values for individual image pixels, 

providing AGB estimates for the entire forest area. 

Over- and underestimated pixels were normalised by 

assigning the mean value of nearby pixels. The derived 

AGB map of the Dhaulasidh forest (Figure 9(a)) 

provided biomass estimates ranging from 8 to 38 

tonnes/pixel. 

AGB = {(327,792×B32-57,779×B3+2,551.3) + (12,840×B52-24,919×B5+1,213.9) +   (8) 

(327,792×VEG2-57,779×VEG+2,551.3) + (3.803×CRI2-111.1×CRI+814.64)} 

3.3 Model validation for AGB prediction 

For validation of the prediction model, 

predicted and observed AGB values were plotted on 

the goodness-of-fit line, showing a strong relation with 

R2=0.65 (Figure 8) and multiple R=0.61 (p-value<0.5, 

i.e., 0.01). Mean absolute percentage error (MAPE)

was 20% (RMSE=7.33 tonnes/pixel). A MAPE of 10-

20% suggests good prediction (Makridakis et al., 

1998) and acceptable accuracy (Lewis, 1982). Using 

the AGB prediction model (Equation 8), a total of 

404,686.51 tonnes of AGB was estimated in the 

415.74 ha area of the Dhaulasidh forest before tree 

felling. Similarly, 355,926.63 tonnes of AGB was 

estimated after tree felling. 

Figure 7. Polynomial regression between spectral values and vegetation indices of image with observed AGB in the field 
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Figure 7. Polynomial regression between spectral values and vegetation indices of image with observed AGB in the field (cont.) 

Figure 8. Regression coefficient (R2) of estimated and observed AGB 

3.4 Carbon stock estimation 

Using Equation 7 the total above-ground carbon 

stock was estimated as 190,202.66 C/tonnes/pixel 

(Figure 9(a)). After tree felling, 167,285.51 

C/tonnes/pixel of carbon was estimated. The change in 

carbon stock of the Dhaulasidh forest was calculated 

using Equation 9. Thus, a total of 22,917.15 tonnes of 

carbon loss was estimated due to the tree felling drive 

for the hydel project in the study area. The obtained 

results indicate 48,759.88 tonnes of AGB (Figure 

9(b)) loss in the Dhaulasidh forest, leading to a 

reduction in the natural carbon sink. In addition, a total 

12.04% loss was observed in AGB and carbon stock 

of the forest.

Change in carbon stock (ton) = Total Carbon before tree felling – Total carbon after tree felling  (9) 

4. DISCUSSION

The Green (Band 3) and Red edge (Band 5) 

bands of Sentinel 2 are efficient in predicting forest-

related parameters, including biomass (Astola et al., 

2019), which was also found to be significant in our 

study. The AGB is influenced by the Red edge band 

due to its presence between high chlorophyll 

reflectance (red region) and absorption (NIR) regions. 

The Red edge band, ranging from 680 to 740 nm, 

reflects the canopy of the forest and is crucial for 

assessing vegetation and their pigments (Clevers and 

Gitelson, 2013). Any changes in leaf properties of 

vegetation can be observed in this region (Slonecker 

et al., 2009). VEG and CRI indices show a strong 
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relationship with quadrat AGB, as the reflectance of 

the Green band strongly influences vegetation indices. 

Other indices, such as NDVI and EVI, did not show a 

significant relationship with observed AGB due to 

pixel saturation caused by high biomass and other 

factors such as soil, clouds, and atmospheric effects 

(Nandy et al., 2017). 

Figure 9. Before and after deforestation AGB and Carbon stock map (a, b) of the study area 

The present results of the polynomial model 

were consistent with those of Ali et al. (2023), where 

the strongest polynomial regressions of 0.70, 0.70, and 

0.72 were observed between AGB and Sentinel 2A-

derived indices NDVI, RVI, and ARVI in natural 

Chir-pine forests. However, a 5% regression value 

was lower in present study due to the high species 

diversity in the forest than in mono-plantations. 

Similar findings for biomass prediction were 

associated with Lu et al. (2012), indicating that 1st- and 

2nd-order polynomial regression models provide 

accurate prediction results. 

While regression models are widely used to 

analyse factors influencing carbon emissions (Zwane 

et al., 2023), their integration with diverse space-borne 

datasets is crucial. This approach not only aids in 

estimating forest AGB and associated uncertainties 

but also provides insights into the value of different 

space-borne datasets, considering coverage area, 

spatial, and spectral resolution. Such integration 

allows for biomass estimation in a manner that is both 

time- and cost-efficient. Khan et al. (2024), examined 

various remote sensing techniques for estimating 

forest AGB and found that different forms of 

regression models are the second most commonly 

used after random forest models, with varying 

parameters of space-borne data. Although in the 

diverse nature of forest environments, it is challenging 

to identify specific remote sensing datasets, and 

regression models perform best among others. 

The AGB of the study area was calculated as 

975 tonnes/hectare, consistent with the AGB range of 

mixed Himalayan forests at 808.05 tonnes/hectare 

(Nandy et al., 2017). Species such as Mallotuss 

philippensis, Emblica officinalis, Cassia fistula, 

Acacia catechu, Ehretia laevis, Kydia calycina, and 

Lannea coromandelica were found to possess high 

AGB derived from the quadrat method, similar to 

findings from the central Himalayan region (Joshi et 

al., 2021). The mean carbon stock of Mallotus 

philippensis was found to be 0.3473 megagram, and 

the mean carbon stock of other species was calculated 

as 0.2350 megagram. The mean basal area was 

retrieved as 323.1749 square feet/acre for M. 

(a) (b) 

388



Dhiman V and Kumar A / Environment and Natural Resources Journal 2024; 22(4): 378-393

philippensis, while for other species, it was 130.39 

square feet/acre. The results of Shannon and Simpson 

diversity analysis, with values of 0.89 and 0.73 

respectively, indicate medium to high diversity, 

underscoring the contribution of mixed species to high 

AGB in the study area. 

Before tree felling, the average AGB of the 

Dhaulasidh forest was estimated as 9.74 tonnes/pixel, 

with a minimum of 8.70 tonnes/pixel and a maximum 

of 38 tonnes/pixel, indicating high AGB levels. After 

tree felling, the average AGB was observed to be 9.65 

tonnes/pixel, with a minimum of 8.70 tonnes/pixel and 

a maximum of 20.68 tonnes/pixel. AGB ranges were 

classified as low (8-12 tonnes/pixel), medium (12-16 

tonnes/pixel), and high (>16 tonnes/pixel) (Figure 9(a, 

b)). Soil analysis showed that the soil was highly rich 

in nutrient contents, with nitrogen ranging from 

175.68 to 407.8 kg/ha, phosphorus from 3.96 to 56.13 

kg/ha, potassium from 108.03 to 685.66 kg/ha, and 

SOM from 5.27% to 10.09%. The presence of water 

bodies within the forest also provides optimal 

conditions for the growth of the Dhaulasidh forest. 

These conditions may favour the accumulation of high 

AGB content. 

The study area witnessed mass tree felling 

(Figure 6), resulting in conditions favourable for an 

increase in surface albedo, which is the ratio of total 

radiation reflected from a surface to the total incoming 

radiation illuminating the surface (Yan et al., 2021). 

Deforestation influences biogenic volatile organic 

compounds emitted by forests and affects short-lived 

climate forcers such as aerosols, ozone, and methane 

(Scott et al., 2018). Due to deforestation, the incident 

radiation absorbed by land surfaces may warm the 

local climate, which needs to be investigated in future 

studies. While this process is gradual, warming will 

occur more rapidly in deliberate deforestation 

scenarios as observed in the present case. Mixed 

forests promote high biological diversity, carbon 

storage, and productivity (Nadrowski et al., 2010). 

Changes in forest cover respond to rainfall patterns 

and moisture content, affecting evaporative cooling 

limits due to rainfall (Pitman et al., 2011). The loss of 

22,917.15 tonnes of carbon dioxide in the study area 

due to AGB loss may increase water use efficiency, 

reducing evapotranspiration (ET). ET is the sum of 

evaporation from plant surfaces, canopy litter 

interception, and evaporation from the soil (Baldocchi 

et al., 2001; Levia et al., 2011). Changes in ET could 

potentially alter atmospheric moisture content and 

reduce the local cooling effect (Lawrence et al., 2022), 

leading to soil erosion and changes in the watershed 

regime of the forest area. According to Aber and 

Federer (1992), plant transpiration is closely related to 

ecosystem productivity and carbon sequestration. 

Changes in regional climate may influence leaf energy 

balance, succession stage, morphology stage, and leaf 

nutrients. A long-term case study of subtropical forests 

by Zhou et al. (2013), demonstrated that due to 

temperature rise DBH, height, and biomass of 

individuals decrease. Also, vegetation shifts are noted 

as climax communities are replaced by smaller 

individuals (herbs, shrubs, small trees) due to an 

imbalance between mortality and recruitment rates. In 

the Dhaulasidh forest, the invasion of pioneer species 

over climax species may result from the boundary 

region of the felling area spreading towards the core 

zone of the forest. Therefore, species such as Albizia 

lebbeck, Ficus religiosa, Acacia catechu, Emblica 

officinalis, Bombax malabaricum, etc., with high DBH 

ranges may be considered under threat from pioneer 

species such as Lantana camara and Murraya koenigii. 

The remaining forests after deforestation need 

to be prioritised for conservation efforts, which may 

help in recovering AGB and enhancing the carbon 

pool in the existing forest (Gann et al., 2019). Already 

degraded sites should be selected instead of focusing 

on non-forest land to tackle desertification (Liu et al., 

2020), utilising technologies such as drones and 

LiDAR (Deere et al., 2020). Multiple stakeholders and 

local communities should participate in reforestation 

projects. 

Assisted natural regeneration could be applied 

by selectively planting missing species and clearing 

weeds to boost natural regeneration (FAO, 2019). The 

framework species approach may be followed by 

planting mixed species that shade out herbaceous 

weeds, which attract seed dispersal by animals. 

Selection of mixed species for plantation is important 

over monoculture (Brancalion and Chazdon, 2017). 

When natural regeneration is insufficient, tree 

plantation is necessary for forest restoration following 

the Nucleation approach of planting trees in small 

groups (Zahawi et al., 2013). Prioritisation should be 

given to native species while avoiding invasive 

species to achieve a high level of biodiversity with 

biomass. The key outcome of such plantations is to 

maximise functional diversity alongside natural 

diversity. The above conservation and management 

strategies are of utmost importance for biomass 

accumulation and biodiversity recovery after 

deforestation in the study area. 
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5. CONCLUSION

This research focused on carbon stock estimation 

due to deforestation in the subtropical Himalayas and 

revealed that CRI and VEG are the most effective 

indices, and the Green and Red edge bands of Sentinel 

2A products are appropriate for biomass estimation in 

mixed forests. The best-fitting polynomial model was 

established between these indices and observed 

biomass. Therefore, a 12.04% loss in carbon stock 

might indicates significant ecological shifts in species 

due to potential consequences of deforestation, such as 

an increase in surface albedo contributing to local 

climate warming and altered rainfall patterns in the 

study area. Concurrently, shifts in vegetation 

composition may occur, with climax communities 

potentially being replaced by pioneer species. As such, 

urgent attention and prioritisation are required for 

conservation efforts in the study area. Moreover, this 

study has provided important baseline information for 

policymakers and established a framework for 

estimating carbon loss resulting from deforestation. We 

recommend proactive environmental management 

strategies that consider carbon sequestration dynamics 

in any developmental activities. 
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