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ABSTRACT

Mixed subtropical forests possess a high amount of carbon pool owing to their
rich species diversity and carbon sequestration potential. The Dhaulasidh forest
is located in Himachal Pradesh within the subtropical Himalayan region. This
research aimed to identify: (1) Optimal satellite-derived Sentinel-2A indices for
predicting biomass, (2) the best-fitting model for biomass estimation, and (3)
changes in above-ground carbon stock due to biomass loss, using satellite remote
sensing and quadrat-based approaches. Results indicated that Band 3 (Green),
Band 5 (Red edge), the vegetation (VEG) index, and the Carotenoid reflectance
index (CRI) were suitable for estimating above-ground biomass (AGB). Shannon
and Simpson’s diversity indices were calculated as 0.89 and 0.73, respectively.
Significant contributors to AGB included Mallotus philippensis, Emblica
officinalis, Cassia fistula, Acacia catechu, Ehretia laevis, Kydia calycina, and
Lannea coromandelica. The AGB prediction model based on vegetation indices
demonstrated a strong correlation between observed and predicted biomass
(R?=0.65, p<0.001), with a mean absolute percentage error of 20% and root mean
square error of 7.33 tonnes per pixel. The study predicted a total loss of 22,917.15
tonnes of CO; in mixed subtropical forests, representing a 12.04% reduction in
carbon stock within the study area. These findings offer critical baseline data for
environmental management and carbon balance in the forest ecosystem,
recommending that forest management practices after deforestation should be
reviewed for remedial measures for any developmental activities.
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1. INTRODUCTION

The estimation of carbon loss is a crucial element
for national carbon accounting. The United Nations
Framework Convention on Climate Change
(UNFCCC) recommends that developing countries
should adhere to the Intergovernmental Panel on
Climate Change (IPCC) protocol for CO, emission
estimation (UNFCCC, 2009). Preparation of a
parametric model for measuring these changes requires
the collection of plot-level activity data, such as forests
under degradation, carbon loss into the atmosphere due
to forest degradation, and forests required to be
monitored after degradation. This information may be

retrieved from forest inventory data and remote sensing
techniques. Forest degradation can be attributed to the
loss of carbon stock within forest land (UNFCCC,
2008), mostly due to deforestation (Peres et al., 2006).
To a larger extent, forest degradation contributes to 12-
20% of greenhouse gas (GHG) emissions globally
(CFU, 2020). Pearson et al. (2017), estimate that due to
annual forest degradation, 2.1 billion tonnes of CO;
were emitted across developing countries. From various
anthropogenic activities, about 10.34% of the global
forest cover was lost between 1990 and 2020 (Lousada
et al., 2022). In Euthopia, Moisa et al. (2023), reported
that from 1992 to 2022, forest degradation resulted in a
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decline in the carbon stock of 58,883.4 tonnes/km?, and
the past three decades exhibited 2,418,083.91 tonnes of
carbon emission annually.

The functioning of the ecosystem is influenced
by the change in regional biomass due to forest
degradation as per the Reducing Emissions from
Deforestation and Forest Degradation (REDD+)
programme. The biomass changes are a combination of
five carbon pools: above-ground biomass (AGB),
below-ground biomass, soil organic matter (SOM),
deadwood, and litter (IPCC, 2003). Among these, AGB
accounts for CO, emitted due to deforestation,
ultimately responsible for climatic changes (Lu et al.,
2005). Carbon losses exert a substantial impact on
ecosystems, posing significant threats to ecological
stability and function, underscoring the critical need for
evaluation (Lingbing and Jing, 2022). Research on
land-use carbon emissions primarily focuses on carbon
emission accounting (Luo et al., 2024; Zhang and
Zhang, 2023) and low-carbon optimisation (Yan et al.,
2023). In these scenarios, accurate estimation of AGB
loss is central for precise quantification of CO,
emission.

Initially, species-specific allometric equations
were used for AGB estimation (Navar, 2009; Pearson
et al., 2005). Allometric equations estimate biomass
using parameters measured from trees (e.g., height,
diameter at breast height (DBH), and wood density).
These equations establish a scaling relationship
between tree form and function to predict total
biomass (West et al., 1999). Later, remote sensing
technology gained attention for forest biomass
estimation after the launch of resource-monitoring
satellites (Lu et al., 2016). Consequently, allometric
equations derived from the field, along with modelled
remote sensing equations, were used for AGB and
carbon stock estimation in forest ecosystems (Brown,
1993; Vashum and Jayakumar, 2012).

Remote sensing-based methods are widely
utilised for AGB estimation due to their advantages,
such as the repeatability of data collection and high
correlations between spectral bands and vegetation
parameters. However, selecting the spatial resolution
of data is crucial as it influences the performance of
image texture and discrimination of land covers,
especially in complex forest stand structures
(Lingbing and Jing, 2022).

According to Houghton et al. (2009), satellite
missions provided the opportunity for measurement
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and mapping of biomass and carbon emission changes
on local to global scales. Data retrieved from satellite
sensors were used in measurements of different
vegetation traits estimations such as the leaf area
index, tree density, tree volume, tree crown size, and
tree height. These traits are used in biomass estimation
(Isbaex and Coelho, 2021). Information derived from
the amalgamation of quadrats laid in the forest with
remote sensing images is widely used in forest studies
(Chen et al., 2019), embedding predictive models for
monitoring AGB and carbon estimation (Castillo et
al., 2017). Satellite images provide varied spatial,
temporal, and spectral resolutions (Timothy et al.,
2016). Low spatial resolution images with broad
bandwidth were found inappropriate for AGB
estimation of subtropical forests consisting of high
species diversity (Mutanga and Skidmore, 2004,
Pandit et al., 2018) and require high spatial resolution,
narrow-pbandwidth spectral images that provide
comparatively more accurate AGB estimation.

The multispectral sensor of Sentinel 2 is the
types of high spatial resolution (<10 m) images that
are resampled to match sample plot field data. Thus,
vegetation indices (VI), spectral bands, and
biophysical variables (Isbaex and Coelho, 2021;
Zhang et al., 2017) derived from Sentinel images can
improve the accuracy of AGB predictor models.
Sentinel 2 images are freely accessible at the European
Space Agency (ESA) hub (zZhang et al., 2017).
Chrysafisetal. (2017), found a significant relationship
between growing stock volume and VI (R?=0.63;
RMSE of 63.11 m®ha) of Sentinel 2 MSI imagery for
the heterogeneous forest in northeastern Greece.
Accurate biomass estimation is crucial for analysing
the impact of deforestation on regional environmental
degradation in the global climate change scenario.
Biomass loss estimation is also important to meet
compensation actions of the REDD+ programme and
the net-zero carbon emission plan of UNFCCC. These
targets can be achieved using Sentinel 2 imagery,
which provides an opportunity for improved and
accurate AGB estimation with modelling of image-
driven VI and field-measured vegetation traits
(Castillo et al., 2017).

In the above background, we aimed to find
Sentinel-derived best predictive indices for biomass
estimation, the best-fitting model for biomass
estimation, and changes in carbon stock in terms of
AGB loss in the study area.
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2. METHODOLOGY
2.1 Study area

Dhaulasidh is part of the subtropical Himalayan
forest located at 31.80477 N latitude and 76.43964 E
longitude in the Hamirpur District of Himachal
Pradesh, India (Figure 1). Annual mean temperature
and rainfall of the region vary from 17.96 to 27.9°C
and 42.86 mm, respectively. A total of 142.6 ha area
is under forest cover, having an elevation of 469-869
m AMSL. A 66W hydel power project is proposed to
build on Beas River flowing in the study area. This
hydel project will generate hydroelectricity and will
add 304 million units of energy to the national budget.

It will provide irrigation facilities to over 200 village
surroundings. Worldwide hydroelectric  projects
contribute to approximately 16% of global electricity
(IHA, 2024). For developing countries, these
renewable sources are crucial to meet energy
demands, but at the same time, environmental loss due
to the hydel projects need to be taken care. For dam
construction, a connecting road, and related
infrastructure of this hydel project, tree felling was
permitted by the local Himachal Pradesh government.
It is assumed that approximately 10,000 trees were cut
in this exercise (SIAU, 2019).
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Figure 1. (a) Study area located on country map, (b) state map, (c) Google Earth imagery, and (d) in the field

2.2 Materials and methods
The overall methodology for estimating AGB
of the Dhaulasidh forest is shown in Figure 2. An
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extensive field survey was conducted before the start
of tree felling on 15-16 March 2021. A total of 15
quadrats (10x10 m) were established at 300-m
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intervals to adequately represent the tree felling area
(Figure 3). The geographical coordinates of each plot
were recorded using a handheld Global Positioning
System device. The DBH of each tree was measured

4 N\
Sentinel 2A MSI before and
after tree felling
(06-16-2020,06-06-2022)

N %

v
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(Resampling of images etc.)

v
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making of band composite

A
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of vegetation indices
(NDVI, TNDVI, EVI, etc.)

-

Methodology of AGB
estimation

using a tape measure, and tree height was measured
using a clinometer. Soil samples from the study area
were collected and analysed for nutrient availability,
including nitrogen, phosphorus, potassium, and SOM.
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Figure 2. Flow diagram of the methodology for the biomass estimation

Before tree felling, Sentinel-2A MSI image
Level-1C (16 June 2020) of the study area was
acquired from the ESA for AGB estimation. Raw
images were downloaded and pre-processed in the
Sentinel Application Platform (SNAP) software,
containing 13 spectral bands with spatial resolutions
of 20 m and 60 m. In the radiometric correction
process, the raw Digital number (DN) values of the
Levell-C product were converted into Top of
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Atmosphere (TOA) radiance using sensor-specific
calibration coefficients provided in the metadata.
Subsequently, TOA radiance was converted to TOA
reflectance. Additionally, the data required resampling
and subsetting to match the field variables. Therefore,
in the geometric correction method of SNAP, the
radiometric corrected images were resampled to 10-m
resolution to match the size of the field quadrats.
Sentinel images (6 July 2022) were used for AGB loss
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estimation after tree felling. Using the supervised
classification method, these satellite images were
classified (Figure 4) in Erdas Imagine software
version 16, and the land cover map was prepared. The
training dataset for classification was identified
through visual image interpretation. The maximum
parametric decision rule was applied to

likelihood

image pixels and the land cover map prepared,
resulting in forest classes mixed with open/barren
lands. Forest canopy cover >70% was categorised as
very dense forest, 50-70% as dense forest, 40-50% as
moderately dense forest, 10-40% as open forest, and
<10% canopy cover as scrub forest (Faroog and
Rashid, 2010).

Figure 3. 10x10-meter quadrat-based vegetation sampling in the study area

The accuracy of the classified image was
assessed using sensitivity, specificity, and true skill
statistical (TSS) analysis in the R software package. A
2x2 confusion matrix was applied to the classified
images to determine true positives (a), false positives
(b), false negatives (c), and true negatives (d) using
Equations (1-3) (Allouche et al., 2006).

a

Sensitivity = P 1)
e d
Specificity = T (2
TSS = Sensitivity + Specificity - 1 3)

The phytodiversity of the study area was
calculated using Simpson (Simpson, 1949) and
Shannon-Weiner Indices (Shannon and Weaver, 1949)
using Equations 4 and 5. The Simpson diversity index
measures the presence and abundance of species in
their habitat, while the Shannon-Weiner index
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measures uncertainty of the species and community

diversity. Lower uncertainty indicates lower
community diversity and vice versa.
Simpson diversity index (D) = 1/¥5_, p?  (4)

Where; p = proportion (n/N) of individuals of
one particular species (n) divided by total number of
individuals (N), X is the sum of the calculations, and
s=number of species.

Shannon-Weiner Index (H) =->3_;p;Inp;  (5)

Where; p=proportion (n/N) of individuals of
one particular species (n) divided by the total number
of'individuals (N), In is natural log, X is the sum of the
calculations, and s=number of species.

Global, regional, and local biomass estimations
are influenced by the choice of biomass estimation
equation. Therefore, the selection of an equation is
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crucial as it affects accuracy when applied with remote
sensing data for regional biomass prediction (Mitchard
etal., 2013). Several allometric equations are available
for AGB estimation (Chaturvedi and Raghubanshi,
2013; Rawat and Singh, 1988); among them, the
equation proposed by Nath et al. (2019), (Equation 6)
was considered the most accurate for AGB estimation
of mixed woody species and was used in this study.

AGB (kg/m®) = 0.32*p*DA?* HA0.75 *1.34  (6)

Where; p=wood density, D=diameter at breast
height, H=height.

Wood density or wood specific gravity (WSG)
is an important factor in forest biomass calculations
(Fearnside, 1997). It represents the density of oven-
dried wood relative to water density and varies
between species due to water content differences
(Kuyah et al., 2012; Mukuralinda et al., 2021). In this
study, WSG values for plant species (Table 1) were
obtained from a subtropical species-based wood

density database (Reyes, 1992) and literature on
Himalayan woody species. These WSG values were
used for quadrat-wise AGB estimation (Equation 6).
The carbon stock of the study area was
calculated using Equation 7 by multiplying biomass
with a carbon fraction value of 0.47 (IPCC, 2006).

C=AGB x CF @

Where; C=carbon stock, CF=carbon fraction
value.

A review of literature was conducted to identify
spectral VI used in biomass estimation (Table 2).
These indices were calculated for Sentinel images
before tree felling. The shapefile of the quadrat
overlaid on the spectral vegetation index image
allowed the retrieval of indices for each quadrat. An
AGB prediction model was developed by correlating
spectral VI with biomass for each quadrat. This model
was applied to the Sentinel image of the study area for
regional biomass estimation.

Table 1. Various wood specific gravity values used in the present study

Serial No. Species with wood specific gravity values

Source

1 Bauhinia veriegata=0.59, Lannea coromandelica=0.46,

Sheikh et al. (2011)

Bombax malabaricum=0.33, Casearia elliptica=0.64,

Toona ciliata=0.55, Ehretia laevis=0.56,
Melia azedarach=0.69, Acacia catechu=0.77,

Ficus auriculata=0.44, Dalbergia siss00=0.68,
Cassia fistula=0.81, Ougeniao ojeinensis=0.60,

Grewia optiva=0.71, Syzygium cumini=0.66,

Mallotus philippinensis=0.64, Emblica officinalis=0.61

2 Terminalia chebula=0.96, Kydia calycina=0.72,
Crataeva religiosa=0.53, Albizia lebbeck=0.55,

Zanthoxylum rhetsa=0.33

3 Ehretia laevis=0.56, Eugenia jambolana Lam.=0.89
4 Ficus religiosa L.=0.51, Ziziphus mauritiana=0.49

Reyes (1992)

ICRAF (2007)
Bisleshna et al. (2019)

Table 2. Spectral vegetation indices for biomass estimation used in the present study

Vegetation Indices Formula

Reference

Woebbecke index (WI)

Normalized Difference Vegetation Index (NDVI)
Wide Dynamic Range Vegetation Index (WDRVI)
Colour Index of Vegetation (CIVE)

Vegetative (VEG)

G-B/R-G

(NIR-R)/(NIR+R)
(0.1*NIR-R)/(0.1*NIR+R)
0.441*R0.881*G+0.385*B+18.78745
G/(R*B(-); a= 0.66

Woebbecke et al. (1995)
Rouse et al. (1974)

Gitelson (2004)

Kataoka et al. (2003)
Marchant and Onyango (2000)

Excess Green Index (EXG) 2*G-R-B Woebbecke et al. (1995)
Visible Atmospherically Resistant Index (VARI) G-R/G+R-B Gitelson et al. (2003)
Excess Green minus Excess Red (ExGR) ExG -1.4*R -G Meyer and Neto (2008)
Ratio Vegetation Index (RVI) NIR/R Pearson and Miller (1972)

Green Leaf Index (GLI)
Normalized Green Red Difference Index (NGRDI)
Carotenoid Reflectance Index (CRI)

G-R/G+R

2*G-R-B)/(2*G+R+B)

1/Rc+1/Rnir

Hunt et al. (2011)
Gitelson et al. (2002a)
Gitelson et al. (2002b)
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Table 2. Spectral vegetation indices for biomass estimation used in the present study (cont.)

Vegetation Indices Formula Reference
Transformational Vegetation Index(TVI) VNDVI + 0.5 Broge et al. (2001)

SAVI (Soil-Adjusted Vegetation Index)

Optimized Soil-Adjusted Vegetation Index (OSAVI)
Green-NDVI (GNDVI)

Ratio Vegetation Index (RVI)

Enhanced Vegetation Index (EVI)

Modified Simple Ratio Index (MSR)

Nonlinear Vegetation Index (NLI)

Re-normalized Difference Vegetation Index (RDVI)
Modified Triangular Vegetation Index 2 (MTVI2)

(Rnir—RR)/(RNIRTRR+0.5)%1.5
(RnIR-RR)/(RNnIRHRR+1.6)%1.16
(Rnir—Ra)/(Rnir+RG)

Rnir/Rr
2.5%(RNIR—RR)/(1+Rnir+6%RRr—7.5%RB)

((RNlR/RR)fl)/ﬂ RNIR/RR +1

(RNnIRXRNIR—RR)/(RNIRXRNIRTRR)

(RNIR*RR)/‘/ RNIR+RR

1.5%[1.2x(Rnir—Ra)-2.5%(Rr—Ra)/

Jz X (Ryir + 1)2 — 6 X Ryjg + 5 X y/Rg — 0.5

Huete (1988)
Rondeaux et al. (1996)
Gitelson (1996)

Baret et al. (1991)

Liu and Huete (1995)
Chen (1996)

Goel and Qin (1994)
Ke et al. (1998)
Haboudane et al. (2004)

3. RESULTS

Analysis of the land cover map of the
Dhaulasidh forest before and after deforestation
(Figure 4, Figure 5, and Table 3) revealed significant
decreases in forest types post-tree felling: a 2.55%
decrease in very dense forests (from 196.18 ha in 2020

to 186.06 ha in 2022), 1.25% reduction in dense
forests (from 160.26 ha to 155.05 ha), 1.71% decrease
in moderately dense forests (from 43.51 ha to 36.43
ha), 0.26% decline in open forests (from 9.56 ha to
8.45 ha), and 0.29% reduction in barren land (from
6.23 ha to 5.02 ha).
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Figure 4. Classified land cover map of 2020 of the study area before tree felling
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Table 3. Forest type and representation area of land cover map of 2020 before tree felling

Land cover type 2020 before tree felling area (ha) 2022 after tree felling area (ha) Change (%)
Very dense forest 196.18 186.06 -2.55%
Dense forest 160.26 155.05 -1.25%
Moderately dense forest 4351 36.43 -1.71%
Open forest 9.56 8.45 -0.26%
Barren land 6.23 5.02 -0.29%
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tree felling

The accuracy assessment of the classified image
provided sensitivity, specificity, and TSS values of
0.8633, 0.9420, and 0.8059, respectively. It was
unaffected by the occurrence and size of the validation
set (Allouche et al., 2006), calculated commission and
omission errors, and assessed results ranging from -1
to +1, where +1 indicates ideal agreement and values
towards 0 and below indicate poorer results.

3.1 Quadrat-wise AGB

The quadrat-wise AGB of the Dhaulasidh forest
was estimated (Table 4) using Equation 6 with WSG
values (Table 1) of individual species. The 13" quadrat
had the lowest AGB (2.56 tonnes/ha), whereas the 5%
quadrat had the highest AGB (25.5 tonnes/ha).
Phytodiversity analysis found Simpson diversity index
(D) ranging from 0 to 0.89 and Shannon-Weiner

Figure 6. Forest area underwent tree felling for hydel project

Index (H) from 0 to 0.73. The 2" quadrat showed zero
diversity due to dominance by Mallotus philippinensis.
The 9" quadrat possessed the highest species diversity,
hosting six species: Cassia fistula, Bombax
malabaricum, Emblica officinalis, Acacia catechu,
Mallotus philippinensis, and Crataeva religiosa.

A total of 25 woody species were recorded
across 15 quadrats during field surveys. These species
were Ziziphus mauritiana, Zanthoxylum rhetsa,
Mallotus philippinensis, Albizia lebbeck, Ficus
religiosa, Syzygium cumini, Grewia optiva, Ougenia
oojeinensis, Eugenia jambolana, Cassia fistula,
Emblica officinalis, Dalbergia sissoo, Mangifera
indica, Acacia catechu, Ehretia laevis, Melia
azedarach, Ficus auriculata, Casearia tomentosa,
Toona ciliata, Bombax malabaricum, Crataeva
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religiosa, Kydia calycina, Lannea coromandelica,
Terminalia Chebula, and Bauhinia variegata.

Table 4. Quadrat-wise biomass of the study area

Quadrat No. Area (m?) AGB (ton/ha)
1 100 17.94
2 100 23.04
3 100 7.79
4 100 7.29
5 100 255
6 100 6.91
7 100 3.47
8 100 4.93
9 100 2.72
10 100 3.86
11 100 5.83
12 100 15.72
13 100 2.56
14 100 4.33
15 100 12.98

3.2 Derivation of AGB from Sentinel image
Polynomial R? values of Sentinel image-based

spectral bands and vegetation indices (Table 2) with

field-observed AGB ranged from 0.13 to 0.68.

Second-order polynomial regression was chosen
because AGB values for forest species were nonlinear,
and a linear regression model would not provide the
best-fit line, limiting prediction accuracy.

Predictive variables Green (Band 3), VNIR
(Band 5), VEG, and CRI vyielded significant
coefficient values (Ostertagova, 2012): R?=0.59, 0.51,
0.59, and 0.68, respectively (Figure 7). Other indices
(EVI, NDVI, NDV145, NLI, EXG, and GLI) showed
lower coefficients of determination R?=0.18, 0.36,
0.26, 0.41, 0.34, and 0.30. Therefore, insignificant
predictive variables were excluded from the regression
analysis due to multicollinearity, resulting in high
variance in prediction (Chen et al., 2018).

Using significant predictor variables, a
polynomial regression model (Equation 8) was
developed for AGB prediction. Equation 8 was used
to calculate AGB values for individual image pixels,
providing AGB estimates for the entire forest area.
Over- and underestimated pixels were normalised by
assigning the mean value of nearby pixels. The derived
AGB map of the Dhaulasidh forest (Figure 9(a))
provided biomass estimates ranging from 8 to 38

tonnes/pixel.
J

AGB = {(327,792xB3%-57,779xB3+2,551.3) + (12,840xB52-24,919xB5+1,213.9) + )
(327,792xVEG?-57,779xVEG+2,551.3) + (3.803xCRI?-111.1xCRI+814.64)}

I3.3 Model validation for AGB prediction

For validation of the prediction model,
predicted and observed AGB values were plotted on
the goodness-of-fit line, showing a strong relation with
R2=0.65 (Figure 8) and multiple R=0.61 (p-value<0.5,
i.e.,, 0.01). Mean absolute percentage error (MAPE)
was 20% (RMSE=7.33 tonnes/pixel). A MAPE of 10-

30

R2=0.68

25 A

20 1

15 1

10 A

Observed AGB (tonnes\ha)

14 15 16 17 18
CRI

20% suggests good prediction (Makridakis et al.,
1998) and acceptable accuracy (Lewis, 1982). Using
the AGB prediction model (Equation 8), a total of
404,686.51 tonnes of AGB was estimated in the
415.74 ha area of the Dhaulasidh forest before tree
felling. Similarly, 355,926.63 tonnes of AGB was
estimated after tree felling.
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3.4 Carbon stock estimation

Using Equation 7 the total above-ground carbon
stock was estimated as 190,202.66 C/tonnes/pixel
(Figure 9(a)). After tree felling, 167,285.51
Cltonnes/pixel of carbon was estimated. The change in
carbon stock of the Dhaulasidh forest was calculated
using Equation 9. Thus, a total of 22,917.15 tonnes of

Change in carbon stock (ton) = Total Carbon before tree felling — Total carbon after tree felling

[
4. DISCUSSION

The Green (Band 3) and Red edge (Band 5)
bands of Sentinel 2 are efficient in predicting forest-
related parameters, including biomass (Astola et al.,
2019), which was also found to be significant in our
study. The AGB is influenced by the Red edge band
due to its presence between high chlorophyll
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carbon loss was estimated due to the tree felling drive
for the hydel project in the study area. The obtained
results indicate 48,759.88 tonnes of AGB (Figure
9(b)) loss in the Dhaulasidh forest, leading to a
reduction in the natural carbon sink. In addition, a total
12.04% loss was observed in AGB and carbon stock

of the forest. |

©)

reflectance (red region) and absorption (NIR) regions.
The Red edge band, ranging from 680 to 740 nm,
reflects the canopy of the forest and is crucial for
assessing vegetation and their pigments (Clevers and
Gitelson, 2013). Any changes in leaf properties of
vegetation can be observed in this region (Slonecker
et al., 2009). VEG and CRI indices show a strong



Dhiman V and Kumar A / Environment and Natural Resources Journal 2024; 22(4): 378-393

relationship with quadrat AGB, as the reflectance of
the Green band strongly influences vegetation indices.
Other indices, such as NDVI and EVI, did not show a
significant relationship with observed AGB due to
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pixel saturation caused by high biomass and other
factors such as soil, clouds, and atmospheric effects
(Nandy et al., 2017).
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Figure 9. Before and after deforestation AGB and Carbon stock map (a, b) of the study area

The present results of the polynomial model
were consistent with those of Ali et al. (2023), where
the strongest polynomial regressions of 0.70, 0.70, and
0.72 were observed between AGB and Sentinel 2A-
derived indices NDVI, RVI, and ARVI in natural
Chir-pine forests. However, a 5% regression value
was lower in present study due to the high species
diversity in the forest than in mono-plantations.
Similar findings for biomass prediction were
associated with Lu et al. (2012), indicating that 1%'- and
2"-order polynomial regression models provide
accurate prediction results.

While regression models are widely used to
analyse factors influencing carbon emissions (Zwane
etal., 2023), their integration with diverse space-borne
datasets is crucial. This approach not only aids in
estimating forest AGB and associated uncertainties
but also provides insights into the value of different
space-borne datasets, considering coverage area,
spatial, and spectral resolution. Such integration
allows for biomass estimation in a manner that is both
time- and cost-efficient. Khan et al. (2024), examined
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various remote sensing techniques for estimating
forest AGB and found that different forms of
regression models are the second most commonly
used after random forest models, with varying
parameters of space-borne data. Although in the
diverse nature of forest environments, it is challenging
to identify specific remote sensing datasets, and
regression models perform best among others.

The AGB of the study area was calculated as
975 tonnes/hectare, consistent with the AGB range of
mixed Himalayan forests at 808.05 tonnes/hectare
(Nandy et al.,, 2017). Species such as Mallotuss
philippensis, Emblica officinalis, Cassia fistula,
Acacia catechu, Ehretia laevis, Kydia calycina, and
Lannea coromandelica were found to possess high
AGB derived from the quadrat method, similar to
findings from the central Himalayan region (Joshi et
al.,, 2021). The mean carbon stock of Mallotus
philippensis was found to be 0.3473 megagram, and
the mean carbon stock of other species was calculated
as 0.2350 megagram. The mean basal area was
retrieved as 323.1749 square feet/acre for M.
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philippensis, while for other species, it was 130.39
square feet/acre. The results of Shannon and Simpson
diversity analysis, with values of 0.89 and 0.73
respectively, indicate medium to high diversity,
underscoring the contribution of mixed species to high
AGB in the study area.

Before tree felling, the average AGB of the
Dhaulasidh forest was estimated as 9.74 tonnes/pixel,
with a minimum of 8.70 tonnes/pixel and a maximum
of 38 tonnes/pixel, indicating high AGB levels. After
tree felling, the average AGB was observed to be 9.65
tonnes/pixel, with a minimum of 8.70 tonnes/pixel and
a maximum of 20.68 tonnes/pixel. AGB ranges were
classified as low (8-12 tonnes/pixel), medium (12-16
tonnes/pixel), and high (>16 tonnes/pixel) (Figure 9(a,
b)). Soil analysis showed that the soil was highly rich
in nutrient contents, with nitrogen ranging from
175.68 to 407.8 kg/ha, phosphorus from 3.96 to 56.13
kg/ha, potassium from 108.03 to 685.66 kg/ha, and
SOM from 5.27% to 10.09%. The presence of water
bodies within the forest also provides optimal
conditions for the growth of the Dhaulasidh forest.
These conditions may favour the accumulation of high
AGB content.

The study area witnessed mass tree felling
(Figure 6), resulting in conditions favourable for an
increase in surface albedo, which is the ratio of total
radiation reflected from a surface to the total incoming
radiation illuminating the surface (Yan et al., 2021).
Deforestation influences biogenic volatile organic
compounds emitted by forests and affects short-lived
climate forcers such as aerosols, ozone, and methane
(Scott et al., 2018). Due to deforestation, the incident
radiation absorbed by land surfaces may warm the
local climate, which needs to be investigated in future
studies. While this process is gradual, warming will
occur more rapidly in deliberate deforestation
scenarios as observed in the present case. Mixed
forests promote high biological diversity, carbon
storage, and productivity (Nadrowski et al., 2010).
Changes in forest cover respond to rainfall patterns
and moisture content, affecting evaporative cooling
limits due to rainfall (Pitman et al., 2011). The loss of
22,917.15 tonnes of carbon dioxide in the study area
due to AGB loss may increase water use efficiency,
reducing evapotranspiration (ET). ET is the sum of
evaporation from plant surfaces, canopy litter
interception, and evaporation from the soil (Baldocchi
et al., 2001; Levia et al., 2011). Changes in ET could
potentially alter atmospheric moisture content and
reduce the local cooling effect (Lawrence et al., 2022),
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leading to soil erosion and changes in the watershed
regime of the forest area. According to Aber and
Federer (1992), plant transpiration is closely related to
ecosystem productivity and carbon sequestration.
Changes in regional climate may influence leaf energy
balance, succession stage, morphology stage, and leaf
nutrients. A long-term case study of subtropical forests
by Zhou et al. (2013), demonstrated that due to
temperature rise DBH, height, and biomass of
individuals decrease. Also, vegetation shifts are noted
as climax communities are replaced by smaller
individuals (herbs, shrubs, small trees) due to an
imbalance between mortality and recruitment rates. In
the Dhaulasidh forest, the invasion of pioneer species
over climax species may result from the boundary
region of the felling area spreading towards the core
zone of the forest. Therefore, species such as Albizia
lebbeck, Ficus religiosa, Acacia catechu, Emblica
officinalis, Bombax malabaricum, etc., with high DBH
ranges may be considered under threat from pioneer
species such as Lantana camara and Murraya koenigii.

The remaining forests after deforestation need
to be prioritised for conservation efforts, which may
help in recovering AGB and enhancing the carbon
pool in the existing forest (Gann et al., 2019). Already
degraded sites should be selected instead of focusing
on non-forest land to tackle desertification (Liu et al.,
2020), utilising technologies such as drones and
LiDAR (Deere et al., 2020). Multiple stakeholders and
local communities should participate in reforestation
projects.

Assisted natural regeneration could be applied
by selectively planting missing species and clearing
weeds to boost natural regeneration (FAO, 2019). The
framework species approach may be followed by
planting mixed species that shade out herbaceous
weeds, which attract seed dispersal by animals.
Selection of mixed species for plantation is important
over monoculture (Brancalion and Chazdon, 2017).
When natural regeneration is insufficient, tree
plantation is necessary for forest restoration following
the Nucleation approach of planting trees in small
groups (Zahawi et al., 2013). Prioritisation should be
given to native species while avoiding invasive
species to achieve a high level of biodiversity with
biomass. The key outcome of such plantations is to
maximise functional diversity alongside natural
diversity. The above conservation and management
strategies are of utmost importance for biomass
accumulation and biodiversity recovery after
deforestation in the study area.
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5. CONCLUSION

This research focused on carbon stock estimation
due to deforestation in the subtropical Himalayas and
revealed that CRI and VEG are the most effective
indices, and the Green and Red edge bands of Sentinel
2A products are appropriate for biomass estimation in
mixed forests. The best-fitting polynomial model was
established between these indices and observed
biomass. Therefore, a 12.04% loss in carbon stock
might indicates significant ecological shifts in species
due to potential consequences of deforestation, such as
an increase in surface albedo contributing to local
climate warming and altered rainfall patterns in the
study area. Concurrently, shifts in vegetation
composition may occur, with climax communities
potentially being replaced by pioneer species. As such,
urgent attention and prioritisation are required for
conservation efforts in the study area. Moreover, this
study has provided important baseline information for
policymakers and established a framework for
estimating carbon loss resulting from deforestation. We
recommend proactive environmental management
strategies that consider carbon sequestration dynamics
in any developmental activities.
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