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In recent decades, air pollution has negatively affected human health and the 

environment. One of the important features contributing to air pollution is called 

PM2.5. However, daily prediction of PM2.5 is still lacking, especially using feature 

selection infused into the model. Hence, the main objective of this research is to 

utilize the feature selection procedures by proposing two stages feature selection 

methods namely adjusted correlation sharing t-test (adjcorT) and radial basis 

function neural network (RBFNN) in identifying the important features. This 

consequently also helps enhance the prediction of daily PM2.5 concentrations. 

Secondary data were obtained from the Department of Environment Malaysia 

(DOE) from 2018 until 2022 that consists of 5 years of air pollutant daily data. 

The results found that adjcorT-RBFNN identified the NO2, PM2.5, PM10, CO, O3, 

wind speed and SO2 as important features. The finding revealed that the accuracy, 

sensitivity, specificity, precision, F1 score and AUROC value, for a day-ahead 

prediction in Shah Alam are 0.756, 0.801, 0.717, 0.717, 0.757, and 0.758 

respectively. Additionally, the predicted model may serve as an instrument for 

an early warning system, providing local authorities with information on air 

quality for formulation of strategies of air quality improvement. 
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1. INTRODUCTION

Air is the mixture of gases that surrounds the 

Earth and extends into its atmosphere. About 78% of 

it is nitrogen, 21% is oxygen, and the remaining other 

gases such as argon, carbon dioxide, and water vapor. 

Since air contains the oxygen that people, animals, and 

most other species require to breathe, it is essential for 

sustaining life on Earth. Air quality is important, 

where a low concentration of pollutants that endangers 

both human health and the environment is indicative 

of good air quality. Conversely, low air quality 

denotes high pollution concentrations. The air quality 

is typically assessed based on the concentration of 

various pollutants such as particulate matter (PM2.5 

and PM10), nitrogen dioxide (NO2), sulfur dioxide 

(SO2), carbon monoxide (CO), ozone (O3), and others. 

The air quality is a growing concern worldwide. 

Air pollution has been shown to increase the risk and 

mortality of various pulmonary diseases, including 

lung cancer, chronic obstructive pulmonary disease 

(COPD), asthma, and infectious diseases such as 

pneumonia and tuberculosis, as evidenced by Ko and 

Kyung’s (2022) research on its adverse effects on 

pulmonary diseases. There are serious risks to the 

environment and public health associated with air 

pollution, especially when fine particulate matter 

(PM2.5) is present. PM2.5 refers to particulate matter 

with a diameter of 2.5 micrometers or less, which is a 

major air pollutant and a significant component of air 

quality (Wang and Tian, 2018). Even at low 

concentrations, long-term exposure to PM2.5 has been 

shown to cause lung cancer (Ko and Kyung, 2022). 
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Accurate air quality prediction can channel 

strategically valuable information to the government 

for air pollution control and management. However, it 

is a challenging task to predict air quality movements 

as it is subject to big data elements, including many 

internal and external factors, and poses a big challenge 

to researchers who try to predict it (Sokhi et al., 2021; 

Zhao et al., 2022). Artificial Neural Network (ANN) 

has gained popularity in various fields due to its ability 

to solve non-linear problems and its potential for 

accurate predictions (Larasati et al., 2018). In the 

context of predicting air quality, ANN has been widely 

used due to its capability to build air quality models 

with comparable or better accuracy than other 

methods (Suleiman et al., 2019). Moreover, the Radial 

Basis Function Neural Network (RBFNN) has been 

utilized to predict air quality. The research conducted 

by Yadav and Nath (2018) comparing the predictive 

performance of RBFNN and Generalized Regression 

Neural Network (GRNN) models for the prediction of 

PM10 levels in Ardali Bazar, Varanasi, India, found 

that RBFNN performed better in measured and 

predicted PM10 values compared to GRNN. A study 

from Algeria claimed that RBFNN outperformed other 

models being compared in their study for electric 

consumption forecast (Kahoui and Chekouri, 2024). 

Another study also employed RBFNN with an 

optimization technique for classification purposes, and 

it obtained good classification performances (Ali et 

al., 2024). 

Feature selection is crucial for predicting air 

quality due to the complex nature of the factors 

influencing air pollution. As there are numerous 

environmental factors involved in building a model, 

variable selection is used to effectively filter out the 

important variables that affect air quality. However, 

air quality data can indeed face multicollinearity 

issues due to the interrelationship of environmental 

variables. Several studies have highlighted the 

presence of multicollinearity in air quality data and its 

implications for statistical modelling. For instance, 

Farrell et al. (2019) highlighted the challenges posed 

by multicollinearity among covariates in statistical 

models for analyzing the effects of environmental 

factors on the spatial distribution of species. Hence, 

this study aims to predict the next day’s air quality 

based on PM2.5 concentrations while considering the 

multicollinearity issues between the features. 

Consequently, the important features will be 

identified, and these features can be used for the next 

day’s air quality based on PM2.5 prediction in the 

future, reducing the air pollution that exists in the air. 

2. METHODOLOGY

2.1 Research framework

This section discusses the research framework 

as shown in Figure 1, the data, feature selection 

methods, classification modelling and model 

evaluation used in this research. Specifically, air 

quality data is extracted from the Department of 

Environment, Malaysia and data management was 

done on the respective dataset including data 

conversion, normalization and SMOTE. This research 

also aim to explore the collinearity among the features 

in air quality data followed by the feature selection 

procedures. Then, the proposed two stages adjcorT-

RBFNN were compared to the adjcorT and RBFNN in 

the model evaluation. Finally, the best model are 

identified in this research. 

Our research data consist of variables or 

pollutant factors involve in air quality data which is 

Particulate Matter (PM10 and PM2.5), Carbon 

Monoxide (CO), Nitrogen Dioxide (NO2), Ground-

Level Ozone (O3) and Sulphur Dioxide (SO2) that due 

to the burning of natural gas, coal and wood, industries 

and vehicles. Besides pollutant factors, the 

meteorological parameters are wind direction, wind 

speed, relative humidity and ambient temperature 

taken as variables that might have an impact on the air 

quality. 43824 sample sizes of a dataset from air 

quality monitoring stations at Shah Alam, Selangor in 

hourly data format is obtained from the collaborators, 

which is the Department of Environmental (DOE) 

for duration of five-year period from 2018 to 2022. 

Table 1 shows the description of air quality data 

consisting of 10 variables obtained from the DOE. 

2.2 Adjusted correlation sharing t-test 

Adjusted correlation sharing t-test (adjcorT) is 

an extended variable selection method which is 

correlation sharing t-test (corT). The variable selection 

method, corT only considers positive relationships 

between the variables which might produce less 

accurate results (Ibrahim, 2020). However, the 

adjcorT method allows both positive and negative 

correlations between the variables from -1 to 1. The 

equation of adjcorT is displayed in (1): 

ri = sign (
x̅i1− x̅i0

si
)  × [max(0≤ ρ ≤1)

1

w
∑ |Tj|j ∈Cρ(i) ]   (1) 

501



Arafin SK et al. / Environment and Natural Resources Journal 2024; 22(6): 500-509

Where; max is the maximum. In addition, each 

variable is assigned a score ri , which equals to the

average of all t-statistics for variables having 

correlation (absolute) at least ρ  with variable i, 

choosing the best value of ρ to maximize the average. 

AdjcorT is a filter feature selection method, and it is 

easy to use. This method is only applicable for 

continuous variables as it calculates the t-score of each 

variable and assesses the correlation with the other 

independent variables.

Figure 1. Research flowchart  

Table 1. Air quality data description 

Variable Unit Description 

PM2.5 (µg/m3) Particulate matter 2.5 micrometres or less in diameters 

PM10 (µg/m3) Particulate matter 10 micrometres or less in diameters 

SO2 (ppm) Sulphur dioxide 

NO2 (ppm) Nitrogen dioxide 

O3 (ppm) Ground-level ozone 

CO (ppm) Carbon monoxide 

WD (°) Wind direction 

WS (m/s) Wind speed 

Humidity (%) Relative humidity 

Temperature (°C) Ambient temperature 
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2.3 Radial basis function neural network 

Radial Basis Function Neural Network 

(RBFNN) is a type of artificial neural network that 

uses radial basis functions as activation functions in its 

hidden layer. The input layer, hidden layer, and output 

layer are the three main layers of an RBFNN, and they 

are typically connected by weights. First, a source 

node, also known as the independent variable, 

connects the network to its surroundings in the input 

layer. Meanwhile, a nonlinear transformation from 

input space to a high-dimension hidden space takes 

place in the hidden layer. The RBF neurons in the 

hidden layer use Gaussian or other radial basis 

functions to compute their activations based on the 

distance between their centres and the input data. The 

final layer is called the output layer, which is the result 

of the network applied to the input layer, also known 

as the predicted output. The network’s output is then 

created by combining and weighting these activations. 

RBFNNs can approximate complex functions with 

comparatively few parameters which are very helpful 

for tasks involving function approximation and pattern 

recognition. This method can effectively handle high-

dimensional input spaces and is particularly useful 

when handling nonlinear relationships in data such as 

air quality data. Figure 2 shows the theoretical 

framework for RBFNN. 

Figure 2. Theoretical framework for RBFNN (Wu, 1998) 

2.4 Artificial neural network 

An artificial neural network, or ANN, is a type 

of computational model that’s design and operations 

are modelled after biological neural networks. It 

consists of networked nodes, sometimes known as 

“neurons,” which work together to process and 

generate complex information. ANNs learn 

through by continuously modifying the connections 

among neurons, utilizing feedback to enhance 

predictions in comparison to intended results. This 

iterative learning process allows ANNs to gradually 

improve their capacity for prediction, also known as 

backpropagation.  

2.5 Model evaluation 

This research uses accuracy, sensitivity, 

specificity, precision, F1 score and Area Under the 

Receiver Operating Characteristic (AUROC) to 

evaluate the ANN classification model. Accuracy 

represents the proportion of correct predictions among 

the total predictions made by the model. To determine 

the accuracy of the model, the number of correct 

predictions is divided by the total number of 

predictions (Atif et al., 2023; Md Noh et al., 2023). 

Sensitivity, also known as the true positive rate, 

measures the proportion of actual positive cases that 

are correctly identified by the model (Zhang-James et 
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al., 2023). While specificity, or the true negative rate, 

quantifies the proportion of actual negative cases that 

are correctly identified by the model (Oboya et al., 

2023). Precision measures the proportion of true 

positive predictions among all positive predictions 

made by the model (Holakoei and Sajedi, 2023). The 

F1 score is the harmonic mean of precision and 

sensitivity, providing a balance between the two 

metrics (Peng et al., 2023). Lastly, the AUROC 

measures a classifier’s ability to discriminate between 

groups (Weng et al., 2023). 

3. RESULTS AND DISCUSSION

3.1 Results

This section presents and analyses the results 

obtained from our study, delving into the implications 

and significance of our findings. Table 2 shows 

missing values of variables in Shah Alam from the 

period 2018 to 2022. All variables have missing values 

below 8% except NO2 with 12.65% of missing values. 

In this research, we use linear interpolation method to 

impute the missing values in the hourly dataset. 

Table 2. Percentage of missing values 

Variable N Missing value 

PM2.5 43,257 567 (1.29%) 

PM10 43,151 673 (1.54%) 

SO2 41,242 2582 (5.89%) 

NO2 38,280 5544 (12.65%) 

O3 41,198 2626 (5.99%) 

CO 40,629 3195 (7.29%) 

WD 42,925 899 (2.05%) 

WS 42,868 956 (2.18%) 

Humidity 42,907 917 (2.09%) 

Temperature 42,926 898 (2.05%) 

3.2 Data pre-processing 

Data transformation and data cleaning are parts 

of the data pre-processing to improve the quality of the 

dataset. To facilitate the process of predicting PM2.5 

category for the following day (PM2.5Dt1), the hourly 

dataset is converted to daily dataset. The PM2.5 

breakpoints (24-hour average) in the Table 3 below are 

based on the U.S. Environmental Protection Agency 

(EPA) that aims to protect public health from the 

harmful effects of fine particle pollution. Since our 

goal is to forecast the PM2.5Dt1 category, we adopted a 

binary classification framework for air pollution 

prediction, where Air Quality Index (AQI) categories 

“good” and “moderate” were combined to represent 

the “not polluted” class, while the others AQI 

categories were grouped into the “polluted” class, 

following Kalajdjieski et al. (2020). 

According to the descriptive statistics of 

independent variables in Table 4, the standard 

deviations range from 0 to 11.712. Data normalization 

was applied since it is clear that different scales were 

observed across variables in this study by using min-

max normalization similar to a study by Du et al. 

(2019) on hybrid deep learning framework for air 

quality prediction. Besides, the histogram of the 

PM2.5Dt1 category shows that the distribution of the 

category is not balanced as shown in Figure 3. Thus, 

this research also applied Synthetic Minority Over-

sampling Technique (SMOTE) to balance the datasets. 

Table 3. Binary labels for the respective PM2.5 breakpoint and AQI categories 

AQI category PM2.5 breakpoints Binary labels 

Good 0.0-12.0 Not polluted 

Moderate 12.1-35.4 Not polluted 

Unhealthy for sensitive groups 35.5-55.4 Polluted 

Unhealthy 55.5-150.4 Polluted 

Very unhealthy 150.5-250.4 Polluted 

Hazardous 250.5 and above Polluted 
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Table 4. Descriptive statistics before data pre-processing 

Variable N Mean Median Std. Dev. Skewness Min Max 

PM2.5 1,825 23.321 21.187 11.712 4.142 5.466 144.917 

PM10 1,825 32.554 30.244 13.739 3.086 7.184 156.553 

SO2 1,825 0.001 0.001 0.000 1.330 0.000 0.001 

NO2 1,825 0.015 0.015 0.005 0.308 0.002 0.037 

O3 1,825 0.020 0.019 0.007 0.800 0.002 0.060 

CO 1,825 0.770 0.754 0.266 0.447 0.148 1.967 

WD 1,825 206.597 205.583 48.507 0.106 86.023 317.928 

WS 1,825 0.820 0.783 0.240 1.468 0.386 2.504 

Humidity 1,825 80.138 80.109 6.603 -0.151 56.347 99.155 

Temperature 1,825 27.552 27.573 1.247 -0.155 22.310 31.939 

Figure 3. PM2.5Dt1 distribution (Before SMOTE) 

Descriptive statistics in Table 5 shows 

significant changes following the application of 

SMOTE and data normalization. Now, all mean, 

median values are within the range of 0 and 1 indicates 

that scaling to a standard range has been achieved. 

Following normalization, standard deviations have 

dropped, suggesting less variability among variables. 

In general, the values of skewness are closer to value 

0, indicating a more balanced distribution. Figure 4 

displayed the PM2.5Dt1 distribution after SMOTE up 

sampling was applied to the dataset. It shows that both 

categories have a consistent number of sample sizes in 

which 1,676 (50.6%) are not polluted and 1,639 

(49.4%) are polluted. Meanwhile, Figure 5 shows 

other features’ distribution after the data pre-

processing applied to the dataset. There are bell-

shaped distributions for all features except for PM2.5, 

PM10, SO2 and wind speed. By addressing issues of 

class imbalance and ensuring fair comparison across 

features, these transformations improve the dataset’s 

suitability for developing precise predictive models. 

Table 5. Descriptive statistics after data pre-processing 

Variable N Mean Median Std. Dev. Skewness Min Max 

PM2.5 3,315 0.176 0.144 0.142 3.239 0 1 

PM10 3,315 0.219 0.190 0.146 2.820 0 1 

SO2 3,315 0.227 0.215 0.100 1.332 0 1 

NO2 3,315 0.426 0.423 0.165 0.279 0 1 

O3 3,315 0.333 0.315 0.130 1.301 0 1 

CO 3,315 0.395 0.388 0.165 0.512 0 1 

WD 3,315 0.522 0.510 0.183 0.078 0 1 

WS 3,315 0.214 0.201 0.100 1.174 0 1 

Humidity 3,315 0.520 0.517 0.146 0.025 0 1 

Temperature 3,315 0.559 0.565 0.118 -0.253 0 1 

3.3 Correlation between features 

The correlation between the features were 

examined in order to explore the correlation between 

features in the air quality data. The spearman 

correlation matrix provides insight into the 

relationships between the features. Values closer to 1 

denote a strong positive correlation, while values 

closer to -1 denote a strong negative correlation, and 
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values around 0 suggest no linear correlation between 

the independent variables. Based on the spearman 

correlation matrix output, there is a strong positive 

correlation between PM2.5 and PM10 which is 0.97, 

indicating a significant association between these two 

pollutants. Similarly, NO2 and O3 have a fairly positive 

correlation (0.66), which illustrates moderate positive 

relationship between these two variables. Conversely, 

humidity shows a significant negative correlation        

(-0.8) with temperature, indicating a strong negative 

relationship between these meteorological variables. 

Other correlation values are not showing any 

multicollinearity issue exists seriously in the air 

quality data.  

Figure 4. PM2.5Dt1 distribution (After SMOTE) 

3.4 Optimizing feature selection 

The adjcorT values were ranked, the higher the 

value indicates the more significant the variable for 

developing  a  new  model  to  predict  the  category  of 

PM2.5D+1 in Shah Alam, Selangor. As shown in Figure 

5, the most important variable to predict PM2.5D+1 is NO2 

while the least important variable is temperature with 

adjcorT value 23.81 and 14.99 respectively. By adding 

features one by one to the ANN model based on features 

ranking, we can determine the number of optimized 

features to predict PM2.5D+1. The number of hidden 

nodes used for the ANN are followed as suggestion by 

Ul-Saufie et al. (2022), number of hidden 

nodes=(number of attributes + number of classes) /

2+1, while the learning rate values are set to 0.01. Based 

on the performance of ANN model in Table 6, the 

accuracy, sensitivity, specificity, precision and F1 score 

shows that the optimize features to predict PM2.5D+1 is 

top 8 variables ranked by adjcorT method which is NO2, 

PM2.5, PM10, CO, O3, WS and SO2. Figure 6 displays 

the various performances in a line charts for a clearer 

comparison view. 

3.5 Model comparison 

This research used RBFNN to verify the 

number of optimized features to predict PM2.5D+1. The 

number of hidden nodes used for RBFNN and 

adjcorT-RBFNN model are 7 and 6 respectively as 

suggested by Ul-Saufie et al. (2022), number of hidden 

nodes = (number of attributes + number of classes) / 2 

+ 1, while the learning rate values are set to 0.01. Table

7 and Bar graph in Figure 7 shows the performance of

the RBFNN model when using all 10 variables and

using top 8 variables provided by adjcorT values

ranking. We can conclude that the model using the top

8 variables in adjcorT-RBFNN outperformed the

traditional RBFNN with higher accuracy, specificity,

precision, F1 Score and AUROC which are 0.756,

0.801, 0.701, 0.757, and 0.758 respectively.

Figure 5. adjcorT values for each features 
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Table 6. Model performances for different numbers of features combination 

No of features 1 2 3 4 5 6 7 8 9 10 

Accuracy 0.67 0.75 0.76 0.76 0.75 0.80 0.78 0.81 0.80 0.80 

Sensitivity 0.72 0.77 0.79 0.79 0.79 0.85 0.84 0.87 0.86 0.86 

Specificity 0.63 0.73 0.73 0.74 0.71 0.75 0.73 0.76 0.75 0.76 

Precision 0.63 0.73 0.73 0.74 0.71 0.75 0.73 0.76 0.75 0.76 

F1 score 0.67 0.75 0.76 0.76 0.75 0.80 0.78 0.81 0.80 0.81 

AUROC 0.67 0.75 0.76 0.76 0.75 0.80 0.78 0.81 0.80 0.81 

Figure 6. The model performances in different features combination included into the model 
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According to a study by Shaziayani et al. (2020), they 

found that combining SVM and BRT with feature 

selection techniques effectively reduced the prediction 

error and identified city-specific important variables 

for PM10 prediction. They found that the most 

important variables are PM10 followed by NO2, CO, 

SO2, relative humidity, temperature, and the least 

important is O3 while wind speed is excluded from the 

model. Their findings have similarities with our 

research, in which all the important variables are the 

same with ours except the relative humidity and 

temperature. However, their research did not consider 

the multicollinearity issues in the air quality data since 

the researcher used other variable selection methods 

that did not consider the high correlation between the 

independent variables. Additionally, according to 

research by Afrin et al. (2021) has discovered wind 

speed and wind direction are the significant variables 

to predict PM2.5 concentrations with 94% of total PM2.5 

variability explained by the model. Artificial neural 

networks have been used widely for prediction and 

classification including in air quality areas. A study by 

Hamami and Fithriyah (2020) focused on the 

classification of air pollution levels using artificial 

neural networks. They highlight the application of 

neural networks for air pollution classification into 

their model giving high accuracy, sensitivity and also 

specificity which is above 90%. 

Table 7. RBFNN and adjcorT-RBFNN model performances 

Model RBFNN adjcorT-RBFNN 

Accuracy 0.753 0.756 

Sensitivity 0.801 0.801 

Specificity 0.712 0.717 

Precision 0.712 0.717 

F1 score 0.754 0.757 

AUROC 0.755 0.758 

Figure 7. Horizontal Barchart of RBFNN and adjcorT-RBFNN model performances 

4. CONCLUSION

This research utilizes the feature selection 

procedures especially on air quality data in enhancing 

prediction of PM2.5. The result revealed that the model 

with two stages feature selection technique, adjcorT-

RBFNN has proven to have better performance with 

higher accuracy, specificity, precision, F1 score and 

AUROC compared to RBFNN model. Ultimately, the 

daily PM2.5 concentrations in Shah Alam may be 

anticipated using the proposed models. Additionally, 

the predicted model may serve as an instrument for an 

early warning system, providing local authorities with 

information on air quality for formulation of strategies 

of air quality improvement. In terms of the limitation, 

this study explored a comprehensive feature selection 

method applied on air quality data in Shah Alam, 

Selangor. However, further and in-depth studies may 
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be needed to confirm its effectiveness in different 

monitoring stations in Klang Valley. Future study may 

study other feature selection methods and other 

machine learning classification techniques to apply on 

the air quality data. In addition, these methods also can 

be applied to other data in different fields.  
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