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Forest fires in Nepal are a pressing environmental concern, impacting ecosystems 

and community livelihoods. This research aims to understand forest fires, their 

trends, distribution, and relation with selected variables found in the sub-tropical 

forests of Madhesh Province of Nepal, and then identify potential fire risks and 

vulnerable areas. The selected fire incidents were analyzed using fire points 

produced by the moderate resolution imaging spectroradiometer (MODIS) 

sensor. Following the analytic hierarchy process (AHP) approach, this research 

investigates topographic, climatic, biophysical, and anthropogenic variables to 

create a fire risk map. Throughout the 22-year research period (2001-2023), 6,368 

fire incidents and 6,158.22 km2 of total burnt area were reported in the study area. 

Overall, the Mann-Kendall test showed an increasing trend for regional fire 

incidents. It has been found that about 24% of the province is either at high or 

very high risk for fire. The validity of the prediction map was confirmed with an 

AUC value of 0.798. The findings of the study will be valuable to local, state, 

and federal governments, policymakers, forest fire managers, researchers, and 

land planners in building a landscape-level forest fire management plan for high-

risk areas. 
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1. INTRODUCTION

Wildfire or forest fire, although an important 

component of biome development in forest ecosystem 

(Dawson et al., 2001; Doerr and Santín, 2016) has 

been a driving factor for forest degradation globally, 

and a major risk to Nepal’s forest cover (Singh, 2017). 

Recurrent forest fires destroy non-timber forest 

products, severely harming and hindering seedling 

regeneration and growth, and, in some situations, 

facilitating the spread of exotic species (MoFSC, 

2016).  

Monitoring and assessment of forest fires and 

prone areas with remote sensing has been an effective 

approach for evaluating, regulating, and predicting fire 

risks (Qadir et al., 2021). Numerous geosynchronous 

satellites, including the along track scanning 

radiometer (ATSR) onboard, ERS-1 and 2 (European 

Remote Sensing Satellite 1 and 2), the moderate 

resolution imaging spectroradiometer (MODIS) 

onboard the Terra and Aqua Satellites have been 

frequently used in monitoring forest fires (Curkovic, 

2012). MODIS, acquiring its synoptic source of 

information from routine satellite observation on 

various temporal scales, has proven to be 

advantageous for the monitoring of forest fires 

(Reeves et al., 2006). In line with this, Pradhan et al. 

(2007) produced a susceptibility map based on the 

correlation between MODIS fire incident points and 

the associated contributing factors.  

Among many techniques for calculating and 

modeling fire risk areas, multi-criterion decision 

analysis (MCDA) and geographic information system 

(GIS) have been most adopted (Wang et al., 1990; 

Joerin et al., 2001; Yu et al., 2011; Zolekar and 

Bhagat, 2018), where MCDA techniques offer 

solutions with user-defined needs. Different literatures 
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have prompted the use of MCDA techniques including 

analytical hierarchy process (AHP), Fuzzy AHP, and 

ANP (citations of papers using AHP, Fuzzy AHP, and 

ANP). Among others, AHP is a thorough structured 

technique for multi-criteria decision analysis (Kumar 

and Garg, 2017). Most importantly, integrating GIS 

and remote sensing with AHP approaches can give 

policymakers, social networks, forest fire managers, 

and other stakeholders credible information on when 

and where fires are predicted to occur. 

Despite being a small nation with an area of 

147,516 km2, 44.74% of Nepal’s total land area is 

covered with forests and woodlands (FAO, 2020). 

Recent years have shown a growing trend of forest 

fires, where 2021 hit the worst-case scenario as 

compared to past trends (Parajuli et al., 2020). 

Madhesh Province represents the Terai region of 

Nepal and is second to the Chure range in terms of fire 

hotspots in Nepal (Ranabhat et al., 2022), however, no 

research work has addressed the recurrent wildfire 

patterns of the province. Thus, this study responds to 

the necessity of accurately mapping the wildfire risk 

zones to abate the possible abrasion of forest fires in 

the province. Such mapping of forest fire risk zones 

would eventually benefit Nepal’s disaster 

preparedness measures (Parajuli et al., 2020). The 

current study considers the province for the most 

recent trends in forest fires way forwarding further 

opportunities for filling the research void in forest fire 

dynamics of the province. This research identifies 

where and when the fires are most likely to occur in 

the study area, providing a crucial foundation for 

improving current forest fire control strategies.  

2. METHODOLOGY

2.1 Study area

Madhesh province occupies the southern part of 

Nepal within an elevation range of 1,000-3,300 feet, 

located between 22.9734°N and 78.6569°E, and 

bordered by the Siwalik hills on the north, India in the 

south, the Koshi River in the east, and Bagmati 

Pradesh in the west. The province’s lower tropical 

climate dominates over 90% of its total geographical 

area, with the remaining portion experiencing the 

upper tropical climate. Approximately 27.29% of the 

total land area is covered by forest in the province 

(DFRS, 2015). The major forest cover is occupied by 

Shorea robusta forest, followed by the forests of 

Terminalia and Anogeissus, Dalbergia sissoo-Acacia 

catechu, and Bombax riverine. The study primarily 

focuses on the forest region of the area as shown in 

Figure 1. Simultaneously Figure 2 provides the overall 

framework of methodological steps involved in this 

study.

Figure 1. Landcover map of the study area (Source: ICIMOD, 2013) 
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2.2 Acquisition of dataset 

Data available on active fires were extracted 

using the MODIS. The MODIS active fire product 

detects fires burning in 1×1 km2 pixels under cloud-

free conditions (Giglio et al., 2015; Giglio et al 2006). 

The fire incidences from 2001 to 2023 were obtained 

from https://firms.modaps.eosdis.nasa.gov/active_fire/ 

which provides the data for spatial-temporal analysis 

(Qadir et al., 2021). In MODIS, there are different 

levels of confidence from 0 to 100 in the detection 

intervals showing the accuracy of the data. We used 

the data exceeding 30% confidence level in this study 

to avoid false incidents but not ignore small fires 

before previous studies (Giglio et al., 2015; Parajuli et 

al., 2020).  

In the current study, satellite data as well as 

other vector and raster data products were utilized. 

The parameters were divided into topographical 

(elevation, aspect, and slope), climatic (temperature), 

anthropogenic (distance from road and closeness to 

settlement), and biophysical categories (land cover). 

For the topographical data, Aster global DEM model 

V003 was downloaded from the USGS website 

(https://earthexplorer.usgs.gov/) (LP DAAC, 2019) 

and the area of interest was then mosaiced, projected, 

and then clipped consecutively. Then, using the slope 

and aspect function in the ArcGIS 10.8 spatial analyst 

tool (ESRI, 2022), the slope and aspect were obtained 

from the DEM map. The data for land surface 

temperature was obtained by compiling MODIS data 

(MOD11C3) (Wan, 2014). The ArcGIS cell statistics 

tool was used to assemble and integrate the monthly 

data.  For effectiveness, a distinct layer was created by 

averaging the mean monthly temperature for each 

year’s pre-monsoon season (March-May) since the 

majority of forest fire cases occur in this season (Matin 

et al., 2017; Parajuli et al., 2020). Similarly, landcover 

data for the year 2010 was obtained from (ICIMOD, 

2013) providing the classification of all the forest 

types. The data from this year was used since no other 

open-source layers provided the classification of the 

forest types. The dataset on roads and settlements 

was obtained from the Department of Survey 

(https://opendatanepal.com/dataset), and the vector 

polyline and points shapefile were further rasterized 

using the Euclidean distance method under the 

spatial analyst tool. Table 1 provides information on 

the data model and the sources of the various criteria 

maps. All the variables used in the study are visualized 

in Figure 2. 

Table 1. Datasets used and their sources 

Variable type Data Format Data period Resolution Sources/References 

Dependent variable Fire occurrence data SHP 2001-2023 1,000 m MODIS 

Topographical ASTER DEM TIFF 2019 30 m NASA/LAADSDAAC/USGS 

(V003) (LP DAAC, 2019) Slope TIFF 2019 30 m 

Aspect TIFF 2019 30 m 

Climatic Land surface 

temperature 

HDF 2001-2023 1,000 m MODIS (Wan, 2014) 

Precipitation TIFF 2000-2018 4.5 km Worldclim  

Bio-physical Landcover (2010) TIFF 2010 30 m ICIMOD (ICIMOD, 2013) 

Anthropogenic Proximity of settlement SHP 2015 1:25,000 Department of Survey 

Distance from road SHP 2015 1:250,000 Department of Survey 

2.3 Preparation of variables 

Before running any model, it is imperative to 

statistically test the multicollinearity among the 

response variables as it may later impact the model 

estimation (Chang et al., 2013). In multiple regression 

models, multicollinearity refers to the level of linear 

intercorrelation between the explanatory variables 

(Kim, 2019). So, before relying on the input variable’s 

authenticity, a multicollinearity test was conducted to 

observe the correlation among the independent 

variables in response to the dependent fire count, to 

accurately validate the data and obtain a reliable 

conclusion. All the independent explanatory variables 

were classified as categorical variables before running 

the multicollinearity test. We calculated the Variation 

Inflation Factor (VIF) among the variables since it 

shows the severity of collinearity among the variables. 

The study of Davis et al. (2017) states that the 

variables with VIF<5 have insignificant levels of 

multicollinearity. As visible in Table 2, since the VIF 

for all the eight independent variables ranged below 

1.6, thus indicating a low correlation between the input 

variables, all the variables were used for fire risk 

mapping. 
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As for the trend analysis of forest fire for the 

years 2001-2023, the Man-Kendall test was used for 

both the fire incidents and the burnt area. It assesses 

the significance of the Theil-Sen slope (Mann, 1945) 

and indicates the presence of a trend when the TS 

slope quantifies its magnitude. Different studies like 

Mishra et al. (2014) and Zhu et al. (2023), have used 

it for forest fire and burnt area trend and significance 

estimation. Furthermore, to analyze the spatial 

distribution of forest fire counts across different 

variables, Arc GIS 10.8 (ESRI, 2022) was used to 

overlay the incidents and variables. 

Figure 2. Variables (a) slope, (b) aspect, (c) elevation, (d) land surface temperature, (e) proximity of settlement, (f) distance from road, 

and (g) precipitation  

(a) 

(b) 

(c) 
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Figure 2. Variables (a) slope, (b) aspect, (c) elevation, (d) land surface temperature, (e) proximity of settlement, (f) distance from road, 

and (g) precipitation (cont.) 

(d) 

(e) 

(f) 

(g) 
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Table 2.VIF test of all the independent variables 

Type of variable Variable name Collinearity statistics 

Tolerance VIF 

Independent Explanatory Variables Slope 0.968 1.033 

Settlement 0.728 1.374 

Road distance 0.656 1.524 

LST 0.650 1.538 

Elevation 0.999 1.001 

Land cover 0.808 1.237 

Aspect 0.999 1.001 

Precipitation 0.989 1.203 

*Dependent variable: Fire count

2.4 Assignment of weights for risk model 

The weight ranking of each variable was done 

using the AHP method which is a pairwise 

comparison-based measurement theory and 

establishes the significance of each criterion (Saaty, 

1994; Saaty, 1977; Saaty, 1988; Saaty and Vargas, 

1991). Individual criteria and their subclasses are 

given relative weights based on previously acquired 

knowledge of the criteria’s features, local field 

experience, firsthand observation, specifics of the 

chosen research area, and expert suggestions. A pair-

wise comparison matrix was made to compare all 

factors against each other based on their importance 

(equal, moderate, strong, very strong, and extremely 

strong). A standard Saaty’s 1-9 scale was used to 

determine the relative importance values for all 

themes and their respective features, where value ‘1’ 

denotes “equal importance” between the two themes, 

and the value ‘9’ denotes the “extreme importance” of 

one theme compared to another as shown in Table 3. 

Table 3. Scale for a pair-wise comparison matrix (Saaty, 1988) 

Intensity 

importance 

Linguistic variables 

1 Equal importance 

2 Equal to moderate importance 

3 Moderate importance 

4 Moderate to strong importance 

5 Strong importance 

6 Strong to the very strong importance 

7 Very strong importance 

8 Very to the extremely strong importance 

9 Extreme importance 

Mathematical description of the different steps 

is summarized in the following steps. 

(1) Sum the values in each column of the pair-

wise comparison matrix using the formula: 

Lij = ∑ Cijn
n=1   (1) 

Where; Lij is the total column value of the pair-

wise comparison matrix and Cij is the criteria used for 

the analysis. 

(2) Divide each element in the matrix by its total

row to generate a normalized pair-wise comparison 

matrix (Table 5) as shown in: 

Xij =
Cij

Lij
 (2) 

Where; Xij=normalized pair-wise comparison 

matrix. 

(3) Divide the sum of the normalized row of the

matrix by the number of criteria/parameter (N) to 

generate the standard weight by using the following 

formula: 

Wij =
∑ Xijn

j=1

N
(3) 

Where; Wij=standard weight. 

(4) For calculating the consistency vector

values, the following formula was used: 

λ = ∑ CVijn
n=1 (4) 

Where; λ=consistency vector. 

(5) Consistency index (CI) was used as a

deviation or degree of consistency which was then 

calculated using the following Equation 5 and 

Consistency ratio (Cr) was calculated by using the 

formula Equation 6 (Kanga et al., 2017; Kayet et al., 

2018). 

CI =
λ−n

n−1
 (5) 
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Where; CI=consistency index, n=number of 

criteria. 

(6) For calculating the Consistency ratio (Cr)

Cr =
CI

RI
 (6) 

If the value of the Consistency ratio (Cr) is less 

than or equal to 0.10, then the inconsistency is 

acceptable (Barzilai, 1998). Random inconsistency 

(RI) values for ‘n’ number of criteria, i.e., the number 

of parameters are shown in Table 4.  

Table 4. Random index (RI) for different number of criteria (n) 

n 1 2 3 4 5 6 7 8 9 10 

RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 

Table 5. Pairwise and normalized comparison matrix 

LULC PS DR Elevation LST Slope Aspect Rainfall 

LULC 1 3 3 5 5 6 7 7 

PS 0.33 1 3 4 5 5 6 7 

DR 0.33 0.33 1 3 3 4 5 5 

Elevation 0.2 0.25 0.33 1 3 3 5 6 

LST 0.2 0.2 0.33 0.33 1 2 3 7 

Slope 0.17 0.2 0.25 0.33 0.5 1 3 5 

Aspect 0.14 0.17 0.2 0.2 0.33 0.33 1 5 

Rainfall 0.14 0.14 0.2 0.17 0.14 0.2 0.2 1 

LULC PS DR Elevation LST Slope Aspect Rainfall Total 

weight 

Normal 

weight 

LULC 0.4 0.57 0.36 0.36 0.28 0.28 0.23 0.16 2.64 0.33 

PS 0.13 0.19 0.36 0.29 0.28 0.23 0.2 0.16 1.84 0.22 

DR 0.13 0.06 0.12 0.21 0.17 0.19 0.17 0.12 1.17 0.15 

Elevation 0.08 0.05 0.04 0.07 0.17 0.14 0.17 0.14 0.86 0.11 

LST 0.08 0.04 0.04 0.02 0.06 0.09 0.1 0.16 0.59 0.07 

Slope 0.07 0.04 0.03 0.02 0.03 0.05 0.1 0.12 0.46 0.06 

Aspect 0.06 0.03 0.02 0.01 0.02 0.02 0.03 0.12 0.33 0.04 

Rainfall 0.06 0.03 0.02 0.01 0.01 0.01 0.01 0.02 0.17 0.02 

Finally, the weight was assigned to the variables 

accordingly. The Cr value was calculated within the 

acceptable range of less than 0.01 (Barzilai, 1998). 

Relative weights were assigned to different classes of 

variables from local field experience, personal 

observation, previous research in similar regions, 

literature (Parajuli et al., 2020; Parajuli et al., 2023; 

Tiwari et al., 2021), and expert’s suggestions. The 

expert group was constituted of four members 

including the expert personnel from the District Forest 

office, the Institute of Forestry, and the Ministry of 

Tourism and Environment. Finally, the weight was 

assigned as shown in Table 6. For each variable, the 

classes for the impact of forest fire were classified into 

five different categories: Very High, high, medium, 

low, and very low based on the suggestions from 

experts, distribution of forest fire points (Figure 6), 

and different literature review (Parajuli et al., 2020; 

Parajuli et al., 2023; Tiwari et al., 2021). The 

methodological framework utilized in the study is 

given in Figure 3 which was used for obtaining the 

final risk map. 

Table 6. Weight ranking for the different classes of the variables 

Variable Normalized weight Class Value assigned Fire rating classes 

Land cover 0.33 Broadleaved closed forest 1 Very high 

Broadleaved open forest 2 High 

Grassland 3 Medium 

Shrubland 4 Low 
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Table 6. Weight ranking for the different classes of the variables (cont.) 

Variable Normalized weight Class Value assigned Fire rating classes 

Land cover 0.33 Needle leaved open forest 4 Low 

Other 5 Very low 

Slope (%) 0.06 <5 1 Very high 

5-15 2 High 

15-25 3 Medium 

25-35 4 Low 

>35 5 Very low 

Distance to road (m) 0.15 <1,000 1 Very high 

1,000-2,000 2 High 

2,000-3,000 3 Medium 

3,000-4,000 4 Low 

4,000-5,000 5 Very low 

Proximity to 

settlement (m) 

0.22 <2,000 1 Very high 

2,000-4,000 2 High 

4,000-6,000 3 Medium 

6,000-8,000 4 Low 

>8,000 5 Very low 

Elevation (m) 0.11 <150 1 Very high 

150-300 2 High 

300-450 3 Medium 

450-600 4 Low 

>600 5 Very low 

LST 0.07 <28 5 Very low 

28-30 3 Medium 

30-32 2 High 

32-34 2 High 

>34 1 Very high 

Aspect 0.04 South 1 Very high 

Southwest 1 Very high 

Southeast 2 High 

West 3 Medium 

East 3 Medium 

Northwest 4 Low 

Northeast 4 Low 

North 5 Very low 

Precipitation (mm) 0.02 <35 mm 1 Very high 

35-45 mm 2 High 

45-55 mm 3 Medium 

55-65 mm 4 Low 

>65 mm 5 Very low 

3. RESULTS AND DISCUSSION

3.1 Trend analysis of fire incidents in Madhesh

Province

From 2001 to 2023, altogether 6,796 fire 

incidents occurred across 6,158.22 km2 in Madesh 

Province. However, only the data with detection 

confidence greater than 30% accounted for 6,368 fire 

incidents, as illustrated in Figure 4. This study 

recorded the year 2021 with the highest fire incidents, 

while Parajuli et al. (2020) had regarded the year 2016 

with the most fire incident occurrence, where Parajuli 

et al.  (2023) has  signified  that  both  2016  and  2021 

witnessed severe drought conditions, pointing out as 

primary reason for sudden surge of fire incidents. 

87



Adhikari G et al. / Environment and Natural Resources Journal 2025; 23(1): 80-94

Previously, the research of Parajuli et al. (2015) and 

Matin et al. (2017) showed that the year 2009 had high 

frequency of fire incidents due to persisting lower 

moisture regimes. 

Figure 3. Methodological framework for forest fire risk map 

Figure 4. Fire incidents in Madhesh Province for the study period (2001-2023) 

We used the Mann-Kendall trend analysis 

(Mishra et al., 2014) for burnt area analysis and it 

revealed a decreasing trend with Kendall’s tau value 

of -0.11 and a Sen’s slope value of -0.52 (Figure 5(a)). 

However, this decrease is of relatively low magnitude. 

Importantly, the observed negative trend in the     burnt 

area is statistically insignificant (p=0.92 at a   5% 

significance level). In Figure 5(b), the Mann-Kendall 

trend analysis of fire incidents highlights a statistically 

significant trend (p=0.02) of increasing forest fire 

incidence in the region. This is evidenced by the 

positive value of Kendall’s tau (0.351) and Sen’s slope 

value (10.5). The positive trend signifies a notable 

increase in forest fire incidents over the analyzed 

period.  
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Such phenomena may result from improved 

fire management and suppression efforts, which limit 

the spread of fires despite higher incident rates 

(Mishra et al., 2014). Additionally, factors like 

changes in land use and vegetation dynamics, as well 

as climatic variations, may play a role in causing 

inconsistencies between burn area and fire incidence 

as seen in Figure 5 (Bowman et al., 2009; Westerling 

et al., 2006). These findings indicate a complex 

interplay of factors influencing fire dynamics, thus, 

requiring further investigation into the underlying 

causes of these trends. 

Figure 5. Year-wise trend analysis of forest fire in Madhesh Province: (a) Burnt area (per km2) and (b) Fire incidence reported by MODIS 

3.2 Variables effect on forest fire incidents 

Each factor concerned with forest fire has been 

discussed and analyzed separately. The land cover 

class map shows that around 16% of the study area 

was forested with broad-leaved closed forest 

comprising the majority area of approximately 83%. 

Figure 6(a) shows that the broad-leaved closed forest 

was intercepted with the highest number of forest fire 

counts consisting 74% of the total incidents. This was 

due to the presence of dried Sal (Shorea robusta) 

leaves serving as active fuel material, comprising 

almost 90% of the continuous fuel in the forest of this 

region (Sharma and Hussin, 1996). 

The fire incidents witnessed a decreasing trend 

with the slope increment as shown in Figure 6(b). In 

case of plain lands, as of Terai Region of Nepal, the 

study of Matin et al. (2017) recorded that 72% of the 

fires occurred in the areas with temperature above 

30°C and a slope of less than 5%. Similar findings 

were recorded in this study where a majority of 

incidents occurred in the areas where temperature was 

around 30-32°C. Further, the southern side receives 

more sunshine, thus, raises the temperature and makes 

fuel drier (Prasad et al., 2008; Parajuli et al., 2020). 

Majority of the Madesh Province falls in the Terai 

Region with some extension in the Chure hills up to 

918 m, fire incidents decreased with an increase in the 

elevation. As evident in Figure 6(c), only a quarter of 

fire incidents occurred in the areas with slope greater 

than 15%. Similar findings were reported by Ariapour 

and Shariff (2014), where 65% of fires occurred within 

1,000 m elevation. Further, this study showed that the 

areas within the proximity of 2,000 m from 

settlements, there were relatively high fire incidents 
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comprising almost 45%. Interestingly, a slight 

increment from 1369 to 1428 is seen in fire incident 

occurrence between 2,000-6,000 m which later 

decreases to only about 14.5% incidents. According to 

research by Hussin et al. (2008), people seldom light 

fires at distances greater than 2000 m from where they 

live which may be the reason for lesser frequency of 

fire incidents above 2,000 m as shown in Figure 6(g). 

The study of Ariapour and Shariff (2014) documented 

40% of fire incidents within 1 km from the road. 

Likewise, in this study, Figure 6(h) shows that around 

65% of fire incidents were within 1 km from the road. 

The incidence of fire to activities such as throwing 

unlit cigarettes onto dry litter, and heating 

bitumen/asphalt for road surfacing are subjected to 

higher occurrences of forest fires within closer 

proximity of road (Jaiswal et al., 2002; Ariapour and 

Shariff, 2014). 

Various researchers have employed different 

variables and assigned varying degrees of importance. 

Tiwari et al. (2021), for instance, accorded the highest 

weight to elevation, whereas Feizizadeh et al. (2015) 

prioritized slope. Further, Hassan et al. (2020) 

emphasized rainfall and temperature. However, 

Kodandapani et al. (2008) acknowledged that forest 

type plays a pivotal role in fire occurrence and 

highlighted those broad-leaved forests are highly 

susceptible to fire during dry seasons. This research 

discovered that relatively higher impacts are 

constrained by land cover, followed by proximity to 

settlement, elevation, road distance, as shown by 

Figure 6 and the risk map. We found that the risk areas 

mostly comprised forest areas with almost 90% of the 

forest area under high and very high-risk areas in the 

province (Figure 7). 

Figure 6. Forest fire incidents (a) land cover classes, (b) slope, (c) elevation, (d) aspect, (e) land surface temperature, (f) precipitation (g) 

proximity to settlement, and (h) distance to road 
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Figure 6. Forest fire incidents (a) land cover classes, (b) slope, (c) elevation, (d) aspect, (e) land surface temperature, (f) precipitation (g) 

proximity to settlement, and (h) distance to road (cont.) 

3.3 Fire risk map 

As accord to Table 6 weightage value obtained 

from the AHP method, the risk map of Madhesh was 

obtained. Based on the weightage given to each 

variable class as per their influence on forest fire, all 

the thematic variables were added using the weightage 

overlay method in ArcGIS as shown in Figure 7, 

where the area is classified into five categories ranging 

from very high, high, moderate, and low to very low. 

The Table 7 demonstrates that, although the area under 

very high and high category is just 24.5%, however, it 

accounts for 72.5% of total fire incidents, which is in 

concordant with the output of Mann-Kendal trend 

analysis.   

Table 7. Fire incidents in risk areas 

Value Area (km2) % of area No. of total fire counts % of total fire counts Fire density per km2 

Very high 660.43 7.26 1,002 15.74 1.51 

High 1566.52 17.24 3,679 56.78 2.34 

Medium 193.36 2.13 556 8.73 2.87 

Low 1430.45 15.72 558 8.76 0.39 

Very low 5243.51 57.65 573 8.99 0.10 

3.4 Validation 

For the validation process, past data points were 

overlaid on the map, revealing a concentration of fire 

incidents in the high-risk zone. This validation method 

aligns with approaches utilized by various researchers, 

including Higgins et al. (2013), Feizizadeh et al. 

(2015), Ajin et al. (2016), Pourghasemi (2020), and 

Lamat et al. (2021). Additionally, to ascertain the 
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accuracy of the results, the area under curve (AUC) 

curve was employed, as depicted in Figure 6. This 

study employed the AUC validation technique, like 

the approach utilized by Parajuli et al. (2023) and has 

yielded significant results. The ArcSDM tool (ESRI, 

2022) was used in ArcGIS for AUC calculation and 

the prediction map scored the AUC value of 0.798 

(79.8%) (Figure 8) which shows the produced results 

are acceptable. Notably, this AUC value is comparable 

to that reported by (Tiwari et al., 2021) with 81.75% 

for AHP method.  

Figure 7. Forest fire risk map index combining all influencing variables 

Figure 8. Receiver Operating Characteristic (ROC) curve of fire risk map 

4. CONCLUSION

The research gives insights to spatial dynamics 

of forest fires in various influencing variables in the 

sub-tropical forests of Madhesh Province of Nepal. 

The MODIS fire incidence analysis showed highest 

incidence in 2021 while highest burnt area was 

reported in 2004. Overall, the broadleaved forests 

appeared vulnerable to fire incidents occurrence, with 

nearly 90% of the forested area falling into high or 

very high-risk category, so mitigatory strategies are 

suggested to be applied to lessen the damage incurred. 

The weight ranking shows that land cover, proximity 

to settlement, and elevation are highly sensitive to 

forest fire risk presumed in the Madhesh Province. 

Furthermore, the forest fire risk map index, based on 

the weightage of various variables, reveals that the 

forest area of the Madesh Province is vulnerable, and 

overall, 7.26% area is under very high-risk, 17.24% 

under high risk. Moreover, the Man Kendal trend 

analysis of burn area and fire incidence reveal that 

Random Guess 

Fire Riskmap (AUC-0.79) 
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further intricated studies are required to understand the 

underlying factors affecting the variables associated 

with forest fires.  
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