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Understanding drought propagation is essential for effective water resource
management. This study employs an innovative approach to examine the
transition from meteorological drought (MD) to hydrological drought (HD) in the
Upper Nan Watershed (UNW), Thailand, using the standardized precipitation
evapotranspiration index (SPEI) and standardized streamflow index (SSI). Cross-
wavelet transform (XWT) and Pearson’s correlation analyses reveal a significant
positive correlation between MD and HD, with the drought propagation time
(DPT) ranging from 2 to 5 months, notably shorter during the dry season. The
eastern UNW (Zone 1) has the longest DPT, while the western UNW (Zone 111)
has the shortest. This study is distinguished by its integration of global
teleconnection factors, such as El Nifio-Southern Oscillation (ENSO), the Dipole
Mode Index (DMI), and Pacific Decadal Oscillation (PDO), alongside local
factors like climate, slope, and watershed morphometry. This dual focus provides
a comprehensive analysis of drought dynamics, enhancing the understanding of
drought propagation and its complexities. The integration of global and local
influences provides insights applicable across diverse water resource
management contexts. It highlights the critical role of forests in regulating water
flow and extending the DPT, emphasizing the need for forest conservation and
land use regulation in the headwaters. Despite challenges associated with
highland meteorological data, findings offer improvements to existing drought
monitoring and early warning systems, underscoring the importance of
combining global and local factors in effective drought management strategies.

1. INTRODUCTION

Drought, characterized by insufficient rainfall,
leads to significant water shortages that affect
agriculture, the environment, and society and result in
substantial economic losses (Dalezios et al., 2012).
The types of drought include meteorological drought
(MD), agricultural drought, hydrological drought
(HD), and socioeconomic drought, occurring when
water supply fails to meet demand (Abbas and Kousar,
2021). Understanding the transition from MD to HD
is critical for water resource management. However,
previous studies have not explored the combination of
global and local factors affecting drought propagation,
especially in the context of Thailand’s Upper Nan
Watershed (UNW). This study bridges that gap by

offering an innovative and detailed analysis of the
dynamics between global teleconnection factors and
local watershed conditions to predict drought
propagation.

Previous studies have explored drought
propagation, with Ding et al. (2021a) finding stronger
propagation from agricultural drought (AD) to HD in
northern China during summer and autumn; Huang et
al. (2017) noting a time lag between MD and HD in
the Wei River Basin, influenced by atmospheric
anomalies such as El Nifio-Southern Oscillation
(ENSO) and Arctic Oscillation (AO); and Gu et al.
(2020) showing that droughts increase in duration and
severity as they propagate, particularly in the Yangtze
and Yellow River basins. This research contributes to
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the field by focusing on the UNW, a drought-prone
area in Thailand where the specific dynamics of MD-
to-HD propagation are not yet well understood.
Climate change intensifies droughts, affecting water
availability and agricultural productivity (Wan et al.,
2018; Xu et al., 2019). Land use changes such as
deforestation and urbanization worsen drought
impacts by disrupting hydrological cycles and
reducing water retention (Fedele et al., 2018).

The UNW in northern Thailand flows from north
to south, merging with the Wang, Ping, and Yom
Watersheds to form the Chao Phraya Watershed. This
study presents an innovative approach by examining
the spatiotemporal mechanisms of drought propagation
in the UNW and identifying the factors affecting the
drought propagation time (DPT). This novel
combination of global factors (e.g., ENSO, DMI, and
PDO) with local conditions such as topography and
land use provides a fresh perspective on drought
management. Using the SPEI, the SSI, cross-wavelet
transform (XWT), and Pearson’s correlation analyses,
this research aims to improve drought monitoring and
early warning systems. The findings will inform land
use policies and forest conservation to reduce the socio-
economic impacts of drought in the UNW and similar
watersheds, delivering insights for enhancing integrated
drought management strategies globally.

2. METHODOLOGY
2.1 Study area

This study was conducted in the Upper Nan
Watershed (UNW) in northern Thailand; it spans the
coordinates 18°27'55.72" N to 19°38726.97" N and
100°21'39.14" E to 101°21'7.52" E, covering an area of
4,588.4 km2 (Figure 1). The UNW experiences a dry
season (January to March and November to December)
with 9.7 to 64.4 mm of rainfall and a wet season (April
to October) with 102.7 to 269 mm, often receiving
rainstorms from the South China Sea during the
northeast monsoon. The landscape includes hilly
upstream and midstream regions and low-lying flatland
downstream, where the town of Nan is located. The
headwaters are critical due to the thin soil from
intensive erosion on steep slopes, which limits moisture
retention and increases drought susceptibility.
Agriculture is vital in the UNW, with rice and maize
being the primary crops. Forests have been cleared for
maize cultivation due to its higher economic returns,
leading to reduced soil moisture retention, increased
runoff, and soil erosion, heightening drought
vulnerability (Paiboonvorachat and Oyana, 2011). The
region heavily relies on agriculture, stressing water
resources and necessitating sustainable management
for long-term environmental and economic stability
(Plangoen and Babel, 2014; Satriagasa et al., 2023).

Figure 1. Map of Upper Nan Watershed
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2.2 Data collection

Several types of data were used in this study,
detailed in Table 1.

The data used in this study span the period from
2000 to 2020, covering 21 years. While a 30-year or
longer time series is generally recommended for
calculating drought indices to better assess long-term
trends, the selection of this period was driven by
several key considerations.

First, data availability was a significant factor.
Reliable and continuous meteorological and
hydrological data, particularly for highland areas
within the Upper Nan Watershed, only became

Table 1. Data used in this study, period, and data source

consistently available in 2000. Prior to this, there were
substantial gaps in the dataset, which could have
introduced uncertainty and reduced the accuracy of the
drought index calculations.

Second, the selected period provides consistent
and continuous datasets for both meteorological and
hydrological parameters, ensuring the reliability of the
cross-wavelet transform (XWT) and Pearson’s
correlation analyses performed in this study.
Extending the dataset beyond 2000 would require
incorporating older, inconsistent data that could
negatively affect the robustness of the results.

No Data Period Source

1 Rainfall data from CHIRPS imagery 2000-2020 Climate Hazard Center UC Santa Barbara
(https://chc.ucsb.edu/data/chirps)

2 Air temperature data from ERA5 imagery 2000-2020 Copernicus (https://cds.climate.copernicus.eu/), acquired in
Google Earth Engine

3 Sea surface temperature (SST) data 2000-2020 Physical Science Laboratory of the NOAA

4 Dipole mode index (DMI) data 2000-2020 (https://psl.noaa.gov/gcos_wgsp/Timeseries/)

5 Pacific decadal oscillation (PDO) data 2000-2020 National Center for Environmental Information of the
NOAA(https://www.ncei.noaa.gov/access/monitoring/pdo/)

6 Streamflow data 2000-2020 Observed streamflow data from Thailand Royal Irrigation
Department (RID) (https://www.hydro-1.net/), SWAT-
modeled streamflow from (Satriagasa et al., 2023)

7 Hansen Global Forest Change 2000-2020 Hansen et al. (2013)

8 DEM SRTM 30 m - USGS (https://www.usgs.gov/)

Finally, this period captures recent climate
trends, particularly the increasing frequency and
intensity of drought events influenced by global
teleconnection factors such as ENSO, the DMI, and
PDO. Focusing on the period from 2000 to 2020
allows for a more relevant assessment of recent
drought propagation dynamics and provides insights
that are applicable to current and future drought
management strategies.

For rainfall data, this study used CHIRPS
satellite-based precipitation estimates from the
Climate Hazard Center at UC Santa Barbara. While
CHIRPS provides extensive spatial and temporal
coverage, we did not conduct a formal validation
process comparing CHIRPS data to local
measurements. However, CHIRPS has been widely
used and validated in similar regions, including
Southeast Asia, for its ability to represent precipitation
patterns and drought conditions. Although satellite-
based estimates have limitations, they offer significant
advantages in areas such as the Upper Nan Watershed,
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where ground-based meteorological stations are
sparse.

In choosing CHIRPS data, we balanced data
consistency and availability with the need to capture
relevant drought events and climatic trends during the
study period. Future studies could enhance these
findings by conducting additional validations with
local rainfall measurements.

While a longer time series would be ideal for
long-term trend analysis, the 21-year period used in
this study represents a balance among data quality,
consistency, and relevance to the changing climatic
conditions in the region.

2.3 Drought indices

2.3.1 Standardized precipitation evapo-
transpiration index (SPEI)
The standardized precipitation  evapo-

transpiration index (SPEI) is widely used for detecting
meteorological drought (MD). As proposed by
Vicente-Serrano et al. (2010), it incorporates
temperature-induced evapotranspiration with rainfall,
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enhancing drought detection accuracy. The SPEI
calculation involves computing the difference
between  precipitation (P) and  potential
evapotranspiration (PET) for each month (Equation
1), aggregating these values over different timescales
(1 to 12 months), fitting the accumulated values to a
log-logistic probability distribution (Equation 2), and
converting them into a standardized index with a mean
of zero and a standard deviation of one (Equation 3).
This study used the SPEI to assess MD in the UNW
from 2000 to 2020 over 1- to 12-month periods, with
calculations performed using the SPEI package in
RStudio for rapid, accurate, and reliable results.

D =P — PET 1)
F(x) = - (;)B )
SPE[ = ~—t 3)

o

Where; F(x) is the cumulative probability, x is
the water balance, and a, B, and y are the scale, shape,
and location parameters, respectively; W is the log-
logistically normalized water balance, p is the mean,
and o is the standard deviation.

2.3.2 Standardized streamflow index (SSI)

The standardized streamflow index (SSI)
captures hydrological drought (HD) by analyzing
streamflow discharge. On the basis of monthly
streamflow data modeled using the soil and water
assessment tool (SWAT) for the period from 2000 to
2020, the SSI was calculated for the Upper Nan
Watershed (UNW) following the standardized
precipitation index (SPI) method. The steps include
collecting monthly streamflow data, aggregating it
over the chosen timescale, normalizing it to a
probability distribution (typically log-normal), and
standardizing it to a mean of zero and standard
deviation of one, resulting in SSI values (Equation 4).

ssi= £k (&)

Where; Q is the monthly streamflow value, 1 is
the mean of the streamflow over the reference period,
and o is the standard deviation of the streamflow.

The SWAT model was run with a warm-up
period from 1980 to 1984 to initialize the model.
Calibration was conducted for 1985 to 2005 and
validation for 2006 to 2020 using observed streamflow
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data from the Thailand Royal Irrigation Department
(RID). The model’s performance was assessed using
the Nash-Sutcliffe Efficiency (NSE), the ratio of the
root-mean-square error to the standard deviation
(RSR), and the Kling-Gupta Efficiency (KGE). The
calibration results showed an NSE of 0.83 (very good),
an RSR of 0.59 (good), and a KGE of 0.45 (poor). For
the validation period, the model achieved an NSE of
0.87 (very good), an RSR of 0.5 (very good), and a
KGE of 0.53 (intermediate). These results confirmed
that the SWAT model performed well in simulating
streamflow during both the calibration and validation
periods, providing confidence in its reliability for
drought analysis in the UNW.

One month of SSI data was focused on to detect
the propagation time from meteorological drought
(MD) to HD using the SPEI/SPI package in RStudio.
The SSI's reliability in hydrological drought
assessment has previously been validated in various
regions (Kartika and Wijayanti, 2023).

2.4 Drought propagation time

The drought propagation time (DPT) was
determined using the maximum Pearson’s correlation
coefficient (MPCC) method. The SPEI was used to
represent MD, and the SSI was used to represent HD.
The MPCC—the highest Pearson correlation
coefficient between the SPEI and SSI—then indicated
the specific month of drought propagation. The
MPCC values were calculated for 176 grid cells
(each cell being 5.5 x 5.5 km) to determine the spatial
distribution. Seasonal variations were captured by
computing MPCC values for the entire year, dry
season, and wet season.

The spatial distribution of the DPT in the study
area showed notable variation across different parts of
the watershed. To capture these variations more
effectively, the area was divided into four distinct
regions based on a combination of parameters. These
parameters included the spatial distribution of the DPT
itself, as well as other key environmental factors such
as slope and topography, land use patterns, and forest
cover. Regions with steeper slopes tended to have
faster runoff and shorter DPTs, while flatter areas
exhibited longer DPTs. Similarly, differences in land
use—yparticularly between agricultural and forested
areas—played a role in shaping water retention and
flow dynamics, with areas of higher forest cover
typically experiencing longer DPTs due to their better
water retention capabilities. Areas with significant
deforestation, in contrast, showed quicker drought
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propagation. By combining these factors, each of the
four regions reflects a distinct set of environmental
conditions that influence drought behavior. This
classification also provides a foundation for more
targeted, region-specific drought mitigation strategies.

2.5 Drought propagation relationship

from 25 sub-watersheds in the UNW with RStudio.
XWT identifies phase relationships between the
standardized precipitation evapotranspiration index
(SPEI) and the standardized streamflow index (SSI),
showing drought propagation over time. The analysis
assumed stationarity in the time series data and
significant wavelet coherence. Figure 2 details the

The relationship between meteorological XWT  procedure for characterizing  drought
drought (MD) and hydrological drought (HD) was  propagation.
analyzed using cross-wavelet transform (XWT) on data
Rainfall
(CHIRPS)
2000-2020 i | SPEI | !
: SRR § o MPCC DPT
Air temperature Pl osst |
(ERAS5) 2000- i : Characteristic
2020 . of drought
! ; ropagation
g gl p— MD & HD propass
Streamflow 2000- oSS relationship
2020 (SWAT) SSI |

Figure 2. Procedure for characterizing drought propagation

2.6 Factor influencing drought propagation

Several factors influencing drought propagation
were analyzed, including climatic, ecological, physical,
and anthropogenic factors. The selection of El Nifio-
Southern Oscillation (ENSO), the Dipole Mode Index
(DMI), and Pacific Decadal Oscillation (PDO) as
teleconnection indices was based on their well-
established influence on precipitation and temperature
patterns in Southeast Asia, including Thailand. These
indices were obtained from publicly available datasets,
with ENSO data sourced from the National Oceanic and
Atmospheric Administration (NOAA), DMI from the
Physical Science Laboratory of NOAA, and PDO from
the National Centers for Environmental Information
(NCEI). The analysis involved correlating these
teleconnection indices with local climate data by using
cross-wavelet transform (XWT) to examine how
variations in the teleconnection factors influenced
drought propagation patterns over time. This approach
allowed us to identify phase relationships and time lags
between global teleconnection factors and local drought
conditions.

Ecological and anthropogenic factors, such as
forest cover, forest loss, and land use, were examined
using data from Hansen Global Forest Change (Hansen
et al., 2013) and Google Earth Engine. Forest cover
change and deforestation rates were spatially analyzed
to assess their influence on water retention and drought
propagation. This was performed by overlaying forest
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cover maps onto drought propagation data and
identifying regions where forest loss accelerated
drought conditions. Anthropogenic activities, including
land use changes for agriculture, were assessed using
land use classifications provided by national databases
and satellite imagery, with a focus on how these
changes disrupted hydrological cycles.

Physical factors, including slope and watershed
morphometry, were analyzed using high-resolution
digital elevation models (DEMs) from the United States
Geological Survey (USGS). A slope analysis was
performed using ArcGIS to quantify how the
topography influenced runoff and water retention in
different sub-watersheds. The watershed morphometry
was calculated using standard hydrological metrics,
such as the drainage density, elongation ratio, and relief
ratio, to evaluate how the physical structure of the
watershed affected the speed and extent of drought
propagation. These analyses provided a comprehensive
understanding of drought propagation mechanisms in
the UNW, integrating spatial and temporal assessments
to determine their impacts.

3. RESULTS AND DISCUSSION
3.1 Result

3.1.1 Drought propagation time (DPT)

The drought propagation time (DPT) is the
duration of the transition from meteorological drought
(MD) to hydrological drought (HD). In this study, the
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DPT was assessed in monthly steps from 1 to 12
months. Based on the maximum Pearson’s correlation
coefficient (MPCC) analysis, the DPT in the Upper
Nan Watershed (UNW) ranges from 2 to 11 months
(Figure 3(a)). The most common DPT is 2 to 5 months,
with a 2-month DPT covering nearly 46% of the
UNW, primarily in the middle part of the watershed.
Upstream areas show greater variability, with four
months dominating the west and three months

dominating the east. Downstream, the DPT extends to
five months. The MPCC values ranged from 0.35 to
0.64, indicating the strength of the relationship
between the standardized precipitation evapo-
transpiration index (SPEI) and the standardized
streamflow index (SSI). The highest MPCC values
were found in the western upstream and midstream
areas, while the rest of the watershed had low to
medium values (Figure 4).
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3.1.2 Seasonal drought propagation time

To understand seasonal variations in the DPT,
the standardized precipitation evapotranspiration
index (SPEI) and standardized streamflow index (SSI)
were analyzed for the dry (October-March) and wet

(April-September) seasons. In the dry season, the DPT
ranges from 2 to 7 months, with a 2-month DPT
covering 60% of the watershed, indicating quicker
drought propagation due to lower rainfall and higher
temperatures. In the wet season, the DPT ranges from
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1 to 10 months, with a 3-month DPT covering 30% of
the watershed, suggesting that increased rainfall and
soil moisture delay hydrological drought. The spatial
distribution of the DPT reveals four distinct zones
within the UNW, with MPCC values ranging from
0.17 to 0.61 in the dry season and 0.39 to 0.69 in the
wet season, being highest in the western watershed.
These patterns highlight the varying influences of
precipitation, temperature, streamflow, and soil
moisture on drought propagation.
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3.1.3 Meteorological and hydrological drought
relationship

A cross-wavelet transform (XWT) analysis of
25 SPEI and SSI dataset pairs revealed a positive
correlation between MD and HD. Four representative
XWT charts for the different zones show this
correlation, with phase arrows predominantly pointing
to the right (Figure 5). For full cross-wavelet
transforms between SPEI and SSI, please refer to
Figure S1 in the appendix section.
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Figure 5. The cross-wavelet transforms between SPEI and SSI of zones | to IV. The arrows indicate the relative phase relationship, with

right-pointing arrows representing positive correlations.

3.1.4 Factor influencing the
propagation characteristics

Several factors influence drought propagation
in the UNW, including climatic, ecological, physical,
and anthropogenic factors. Our analysis primarily
focused on the spatial relationships between these
factors and drought propagation, using tools such as
XWT and spatial overlays, rather than conducting a
detailed quantitative analysis to ascertain the specific
contribution of each factor. While statistical modeling
could provide more precise measurements of each
factor’s impact, the current study aimed to identify and
visualize spatial patterns that influence drought
propagation.

Climatic factors, such as rainfall and air

drought
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temperature, and global teleconnection indices, such
as El Nifio-Southern Oscillation (ENSO), the Indian
Ocean Dipole (10D), and Pacific Decadal Oscillation
(PDO), significantly impact the region’s water
balance. ElI Nifio phases reduce rainfall and raise
temperatures, exacerbating drought conditions, while
La Nifa phases increase rainfall, mitigating drought.
Similarly, positive 10D phases and warm PDO phases
reduce precipitation and increase temperatures,
worsening drought, while negative 10D and cool PDO
phases alleviate drought. The temporal (Figure 6(a))
and spatial (Figure 7) rainfall patterns illustrate how
these teleconnection factors affect the UNW’s water
balance by influencing the timing and severity of
drought propagation.
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The annual rainfall in the UNW varies, with
mountainous areas receiving over 1,600 mm and
lowland areas near the outlet receiving 1,400-1,500
mm. The average temperatures range from 21°C
upstream to 25°C downstream. Teleconnection factors
such as ENSO, the DMI, and PDO exacerbate drought
conditions. Understanding these factors is crucial for
effective water management and climate adaptation.
The XWT analysis showed significant negative
correlations between all teleconnection factors,
rainfall, and evaporation in the UNW (Figure 8).

Ecological factors, such as forest cover and
forest loss, also play a critical role in regulating water
retention and drought propagation. As shown in Figure
9(a), Zones 1, 11, and I11 have high tree cover with low
forest loss, which helps delay drought propagation,
while Zone IV, with extensive forest loss and dryland
farming, experiences faster drought propagation.
Although our analysis effectively highlights these
spatial patterns, further quantitative analyses of the
specific contributions of these factors could be
explored in future studies.

The slope and watershed morphometry affect
the DPT, with gentler slopes retaining water for longer
and steep slopes causing rapid runoff (Figure 9(b)).
Table 2 provides the detailed morphometric

2001 2007 2013 20192001 2007

8

Period (month)
16

64 32

16 8 4

Period (month)

64 32

2001 2007 2013 20192001 2007

characteristics of selected sub-watersheds within the
UNW, highlighting key metrics such as the maximum
stream order (MSQ), drainage density (DD),
circulatory ratio (CR), elongation ratio (ER), and relief
ratio (RR). These metrics help to explain why certain
sub-watersheds, such as SW13, are highly prone to
drought: their high relief ratio and low drainage
density accelerate runoff and reduce water retention.
For full Upper Nan Watershed morphometry, please
refer to Table S1 in the appendix section.

In contrast, sub-watersheds such as SW15 and
SW25 have gentler slopes, lower relief ratios, and
better water retention capabilities, making them less
prone to HD. Understanding these morphometric
differences are crucial in determining how the
physical characteristics of the watershed influence
drought vulnerability and propagation, as reflected in
the DPT across the various sub-watersheds. These
physical characteristics were analyzed using DEMs
and other spatial analysis techniques. While the spatial
analysis effectively highlighted these relationships, a
more detailed quantitative analysis of the specific
contributions of each factor could be explored in
future studies to provide a clearer understanding of the
factors’ impacts on drought propagation.
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Figure 8. The cross wavelet transforms between (a) ATE and ENSO, (b) ATE and DMI, (c) ATE and PDO (d) rainfall and ENSO, (e)

rainfall and DMI, and (f) rainfall and PDO.
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Figure 9. Ecological and anthropogenic factors: (a) tree cover and forest loss, (b) slope, and (c) land use

Table 2. Upper Nan Watershed morphometry

Sub-W MSO DD CR ER RR

13 2 0.32 0.23 0.63 95.8
14 3 0.49 0.10 0.62 81.7
15*% 4 0.28 0.24 0.57 34.6
25* 5 0.35 0.18 0.59 13.7

Note: MSO, maximum stream order; DD, drainage density; CR, circulatory ratio; ER, elongation ratio; RR, relief ratio; *, lowest.

3.2 Discussion

3.2.1 Correlation between meteorological and
hydrological drought

Our analysis revealed a significant positive
correlation between MD and HD in the UNW, with the
strongest correlation observed during the wet season.
This finding aligns with the results of previous studies,
such as the works by Huang et al. (2017) and Xu et al.
(2021) in China, which identified similar patterns
between MD and agricultural drought.

The identified DPT in the UNW ranges from 2
to 11 months, with a predominant period of 2 to 5
months. This range aligns with those found in previous
studies in Asian regions, highlighting similarities and
nuanced differences. For instance, Li et al. (2022)
reported DPTs in the Arid Region of Northeast Asia
(ARNA) of 1-3 months in summer and autumn and 5-
12 months in spring and winter. The shorter DPTs in
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summer and autumn align with the findings for the
UNW during the wet season, while the longer DPTs in
the ARNA reflect its extreme climatic conditions.
Ding et al. (2021b) observed a DPT range of 1-12
months across their study area in China, reflecting
diverse local conditions similar to those in the UNW.
Luoetal. (2023), in the neighboring Lancang-Mekong
River Basin, found DPTs of 2-11 months with a
predominant period of 2-5 months; considering the
similar climatic conditions, their result reinforces our
findings for the UNW. While the similar lag times
between the UNW and other watersheds can be
attributed to common monsoon patterns, local factors
such as the soil characteristics, land use, and
watershed morphometry lead to differences in specific
DPT values. Understanding these nuances is crucial
for developing effective, region-specific drought
management strategies.
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The similar lag times between the UNW and
other watersheds are due to common regional climatic
patterns and monsoon-influenced hydrological
processes. However, local factors such as soil
characteristics, land use, and watershed morphometry
cause differences in the specific DPT values. For
instance, the ARNA’s extreme climatic conditions
result in greater seasonal DPT variations compared to
the more stable UNW. Understanding these nuances is
crucial for tailoring region-specific  drought
management strategies.

The transition from MD to HD is driven by
several mechanisms:

Soil _moisture depletion: During periods of
reduced rainfall (MD), soil moisture decreases
significantly, leading to reduced groundwater recharge
(Cao et al., 2016; Khaki et al., 2018). This depletion

of soil moisture affects surface water flow,
contributing to the onset of HD.
Evapotranspiration: High temperatures

associated with MD increase evapotranspiration rates,
further depleting soil moisture and reducing surface
water availability (Condon et al., 2020; Vahmani et al.,
2021). This accelerated loss of water from the soil and
water bodies intensifies HD conditions.

Runoff reduction: Reduced rainfall during MD
leads to decreased runoff into rivers and streams (Bai
et al., 2023; Nippgen et al., 2016). With less water
entering the watershed’s hydrological system,
streamflow diminishes, exacerbating HD.

These mechanisms collectively explain the
observed correlation between MD and HD and the
identified DPTs in the UNW. Understanding these
processes is crucial for effective drought management
and mitigation strategies.

3.2.2 Influence of global and local climatic
factors

This study highlights the significant impact of
global teleconnection factors, such as ENSO, DMI,
and PDO, on drought conditions in the UNW. Our
XWT analysis showed a statistically significant
negative correlation between these factors and both
rainfall and evaporation. Ueangsawat and Jintrawet
(2013) also noted ENSOQO’s influence on short-term
rainfall patterns in northern Thailand. However, the
UNW’s mountainous location may lessen the overall
effect of these factors. Local climatic factors,
particularly rainfall, have a more substantial impact on
the DPT than air temperature. Higher-rainfall areas
tend to have a decreased DPT, supporting Luo et al.’s
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(2023) findings that lower rainfall correlates with
shorter DPTs. The lack of a consistent spatial pattern
between the air temperature and DPT may be due to
the coarse resolution of ERA5 satellite imagery,
indicating a need for higher-resolution data to better
understand these dynamics.

3.2.3 Role of physical and ecological factors

Physical characteristics such as the slope and
watershed morphometry significantly influence the
DPT. Zones with steep slopes and thin soils, such as
Zone |11, exhibit shorter DPTs (1-2 months) due to
their rapid runoff and limited water retention.
Conversely, zones with gentler slopes and better soil
retention, such as Zone I, show longer DPTSs, as water
is retained for longer, delaying the transition from MD
to HD. This aligns with results from Lin et al. (2023),
who found that steep slopes accelerate drought
propagation by facilitating rapid water movement and
reducing infiltration. Factors such as the drainage
density and watershed shape also play crucial roles,
with more compact and better-draining watersheds
experiencing faster drought propagation due to their
efficient water conveyance.

Ecological factors, particularly forest cover,
play a complex role in drought dynamics. High
evapotranspiration rates in forests can lead to shorter
DPTs, but forests also provide water regulation
services that can extend DPTs. Studies by Ding et al.
(2021c) and Tarigan et al. (2018) supported the
assertion that forests enhance base flow and reduce
runoff velocity, mitigating the impacts of drought.
Forested areas tend to have longer DPTs due to their
improved soil moisture retention and slower runoff,
while regions with significant forest loss exhibit
shorter DPTs due to their faster runoff and lower
groundwater recharge. These findings indicate that
areas with higher forest cover and lower forest loss,
such as Zones I, Il, and Ill, experience longer DPTs
than areas with significant forest loss, such as Zone IV.

3.2.4 Impact of anthropogenic activities

Human activities such as dryland farming and
deforestation exacerbate drought by reducing DPTSs. In
Zone 1V, extensive dryland farming and significant
forest loss have led to shorter DPTSs, contrasting with
studies highlighting forests’ role in water retention.
Zone III’s agricultural practices further intensify
drought conditions. Yang et al. (2023) found that
reservoir regulation reduced the likelihood of
meteorological droughts becoming hydrological by
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16% and decreased the duration and severity of long-
lasting hydrological droughts by 18% and 37%,
respectively. Li et al. (2021) reported that human
activities influence seasonal drought dynamics,
especially in winter, alleviating hydrological drought
severity. Shah et al. (2021) noted that intensive
irrigation, reservoir storage, and groundwater pumping
in India significantly impact agricultural and
hydrological droughts. Wang et al. (2021) observed that
high percentages of cropland shorten the DPT due to
increased water consumption. In the Upper Nan
Watershed, deforestation and dryland farming in Zone
IV have led to shorter DPTSs, in accordance with Wang
etal.’s (2021) findings, while the extensive agricultural
practices in Zone Il align with Shah et al.’s (2021)
observations. These studies highlight the significant
impact of human activities on DPTs and underscore the
importance of sustainable practices to mitigate drought
in regions such as the Upper Nan Watershed.

3.2.5 Practical implication and future research

Understanding DPTs in the UNW is crucial for
effective water management and climate adaptation.
Maintaining forest cover and regulating land use are
vital for mitigating drought impacts, while sustainable
agriculture and forest conservation enhance resilience.
The study provides valuable insights but has its
limitations, including the coarse ERAS5 satellite
imagery resolution and a focus on general patterns that
may overlook fine-scale climatic variations. The
findings could be further refined by including soil
properties, groundwater dynamics, and detailed land
use data.

Additionally, the use of the soil and water
assessment tool (SWAT), a semi-distributed
hydrological model, imposes limitations on capturing
the spatial heterogeneity of regional moisture at a fine
scale. Since the SWAT operates on hydrological
response units (HRUSs) rather than individual grid
cells, it does not fully account for moisture variability
across different spatial regions. Future studies could
consider using fully distributed models such as the
Variable Infiltration Capacity (VIC) model, which
provides a higher spatial resolution and better captures
moisture dynamics. This could improve the accuracy
of drought simulations and allow for a more detailed
understanding of spatial variability in moisture and
water retention across the watershed.

The maximum Pearson’s correlation coefficient
(MPCC) may not fully capture non-linear
relationships between meteorological and
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hydrological droughts, and model calibration could
affect the accuracy. Deeper analyses are required to
examine specific land use changes and agricultural
practices, and findings specific to the UNW may not
be generalizable to other regions.

Policymakers  should focus on forest
conservation, sustainable land use, adaptive
agriculture, and efficient water management

strategies, while considering regional and seasonal
DPT variability. An understanding of global
teleconnection factors and local climatic conditions
can inform climate adaptation strategies. Integrated
watershed management, robust drought monitoring,
community engagement, and policy coordination are
essential for comprehensive drought management,
enhancing water security, and building resilience in
the UNW and similar regions.

4. CONCLUSION

This study provides insights into the transition
from meteorological drought (MD) to hydrological
drought (HD) in the Upper Nan Watershed (UNW),
Thailand, using the SPEI, the SSI, cross-wavelet
transform (XWT), and Pearson’s correlation analyses.
A positive correlation between MD and HD was
found, with drought propagation times (DPTSs) that
ranged from 2 to 5 months and were shorter during the
dry season. Zones with high tree cover and low forest
loss exhibited longer DPTs, while areas with
significant deforestation and dryland farming had
shorter DPTs, highlighting the impact of land use on
drought severity. These results underscore the need for
reforestation, sustainable forest management, and
water-efficient agricultural practices to enhance water
retention and reduce drought severity. Land use
regulations must be implemented to prevent
deforestation and conserve critical watershed areas.
Future research should use higher-resolution data,
explore soil properties, and establish long-term
monitoring programs. Policymakers should integrate
these findings into their decision making, prioritize
comprehensive drought management plans, and invest
in data collection and analysis infrastructure to
enhance drought resilience, mitigate socio-economic
impacts, and promote sustainable development in the
UNW and similar regions.
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