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Understanding drought propagation is essential for effective water resource 

management. This study employs an innovative approach to examine the 

transition from meteorological drought (MD) to hydrological drought (HD) in the 

Upper Nan Watershed (UNW), Thailand, using the standardized precipitation 

evapotranspiration index (SPEI) and standardized streamflow index (SSI). Cross-

wavelet transform (XWT) and Pearson’s correlation analyses reveal a significant 

positive correlation between MD and HD, with the drought propagation time 

(DPT) ranging from 2 to 5 months, notably shorter during the dry season. The 

eastern UNW (Zone I) has the longest DPT, while the western UNW (Zone III) 

has the shortest. This study is distinguished by its integration of global 

teleconnection factors, such as El Niño-Southern Oscillation (ENSO), the Dipole 

Mode Index (DMI), and Pacific Decadal Oscillation (PDO), alongside local 

factors like climate, slope, and watershed morphometry. This dual focus provides 

a comprehensive analysis of drought dynamics, enhancing the understanding of 

drought propagation and its complexities. The integration of global and local 

influences provides insights applicable across diverse water resource 

management contexts. It highlights the critical role of forests in regulating water 

flow and extending the DPT, emphasizing the need for forest conservation and 

land use regulation in the headwaters. Despite challenges associated with 

highland meteorological data, findings offer improvements to existing drought 

monitoring and early warning systems, underscoring the importance of 

combining global and local factors in effective drought management strategies.  
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1. INTRODUCTION

Drought, characterized by insufficient rainfall, 

leads to significant water shortages that affect 

agriculture, the environment, and society and result in 

substantial economic losses (Dalezios et al., 2012). 

The types of drought include meteorological drought 

(MD), agricultural drought, hydrological drought 

(HD), and socioeconomic drought, occurring when 

water supply fails to meet demand (Abbas and Kousar, 

2021). Understanding the transition from MD to HD 

is critical for water resource management. However, 

previous studies have not explored the combination of 

global and local factors affecting drought propagation, 

especially in the context of Thailand’s Upper Nan 

Watershed (UNW). This study bridges that gap by 

offering an innovative and detailed analysis of the 

dynamics between global teleconnection factors and 

local watershed conditions to predict drought 

propagation. 

Previous studies have explored drought 

propagation, with Ding et al. (2021a) finding stronger 

propagation from agricultural drought (AD) to HD in 

northern China during summer and autumn; Huang et 

al. (2017) noting a time lag between MD and HD in 

the Wei River Basin, influenced by atmospheric 

anomalies such as El Niño-Southern Oscillation 

(ENSO) and Arctic Oscillation (AO); and Gu et al. 

(2020) showing that droughts increase in duration and 

severity as they propagate, particularly in the Yangtze 

and Yellow River basins. This research contributes to 
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the field by focusing on the UNW, a drought-prone 

area in Thailand where the specific dynamics of MD-

to-HD propagation are not yet well understood. 

Climate change intensifies droughts, affecting water 

availability and agricultural productivity (Wan et al., 

2018; Xu et al., 2019). Land use changes such as 

deforestation and urbanization worsen drought 

impacts by disrupting hydrological cycles and 

reducing water retention (Fedele et al., 2018). 

The UNW in northern Thailand flows from north 

to south, merging with the Wang, Ping, and Yom 

Watersheds to form the Chao Phraya Watershed. This 

study presents an innovative approach by examining 

the spatiotemporal mechanisms of drought propagation 

in the UNW and identifying the factors affecting the 

drought propagation time (DPT). This novel 

combination of global factors (e.g., ENSO, DMI, and 

PDO) with local conditions such as topography and 

land use provides a fresh perspective on drought 

management. Using the SPEI, the SSI, cross-wavelet 

transform (XWT), and Pearson’s correlation analyses, 

this research aims to improve drought monitoring and 

early warning systems. The findings will inform land 

use policies and forest conservation to reduce the socio-

economic impacts of drought in the UNW and similar 

watersheds, delivering insights for enhancing integrated 

drought management strategies globally. 

2. METHODOLOGY

2.1 Study area

This study was conducted in the Upper Nan 

Watershed (UNW) in northern Thailand; it spans the 

coordinates 18°27′55.72″ N to 19°38′26.97″ N and 

100°21′39.14″ E to 101°21′7.52″ E, covering an area of 

4,588.4 km² (Figure 1). The UNW experiences a dry 

season (January to March and November to December) 

with 9.7 to 64.4 mm of rainfall and a wet season (April 

to October) with 102.7 to 269 mm, often receiving 

rainstorms from the South China Sea during the 

northeast monsoon. The landscape includes hilly 

upstream and midstream regions and low-lying flatland 

downstream, where the town of Nan is located. The 

headwaters are critical due to the thin soil from 

intensive erosion on steep slopes, which limits moisture 

retention and increases drought susceptibility. 

Agriculture is vital in the UNW, with rice and maize 

being the primary crops. Forests have been cleared for 

maize cultivation due to its higher economic returns, 

leading to reduced soil moisture retention, increased 

runoff, and soil erosion, heightening drought 

vulnerability (Paiboonvorachat and Oyana, 2011). The 

region heavily relies on agriculture, stressing water 

resources and necessitating sustainable management 

for long-term environmental and economic stability 

(Plangoen and Babel, 2014; Satriagasa et al., 2023). 

Figure 1. Map of Upper Nan Watershed 
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2.2 Data collection 

Several types of data were used in this study, 

detailed in Table 1. 

The data used in this study span the period from 

2000 to 2020, covering 21 years. While a 30-year or 

longer time series is generally recommended for 

calculating drought indices to better assess long-term 

trends, the selection of this period was driven by 

several key considerations. 

First, data availability was a significant factor. 

Reliable and continuous meteorological and 

hydrological data, particularly for highland areas 

within the Upper Nan Watershed, only became 

consistently available in 2000. Prior to this, there were 

substantial gaps in the dataset, which could have 

introduced uncertainty and reduced the accuracy of the 

drought index calculations. 

Second, the selected period provides consistent 

and continuous datasets for both meteorological and 

hydrological parameters, ensuring the reliability of the 

cross-wavelet transform (XWT) and Pearson’s 

correlation analyses performed in this study. 

Extending the dataset beyond 2000 would require 

incorporating older, inconsistent data that could 

negatively affect the robustness of the results. 

Table 1. Data used in this study, period, and data source 

No Data Period Source 

1 Rainfall data from CHIRPS imagery 2000-2020 Climate Hazard Center UC Santa Barbara 

(https://chc.ucsb.edu/data/chirps) 

2 Air temperature data from ERA5 imagery 2000-2020 Copernicus (https://cds.climate.copernicus.eu/), acquired in 

Google Earth Engine  

3 Sea surface temperature (SST) data 2000-2020 Physical Science Laboratory of the NOAA 

(https://psl.noaa.gov/gcos_wgsp/Timeseries/) 4 Dipole mode index (DMI) data 2000-2020 

5 Pacific decadal oscillation (PDO) data 2000-2020 National Center for Environmental Information of the 

NOAA(https://www.ncei.noaa.gov/access/monitoring/pdo/) 

6 Streamflow data 2000-2020 Observed streamflow data from Thailand Royal Irrigation 

Department (RID) (https://www.hydro-1.net/), SWAT-

modeled streamflow from (Satriagasa et al., 2023) 

7 Hansen Global Forest Change 2000-2020 Hansen et al. (2013) 

8 DEM SRTM 30 m - USGS (https://www.usgs.gov/) 

Finally, this period captures recent climate 

trends, particularly the increasing frequency and 

intensity of drought events influenced by global 

teleconnection factors such as ENSO, the DMI, and 

PDO. Focusing on the period from 2000 to 2020 

allows for a more relevant assessment of recent 

drought propagation dynamics and provides insights 

that are applicable to current and future drought 

management strategies. 

For rainfall data, this study used CHIRPS 

satellite-based precipitation estimates from the 

Climate Hazard Center at UC Santa Barbara. While 

CHIRPS provides extensive spatial and temporal 

coverage, we did not conduct a formal validation 

process comparing CHIRPS data to local 

measurements. However, CHIRPS has been widely 

used and validated in similar regions, including 

Southeast Asia, for its ability to represent precipitation 

patterns and drought conditions. Although satellite-

based estimates have limitations, they offer significant 

advantages in areas such as the Upper Nan Watershed, 

where ground-based meteorological stations are 

sparse. 

In choosing CHIRPS data, we balanced data 

consistency and availability with the need to capture 

relevant drought events and climatic trends during the 

study period. Future studies could enhance these 

findings by conducting additional validations with 

local rainfall measurements. 

While a longer time series would be ideal for 

long-term trend analysis, the 21-year period used in 

this study represents a balance among data quality, 

consistency, and relevance to the changing climatic 

conditions in the region. 

2.3 Drought indices 

2.3.1 Standardized precipitation evapo-

transpiration index (SPEI) 

The standardized precipitation evapo-

transpiration index (SPEI) is widely used for detecting 

meteorological drought (MD). As proposed by 

Vicente-Serrano et al. (2010), it incorporates 

temperature-induced evapotranspiration with rainfall, 
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enhancing drought detection accuracy. The SPEI 

calculation involves computing the difference 

between precipitation (P) and potential 

evapotranspiration (PET) for each month (Equation 

1), aggregating these values over different timescales 

(1 to 12 months), fitting the accumulated values to a 

log-logistic probability distribution (Equation 2), and 

converting them into a standardized index with a mean 

of zero and a standard deviation of one (Equation 3). 

This study used the SPEI to assess MD in the UNW 

from 2000 to 2020 over 1- to 12-month periods, with 

calculations performed using the SPEI package in 

RStudio for rapid, accurate, and reliable results. 

D = P − PET  (1) 

F(x) =
1

1+ (
α

x−γ
)

β  (2) 

SPEI =  
W − μ

σ
 (3) 

Where; F(x) is the cumulative probability, x is 

the water balance, and α, β, and γ are the scale, shape, 

and location parameters, respectively; W is the log-

logistically normalized water balance, μ is the mean, 

and σ is the standard deviation. 

2.3.2 Standardized streamflow index (SSI) 

The standardized streamflow index (SSI) 

captures hydrological drought (HD) by analyzing 

streamflow discharge. On the basis of monthly 

streamflow data modeled using the soil and water 

assessment tool (SWAT) for the period from 2000 to 

2020, the SSI was calculated for the Upper Nan 

Watershed (UNW) following the standardized 

precipitation index (SPI) method. The steps include 

collecting monthly streamflow data, aggregating it 

over the chosen timescale, normalizing it to a 

probability distribution (typically log-normal), and 

standardizing it to a mean of zero and standard 

deviation of one, resulting in SSI values (Equation 4). 

SSI =  
Q − μ

σ
(4) 

Where; Q is the monthly streamflow value, μ is 

the mean of the streamflow over the reference period, 

and σ is the standard deviation of the streamflow. 

The SWAT model was run with a warm-up 

period from 1980 to 1984 to initialize the model. 

Calibration was conducted for 1985 to 2005 and 

validation for 2006 to 2020 using observed streamflow 

data from the Thailand Royal Irrigation Department 

(RID). The model’s performance was assessed using 

the Nash-Sutcliffe Efficiency (NSE), the ratio of the 

root-mean-square error to the standard deviation 

(RSR), and the Kling-Gupta Efficiency (KGE). The 

calibration results showed an NSE of 0.83 (very good), 

an RSR of 0.59 (good), and a KGE of 0.45 (poor). For 

the validation period, the model achieved an NSE of 

0.87 (very good), an RSR of 0.5 (very good), and a 

KGE of 0.53 (intermediate). These results confirmed 

that the SWAT model performed well in simulating 

streamflow during both the calibration and validation 

periods, providing confidence in its reliability for 

drought analysis in the UNW. 

One month of SSI data was focused on to detect 

the propagation time from meteorological drought 

(MD) to HD using the SPEI/SPI package in RStudio.

The SSI’s reliability in hydrological drought

assessment has previously been validated in various

regions (Kartika and Wijayanti, 2023).

2.4 Drought propagation time 

The drought propagation time (DPT) was 

determined using the maximum Pearson’s correlation 

coefficient (MPCC) method. The SPEI was used to 

represent MD, and the SSI was used to represent HD. 

The MPCC—the highest Pearson correlation 

coefficient between the SPEI and SSI—then indicated 

the specific month of drought propagation. The 

MPCC values were calculated for 176 grid cells 

(each cell being 5.5 × 5.5 km) to determine the spatial 

distribution. Seasonal variations were captured by 

computing MPCC values for the entire year, dry 

season, and wet season. 

The spatial distribution of the DPT in the study 

area showed notable variation across different parts of 

the watershed. To capture these variations more 

effectively, the area was divided into four distinct 

regions based on a combination of parameters. These 

parameters included the spatial distribution of the DPT 

itself, as well as other key environmental factors such 

as slope and topography, land use patterns, and forest 

cover. Regions with steeper slopes tended to have 

faster runoff and shorter DPTs, while flatter areas 

exhibited longer DPTs. Similarly, differences in land 

use—particularly between agricultural and forested 

areas—played a role in shaping water retention and 

flow dynamics, with areas of higher forest cover 

typically experiencing longer DPTs due to their better 

water retention capabilities. Areas with significant 

deforestation, in contrast, showed quicker drought 
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propagation. By combining these factors, each of the 

four regions reflects a distinct set of environmental 

conditions that influence drought behavior. This 

classification also provides a foundation for more 

targeted, region-specific drought mitigation strategies. 

2.5 Drought propagation relationship 

The relationship between meteorological 

drought (MD) and hydrological drought (HD) was 

analyzed using cross-wavelet transform (XWT) on data 

from 25 sub-watersheds in the UNW with RStudio. 

XWT identifies phase relationships between the 

standardized precipitation evapotranspiration index 

(SPEI) and the standardized streamflow index (SSI), 

showing drought propagation over time. The analysis 

assumed stationarity in the time series data and 

significant wavelet coherence. Figure 2 details the 

XWT procedure for characterizing drought 

propagation. 

Figure 2. Procedure for characterizing drought propagation 

2.6 Factor influencing drought propagation 

Several factors influencing drought propagation 

were analyzed, including climatic, ecological, physical, 

and anthropogenic factors. The selection of El Niño-

Southern Oscillation (ENSO), the Dipole Mode Index 

(DMI), and Pacific Decadal Oscillation (PDO) as 

teleconnection indices was based on their well-

established influence on precipitation and temperature 

patterns in Southeast Asia, including Thailand. These 

indices were obtained from publicly available datasets, 

with ENSO data sourced from the National Oceanic and 

Atmospheric Administration (NOAA), DMI from the 

Physical Science Laboratory of NOAA, and PDO from 

the National Centers for Environmental Information 

(NCEI). The analysis involved correlating these 

teleconnection indices with local climate data by using 

cross-wavelet transform (XWT) to examine how 

variations in the teleconnection factors influenced 

drought propagation patterns over time. This approach 

allowed us to identify phase relationships and time lags 

between global teleconnection factors and local drought 

conditions. 

Ecological and anthropogenic factors, such as 

forest cover, forest loss, and land use, were examined 

using data from Hansen Global Forest Change (Hansen 

et al., 2013) and Google Earth Engine. Forest cover 

change and deforestation rates were spatially analyzed 

to assess their influence on water retention and drought 

propagation. This was performed by overlaying forest 

cover maps onto drought propagation data and 

identifying regions where forest loss accelerated 

drought conditions. Anthropogenic activities, including 

land use changes for agriculture, were assessed using 

land use classifications provided by national databases 

and satellite imagery, with a focus on how these 

changes disrupted hydrological cycles. 

Physical factors, including slope and watershed 

morphometry, were analyzed using high-resolution 

digital elevation models (DEMs) from the United States 

Geological Survey (USGS). A slope analysis was 

performed using ArcGIS to quantify how the 

topography influenced runoff and water retention in 

different sub-watersheds. The watershed morphometry 

was calculated using standard hydrological metrics, 

such as the drainage density, elongation ratio, and relief 

ratio, to evaluate how the physical structure of the 

watershed affected the speed and extent of drought 

propagation. These analyses provided a comprehensive 

understanding of drought propagation mechanisms in 

the UNW, integrating spatial and temporal assessments 

to determine their impacts. 

3. RESULTS AND DISCUSSION

3.1 Result

3.1.1 Drought propagation time (DPT) 

The drought propagation time (DPT) is the 

duration of the transition from meteorological drought 

(MD) to hydrological drought (HD). In this study, the
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DPT was assessed in monthly steps from 1 to 12 

months. Based on the maximum Pearson’s correlation 

coefficient (MPCC) analysis, the DPT in the Upper 

Nan Watershed (UNW) ranges from 2 to 11 months 

(Figure 3(a)). The most common DPT is 2 to 5 months, 

with a 2-month DPT covering nearly 46% of the 

UNW, primarily in the middle part of the watershed. 

Upstream areas show greater variability, with four 

months dominating the west and three months 

dominating the east. Downstream, the DPT extends to 

five months. The MPCC values ranged from 0.35 to 

0.64, indicating the strength of the relationship 

between the standardized precipitation evapo-

transpiration index (SPEI) and the standardized 

streamflow index (SSI). The highest MPCC values 

were found in the western upstream and midstream 

areas, while the rest of the watershed had low to 

medium values (Figure 4). 

Figure 3. Spatial distribution of drought propagation time in month: (a) all seasons, (b) dry season, and (c) wet season 

Figure 4. Spatial distribution of MPCC between SPEI and SSI: (a) all seasons, (b) dry season, and (c) wet season 

3.1.2 Seasonal drought propagation time 

To understand seasonal variations in the DPT, 

the standardized precipitation evapotranspiration 

index (SPEI) and standardized streamflow index (SSI) 

were analyzed for the dry (October-March) and wet 

(April-September) seasons. In the dry season, the DPT 

ranges from 2 to 7 months, with a 2-month DPT 

covering 60% of the watershed, indicating quicker 

drought propagation due to lower rainfall and higher 

temperatures. In the wet season, the DPT ranges from 
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1 to 10 months, with a 3-month DPT covering 30% of 

the watershed, suggesting that increased rainfall and 

soil moisture delay hydrological drought. The spatial 

distribution of the DPT reveals four distinct zones 

within the UNW, with MPCC values ranging from 

0.17 to 0.61 in the dry season and 0.39 to 0.69 in the 

wet season, being highest in the western watershed. 

These patterns highlight the varying influences of 

precipitation, temperature, streamflow, and soil 

moisture on drought propagation. 

3.1.3 Meteorological and hydrological drought 

relationship 

A cross-wavelet transform (XWT) analysis of 

25 SPEI and SSI dataset pairs revealed a positive 

correlation between MD and HD. Four representative 

XWT charts for the different zones show this 

correlation, with phase arrows predominantly pointing 

to the right (Figure 5). For full cross-wavelet 

transforms between SPEI and SSI, please refer to 

Figure S1 in the appendix section. 

Figure 5. The cross-wavelet transforms between SPEI and SSI of zones I to IV. The arrows indicate the relative phase relationship, with 

right-pointing arrows representing positive correlations. 

3.1.4 Factor influencing the drought 

propagation characteristics 

Several factors influence drought propagation 

in the UNW, including climatic, ecological, physical, 

and anthropogenic factors. Our analysis primarily 

focused on the spatial relationships between these 

factors and drought propagation, using tools such as 

XWT and spatial overlays, rather than conducting a 

detailed quantitative analysis to ascertain the specific 

contribution of each factor. While statistical modeling 

could provide more precise measurements of each 

factor’s impact, the current study aimed to identify and 

visualize spatial patterns that influence drought 

propagation. 

Climatic   factors,   such   as   rainfall   and   air 

temperature, and global teleconnection indices, such 

as El Niño-Southern Oscillation (ENSO), the Indian 

Ocean Dipole (IOD), and Pacific Decadal Oscillation 

(PDO), significantly impact the region’s water 

balance. El Niño phases reduce rainfall and raise 

temperatures, exacerbating drought conditions, while 

La Niña phases increase rainfall, mitigating drought. 

Similarly, positive IOD phases and warm PDO phases 

reduce precipitation and increase temperatures, 

worsening drought, while negative IOD and cool PDO 

phases alleviate drought. The temporal (Figure 6(a)) 

and spatial (Figure 7) rainfall patterns illustrate how 

these teleconnection factors affect the UNW’s water 

balance by influencing the timing and severity of 

drought propagation. 
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Figure 6. Temporal rainfall pattern of UNW: (a) annual and (b) monthly 

Figure 7. Spatial distribution of (a) annual rainfall and (b) average annual air temperature in the UNW 
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The annual rainfall in the UNW varies, with 

mountainous areas receiving over 1,600 mm and 

lowland areas near the outlet receiving 1,400-1,500 

mm. The average temperatures range from 21°C

upstream to 25°C downstream. Teleconnection factors

such as ENSO, the DMI, and PDO exacerbate drought

conditions. Understanding these factors is crucial for

effective water management and climate adaptation.

The XWT analysis showed significant negative

correlations between all teleconnection factors,

rainfall, and evaporation in the UNW (Figure 8).

Ecological factors, such as forest cover and 

forest loss, also play a critical role in regulating water 

retention and drought propagation. As shown in Figure 

9(a), Zones I, II, and III have high tree cover with low 

forest loss, which helps delay drought propagation, 

while Zone IV, with extensive forest loss and dryland 

farming, experiences faster drought propagation. 

Although our analysis effectively highlights these 

spatial patterns, further quantitative analyses of the 

specific contributions of these factors could be 

explored in future studies. 

The slope and watershed morphometry affect 

the DPT, with gentler slopes retaining water for longer 

and steep slopes causing rapid runoff (Figure 9(b)). 

Table 2 provides the detailed morphometric 

characteristics of selected sub-watersheds within the 

UNW, highlighting key metrics such as the maximum 

stream order (MSO), drainage density (DD), 

circulatory ratio (CR), elongation ratio (ER), and relief 

ratio (RR). These metrics help to explain why certain 

sub-watersheds, such as SW13, are highly prone to 

drought: their high relief ratio and low drainage 

density accelerate runoff and reduce water retention. 

For full Upper Nan Watershed morphometry, please 

refer to Table S1 in the appendix section. 

In contrast, sub-watersheds such as SW15 and 

SW25 have gentler slopes, lower relief ratios, and 

better water retention capabilities, making them less 

prone to HD. Understanding these morphometric 

differences are crucial in determining how the 

physical characteristics of the watershed influence 

drought vulnerability and propagation, as reflected in 

the DPT across the various sub-watersheds. These 

physical characteristics were analyzed using DEMs 

and other spatial analysis techniques. While the spatial 

analysis effectively highlighted these relationships, a 

more detailed quantitative analysis of the specific 

contributions of each factor could be explored in 

future studies to provide a clearer understanding of the 

factors’ impacts on drought propagation. 

Figure 8. The cross wavelet transforms between (a) ATE and ENSO, (b) ATE and DMI, (c) ATE and PDO (d) rainfall and ENSO, (e) 

rainfall and DMI, and (f) rainfall and PDO. 
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Figure 9. Ecological and anthropogenic factors: (a) tree cover and forest loss, (b) slope, and (c) land use 

Table 2. Upper Nan Watershed morphometry 

Sub-W MSO DD CR ER RR 

13 2 0.32 0.23 0.63 95.8 

14 3 0.49 0.10 0.62 81.7 

15* 4 0.28 0.24 0.57 34.6 

25* 5 0.35 0.18 0.59 13.7 

Note: MSO, maximum stream order; DD, drainage density; CR, circulatory ratio; ER, elongation ratio; RR, relief ratio; *, lowest. 

3.2 Discussion 

3.2.1 Correlation between meteorological and 

hydrological drought 

Our analysis revealed a significant positive 

correlation between MD and HD in the UNW, with the 

strongest correlation observed during the wet season. 

This finding aligns with the results of previous studies, 

such as the works by Huang et al. (2017) and Xu et al. 

(2021) in China, which identified similar patterns 

between MD and agricultural drought. 

The identified DPT in the UNW ranges from 2 

to 11 months, with a predominant period of 2 to 5 

months. This range aligns with those found in previous 

studies in Asian regions, highlighting similarities and 

nuanced differences. For instance, Li et al. (2022) 

reported DPTs in the Arid Region of Northeast Asia 

(ARNA) of 1-3 months in summer and autumn and 5-

12 months in spring and winter. The shorter DPTs in 

summer and autumn align with the findings for the 

UNW during the wet season, while the longer DPTs in 

the ARNA reflect its extreme climatic conditions. 

Ding et al. (2021b) observed a DPT range of 1-12 

months across their study area in China, reflecting 

diverse local conditions similar to those in the UNW. 

Luo et al. (2023), in the neighboring Lancang-Mekong 

River Basin, found DPTs of 2-11 months with a 

predominant period of 2-5 months; considering the 

similar climatic conditions, their result reinforces our 

findings for the UNW. While the similar lag times 

between the UNW and other watersheds can be 

attributed to common monsoon patterns, local factors 

such as the soil characteristics, land use, and 

watershed morphometry lead to differences in specific 

DPT values. Understanding these nuances is crucial 

for developing effective, region-specific drought 

management strategies. 

   (a) (b) (c) 
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The similar lag times between the UNW and 

other watersheds are due to common regional climatic 

patterns and monsoon-influenced hydrological 

processes. However, local factors such as soil 

characteristics, land use, and watershed morphometry 

cause differences in the specific DPT values. For 

instance, the ARNA’s extreme climatic conditions 

result in greater seasonal DPT variations compared to 

the more stable UNW. Understanding these nuances is 

crucial for tailoring region-specific drought 

management strategies. 

The transition from MD to HD is driven by 

several mechanisms: 

Soil moisture depletion: During periods of 

reduced rainfall (MD), soil moisture decreases 

significantly, leading to reduced groundwater recharge 

(Cao et al., 2016; Khaki et al., 2018). This depletion 

of soil moisture affects surface water flow, 

contributing to the onset of HD. 

Evapotranspiration: High temperatures 

associated with MD increase evapotranspiration rates, 

further depleting soil moisture and reducing surface 

water availability (Condon et al., 2020; Vahmani et al., 

2021). This accelerated loss of water from the soil and 

water bodies intensifies HD conditions. 

Runoff reduction: Reduced rainfall during MD 

leads to decreased runoff into rivers and streams (Bai 

et al., 2023; Nippgen et al., 2016). With less water 

entering the watershed’s hydrological system, 

streamflow diminishes, exacerbating HD. 

These mechanisms collectively explain the 

observed correlation between MD and HD and the 

identified DPTs in the UNW. Understanding these 

processes is crucial for effective drought management 

and mitigation strategies. 

3.2.2 Influence of global and local climatic 

factors 

This study highlights the significant impact of 

global teleconnection factors, such as ENSO, DMI, 

and PDO, on drought conditions in the UNW. Our 

XWT analysis showed a statistically significant 

negative correlation between these factors and both 

rainfall and evaporation. Ueangsawat and Jintrawet 

(2013) also noted ENSO’s influence on short-term 

rainfall patterns in northern Thailand. However, the 

UNW’s mountainous location may lessen the overall 

effect of these factors. Local climatic factors, 

particularly rainfall, have a more substantial impact on 

the DPT than air temperature. Higher-rainfall areas 

tend to have a decreased DPT, supporting Luo et al.’s 

(2023) findings that lower rainfall correlates with 

shorter DPTs. The lack of a consistent spatial pattern 

between the air temperature and DPT may be due to 

the coarse resolution of ERA5 satellite imagery, 

indicating a need for higher-resolution data to better 

understand these dynamics. 

3.2.3 Role of physical and ecological factors 

Physical characteristics such as the slope and 

watershed morphometry significantly influence the 

DPT. Zones with steep slopes and thin soils, such as 

Zone III, exhibit shorter DPTs (1-2 months) due to 

their rapid runoff and limited water retention. 

Conversely, zones with gentler slopes and better soil 

retention, such as Zone I, show longer DPTs, as water 

is retained for longer, delaying the transition from MD 

to HD. This aligns with results from Lin et al. (2023), 

who found that steep slopes accelerate drought 

propagation by facilitating rapid water movement and 

reducing infiltration. Factors such as the drainage 

density and watershed shape also play crucial roles, 

with more compact and better-draining watersheds 

experiencing faster drought propagation due to their 

efficient water conveyance. 

Ecological factors, particularly forest cover, 

play a complex role in drought dynamics. High 

evapotranspiration rates in forests can lead to shorter 

DPTs, but forests also provide water regulation 

services that can extend DPTs. Studies by Ding et al. 

(2021c) and Tarigan et al. (2018) supported the 

assertion that forests enhance base flow and reduce 

runoff velocity, mitigating the impacts of drought. 

Forested areas tend to have longer DPTs due to their 

improved soil moisture retention and slower runoff, 

while regions with significant forest loss exhibit 

shorter DPTs due to their faster runoff and lower 

groundwater recharge. These findings indicate that 

areas with higher forest cover and lower forest loss, 

such as Zones I, II, and III, experience longer DPTs 

than areas with significant forest loss, such as Zone IV. 

3.2.4 Impact of anthropogenic activities 

Human activities such as dryland farming and 

deforestation exacerbate drought by reducing DPTs. In 

Zone IV, extensive dryland farming and significant 

forest loss have led to shorter DPTs, contrasting with 

studies highlighting forests’ role in water retention. 

Zone III’s agricultural practices further intensify 

drought conditions. Yang et al. (2023) found that 

reservoir regulation reduced the likelihood of 

meteorological droughts becoming hydrological by 
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16% and decreased the duration and severity of long-

lasting hydrological droughts by 18% and 37%, 

respectively. Li et al. (2021) reported that human 

activities influence seasonal drought dynamics, 

especially in winter, alleviating hydrological drought 

severity. Shah et al. (2021) noted that intensive 

irrigation, reservoir storage, and groundwater pumping 

in India significantly impact agricultural and 

hydrological droughts. Wang et al. (2021) observed that 

high percentages of cropland shorten the DPT due to 

increased water consumption. In the Upper Nan 

Watershed, deforestation and dryland farming in Zone 

IV have led to shorter DPTs, in accordance with Wang 

et al.’s (2021) findings, while the extensive agricultural 

practices in Zone III align with Shah et al.’s (2021) 

observations. These studies highlight the significant 

impact of human activities on DPTs and underscore the 

importance of sustainable practices to mitigate drought 

in regions such as the Upper Nan Watershed. 

3.2.5 Practical implication and future research 

Understanding DPTs in the UNW is crucial for 

effective water management and climate adaptation. 

Maintaining forest cover and regulating land use are 

vital for mitigating drought impacts, while sustainable 

agriculture and forest conservation enhance resilience. 

The study provides valuable insights but has its 

limitations, including the coarse ERA5 satellite 

imagery resolution and a focus on general patterns that 

may overlook fine-scale climatic variations. The 

findings could be further refined by including soil 

properties, groundwater dynamics, and detailed land 

use data. 

Additionally, the use of the soil and water 

assessment tool (SWAT), a semi-distributed 

hydrological model, imposes limitations on capturing 

the spatial heterogeneity of regional moisture at a fine 

scale. Since the SWAT operates on hydrological 

response units (HRUs) rather than individual grid 

cells, it does not fully account for moisture variability 

across different spatial regions. Future studies could 

consider using fully distributed models such as the 

Variable Infiltration Capacity (VIC) model, which 

provides a higher spatial resolution and better captures 

moisture dynamics. This could improve the accuracy 

of drought simulations and allow for a more detailed 

understanding of spatial variability in moisture and 

water retention across the watershed. 

The maximum Pearson’s correlation coefficient 

(MPCC) may not fully capture non-linear 

relationships between meteorological and 

hydrological droughts, and model calibration could 

affect the accuracy. Deeper analyses are required to 

examine specific land use changes and agricultural 

practices, and findings specific to the UNW may not 

be generalizable to other regions. 

Policymakers should focus on forest 

conservation, sustainable land use, adaptive 

agriculture, and efficient water management 

strategies, while considering regional and seasonal 

DPT variability. An understanding of global 

teleconnection factors and local climatic conditions 

can inform climate adaptation strategies. Integrated 

watershed management, robust drought monitoring, 

community engagement, and policy coordination are 

essential for comprehensive drought management, 

enhancing water security, and building resilience in 

the UNW and similar regions. 

4. CONCLUSION

This study provides insights into the transition 

from meteorological drought (MD) to hydrological 

drought (HD) in the Upper Nan Watershed (UNW), 

Thailand, using the SPEI, the SSI, cross-wavelet 

transform (XWT), and Pearson’s correlation analyses. 

A positive correlation between MD and HD was 

found, with drought propagation times (DPTs) that 

ranged from 2 to 5 months and were shorter during the 

dry season. Zones with high tree cover and low forest 

loss exhibited longer DPTs, while areas with 

significant deforestation and dryland farming had 

shorter DPTs, highlighting the impact of land use on 

drought severity. These results underscore the need for 

reforestation, sustainable forest management, and 

water-efficient agricultural practices to enhance water 

retention and reduce drought severity. Land use 

regulations must be implemented to prevent 

deforestation and conserve critical watershed areas. 

Future research should use higher-resolution data, 

explore soil properties, and establish long-term 

monitoring programs. Policymakers should integrate 

these findings into their decision making, prioritize 

comprehensive drought management plans, and invest 

in data collection and analysis infrastructure to 

enhance drought resilience, mitigate socio-economic 

impacts, and promote sustainable development in the 

UNW and similar regions. 
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