

Assessing Aquatic Plant Diversity and Management Potential in Wetlands in Northwestern and Southwestern Bangladesh

Md. Foysul Hossain^{1,2*}, Koushik Chakraborty¹, Gazlina Chowdhury¹, Sumiya Bhuyain³, Abrar Hossain³, Mst. Mosfeka Khatun Ritu³, and Roksana Jahan⁴

¹Department of Aquatic Environment and Resource Management, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh

²University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, České Budějovice 37005, Czech Republic

³Faculty of Fisheries and Marine Science, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh

⁴Department of Marine Fisheries and Oceanography, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh

ARTICLE INFO

Received: 16 Nov 2024
Received in revised: 29 Jul 2025
Accepted: 5 Aug 2025
Published online: 17 Sep 2025
DOI: 10.32526/enrj/23/20240287

Keywords:

Gajner Beel/ Padma Beel/ Aquatic weed/ Control/ Upcycling

* Corresponding author:

E-mail: foysul.aerm@sau.edu.bd

ABSTRACT

Aquatic plants are essential organisms for assessing ecological health and for managing and conserving aquatic biodiversity. The present study investigated the diversity of aquatic flora, in addition to their applications and management, in northwestern (Gajner Beel) and southwestern (Padma Beel) Bangladesh. This research utilized a mixed-methods approach, incorporating observation of the study area for collecting samples, qualitative interviews, and quantitative surveys. A total of 38 aquatic plant species of 4 types belonging to 16 orders and 23 families were recorded from the two wetlands. Asterales was the predominant order in both wetlands, with Araceae and Asteraceae being the largest families. Almost half (44%) of the aquatic plants in both ecosystems bloomed during the rainy season. In Gajner Beel and Padma Beel, 41% and 48% of aquatic plants, respectively, rarely occurred, while 31% and 41% of aquatic weeds were frequent, respectively. Approximately a quarter of the plants have an unevaluated IUCN conservation status, with about 13% of plants in Gajner Beel and 15% in Padma Beel being exotic. Farmers only employ manual or mechanical techniques to control common aquatic weeds, without any preventive measures. About 74% of the aquatic plants in both regions are used for various purposes by local people, including traditional medicine, human food, animal feed, raw materials for handicrafts, and fertilizers. The study examined management approaches for the aquatic flora in both regions, emphasizing their potential utilization.

HIGHLIGHTS

This study recorded 38 aquatic plants (16 orders, 23 families) in two wetlands. Asterales was the dominant order; Araceae and Asteraceae were the richest families. 44% of species bloomed in the rainy season, while 13-15% were exotic. Management and control relied only on manual/mechanical methods. 74% of the species were used by locals for diverse applications.

1. INTRODUCTION

Wetlands are vital ecosystems that link people, life, and climate through mutual interactions (Maltby, 2009). They provide key environmental and ecological services (Schuyt, 2005), supported by their functionality. Aquatic and riparian vegetation are especially important for wetland structure, function, and service provision (Chambers et al., 2008). The symbiotic relationships between wetlands and aquatic flora yield substantial benefits for both the

environment and human communities. Wetlands provide habitat for aquatic plants, which sustain ecosystem health by offering food, shelter, and breeding grounds for aquatic species (Kevin and Lancar, 2002). They also engage with a varied spectrum of other organisms, from microbes to vertebrates, by providing shelter and sustenance (Engelhardt and Ritchie, 2001; Wood et al., 2017). Furthermore, they facilitate the transport of nutrients into sediments and influence the hydrological,

Citation: Hossain MF, Chakraborty K, Chowdhury G, Bhuyain S, Hossain A, Ritu MMK, Jahan R. Assessing aquatic plant diversity and management potential in wetlands in Northwestern and Southwestern Bangladesh. Environ. Nat. Resour. J. 2025;23(6):581-594. (<https://doi.org/10.32526/enrj/23/20240287>)

geomorphological, and physicochemical environments (Paul, 2022). In a different context, certain aquatic plants are classified as aquatic weeds, which are hazardous or unattractive species proliferating in aquatic environments where they are undesirable (Aloo et al., 2013). These aquatic weeds affect water bodies, leading to serious ecological and economic losses by affecting fisheries, impairing water quality and degrading floodplain farmland. Nonetheless, the extensive adaptability to diverse water levels and the inability to differentiate their natural habitat between aquatic and terrestrial contexts complicates the precise definition of an aquatic weed (Aloo et al., 2013). However, various major factors have compromised the diversity of aquatic plant populations, including the overexploitation of resources, water pollution, siltation, alterations in water flow such as abstraction, habitat destruction or degradation, and the invasion of alien species (Dudgeon et al., 2006; Schuyt, 2005; Sonal et al., 2010).

Gajner Beel (GB) and Padma Beel (PB) are two of the most significant wetlands found in the northwest and southwest regions of Bangladesh, respectively. These waterbodies are locally known as Beels, which are characterized by high biological diversity. Beels can be defined as a large surface water system that holds water from surface runoff through an internal drainage channel, usually starting with topographic lows produced by erosion (Banglapedia, 2012). The GB functions as a spawning and feeding ground for a number of fish species (Rahman et al., 2024). PB is popularly known as Bhutia Padma Beel, which is renowned for its fish and tourism attractions. This study selected these two ecosystems due to their geographical and topological distinctions.

The aquatic plants act as a useful bioindicator of ecological health owing to their high level of sensitivity to pollution (Lacoul and Freedman, 2006). They also serve as model organisms of the ecological cycle and play a significant role in alleviating eutrophication and carbon sequestration to mitigate climate change (Bao et al., 2022). To develop effective management plans, a proper listing of aquatic plants for a specific region is essential. These lists are also mandatory to prepare an environmental impact assessment and fulfill permit requirements (McKinley et al., 2017). In addition, management of aquatic weeds is one of the most important aspects of managing ponds (Giri, 2020). Thus, understanding aquatic plants and their roles in ecosystems helps

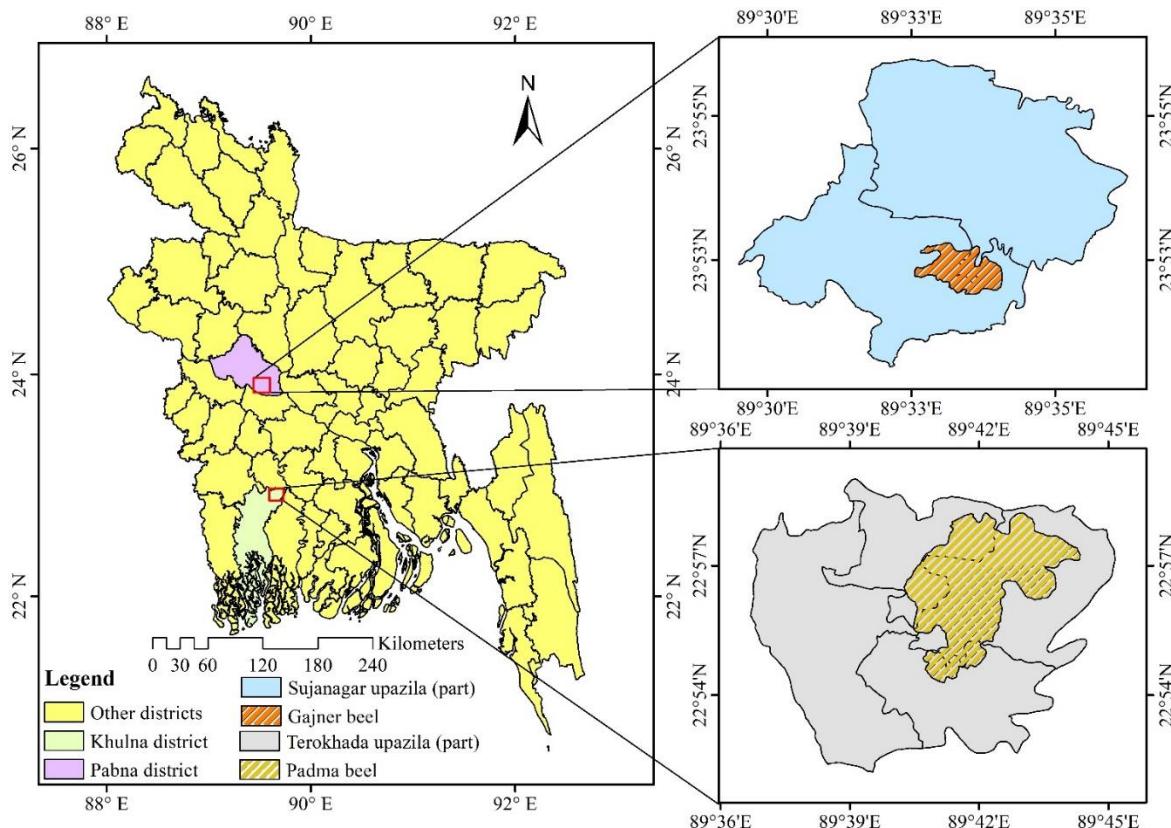
effectively manage these, ensure the maximum yield, and maintain sustainability (Wilk-Woźniak et al., 2019). The application of modern control methods can effectively utilize aquatic weeds. However, research on aquatic plants focusing on their sustainable utilization is notably limited in Bangladesh. This study aimed to evaluate the species diversity in aquatic plants, compare compositional variations between two wetlands in Bangladesh, and suggest sustainable management strategies for aquatic plants.

2. METHODOLOGY

2.1 Study area

The study examined two wetlands in distinct agroecological zones of Bangladesh: Gajner Beel (northwestern region) at the Ganges floodplain confluence with silt loam to clay soils, and Padma Beel (southwestern region) with acidic, peat-underlain grey clays (Figure 1). The study area had three identified seasons: hot pre-monsoon/summer (March-May), wet monsoon (June-October), and cold, dry winter (November-February). Temperature in Pabna (8.4-34.3°C) and Khulna (12.0-34.8°C) peaked in April and was lowest in January. Monthly rainfall ranged from 8.1-335.6 mm in Pabna and 13.3-344.4 mm in Khulna, with July being the wettest month and January the driest (BMD, 2012). GB covers 5.54 ha with a mean depth of 135±36.34 cm and transparency of 102±21.52 cm, while PB spans 26.46 ha, with a mean depth of 172±34.65 cm and transparency of 78±13.65 cm.

2.2 Aquatic plant sampling and analysis


The survey was conducted from March 2022 to February 2023 across 24 sites (12 per wetland), each covering 5,000 m². Using a randomized design, the study applied a semi-quantitative method, assessing preselected locations via presence/absence approach to determine species frequency (Madsen and Wersal, 2017). Subjective evaluations of submerged plants were conducted by observers using plant rakes. The semiquantitative method was selected due to its lower effort and cost compared to other plant sampling methods and, its ability to regulate variability (Madsen and Wersal, 2017).

2.3 Identification of species and analysis

Visual inspection was used to identify aquatic weed samples, referencing studies by Journey et al. (1993), Pasha and Uddin (2013), Basar and Rahman (2023), and Kevin and Lancar (2002). The

Encyclopedia of Flora and Fauna of Bangladesh (Ahmed et al., 2008) was investigated, and recent nomenclature was cross-checked using Pasha and

Uddin (2013). Origin and conservation status were assigned in accordance with the IUCN (2024) Red List categories.

Figure 1. Map indicating the location of Gajner Beel and Padma Beel

The relative frequency of the aquatic plants was determined as follows:

$$F(\%) = [n/N] \times 100$$

Here; $F(\%)$ =frequency of aquatic plants; n =frequency of aquatic plants and N =total number of sites.

The frequency of occurrence was categorized as, Frequent=>50%; Moderate=25-50%; Rare=<25%. The Jaccard's similarity index (JSI) (Jaccard, 1912) and Sorenson's similarity index (SSI) (Sorenson, 1948) were determined as follows.

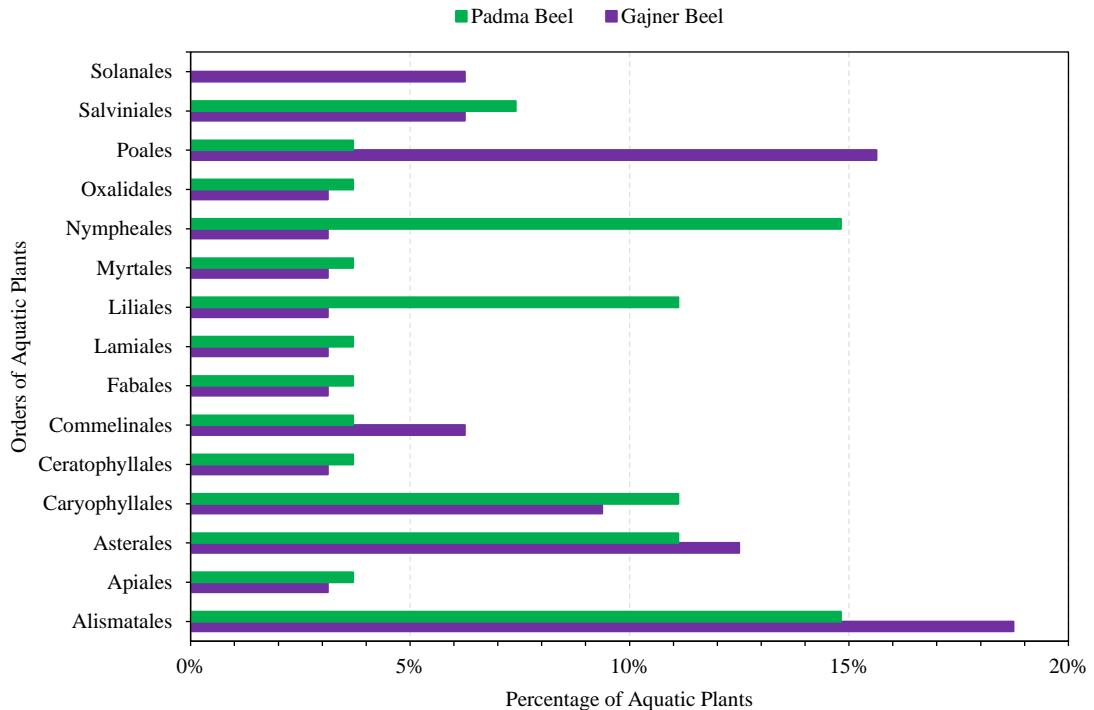
$$\text{Jaccard's similarity index (JSI): } S_j = \frac{a}{a+b+c}$$

$$\text{Sorenson's similarity index (SSI): } S_s = \frac{2a}{2a+b+c}$$

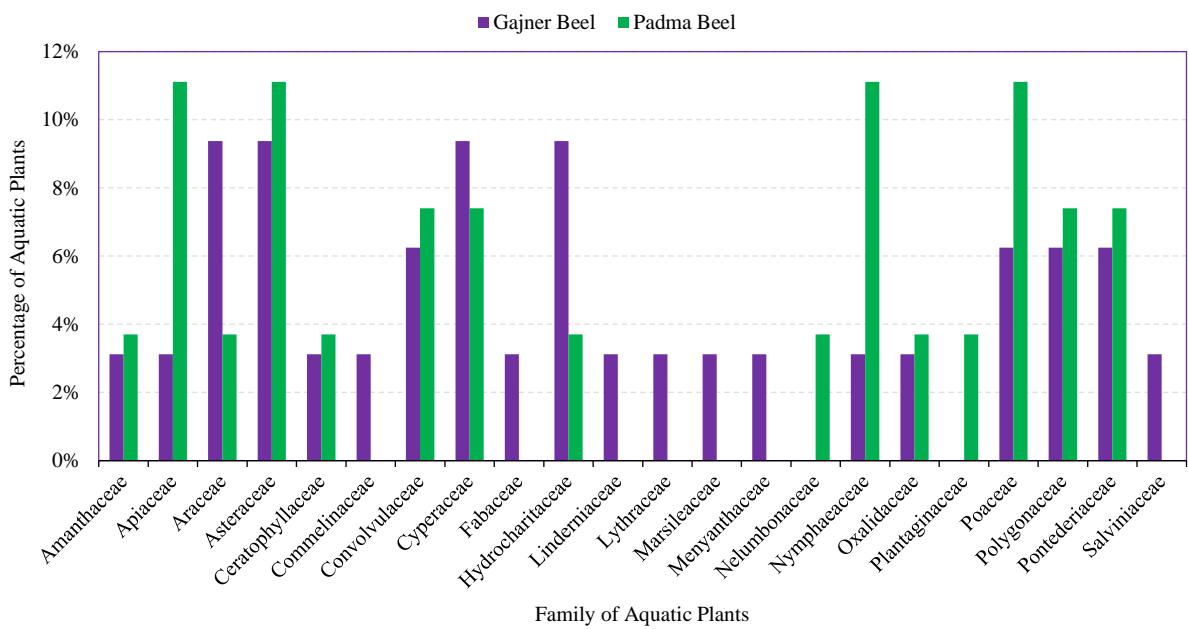
Here; a =number of common aquatic plants in GB and PB; c =number of aquatic plants in GB (site A); b =number of aquatic plants in PB (site B).

2.4 Data obtained from PRA tools

This study employed a mixed-methods approach, combining observation, interviews, and surveys. Data on aquatic macrophytes (local names, uses, seasonal availability, and management) were collected through interviews with 20 locals (15 men, 5 women) from diverse backgrounds (fishermen, farmers, ayurvedic practitioners, vegetable salesmen, and homemakers). A focus group discussion (FGD) with 10 people (experts and community leaders) was held in each region, along with 5 key informant interviews for data validation.


2.5 Statistical analysis

All qualitative and quantitative data were carefully collected and organized using MS Word and MS Excel 2019. Data were further analyzed using R and RStudio software. The map of the study area was generated using ArcGIS software (Version 10.8).


3. RESULTS

The study recorded 38 aquatic plant species (16 orders, 23 families) across both wetlands (GB and PB), with 21 species common between them (Table 1).

Among the plants, Alismatales was documented as the most dominant order in both beels, followed by Poales (Figure 2), while Araceae and Asteraceae were the most abundant families (Figure 3).

Figure 2. Orders of aquatic plants (%) recorded in northwestern (GB) and southwestern (PB) Bangladesh

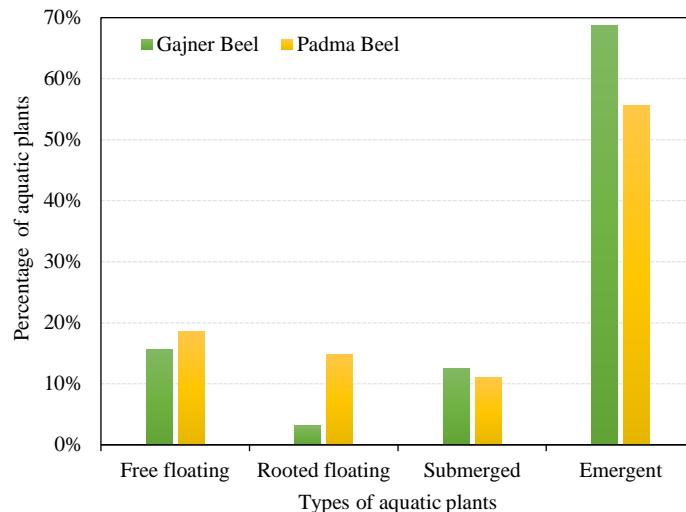
Figure 3. Families of aquatic plants (%) recorded in northwestern (GB) and southwestern (PB) Bangladesh

Table 1. List of aquatic macrophytes of northwestern and southwestern Bangladesh (GB and PB)

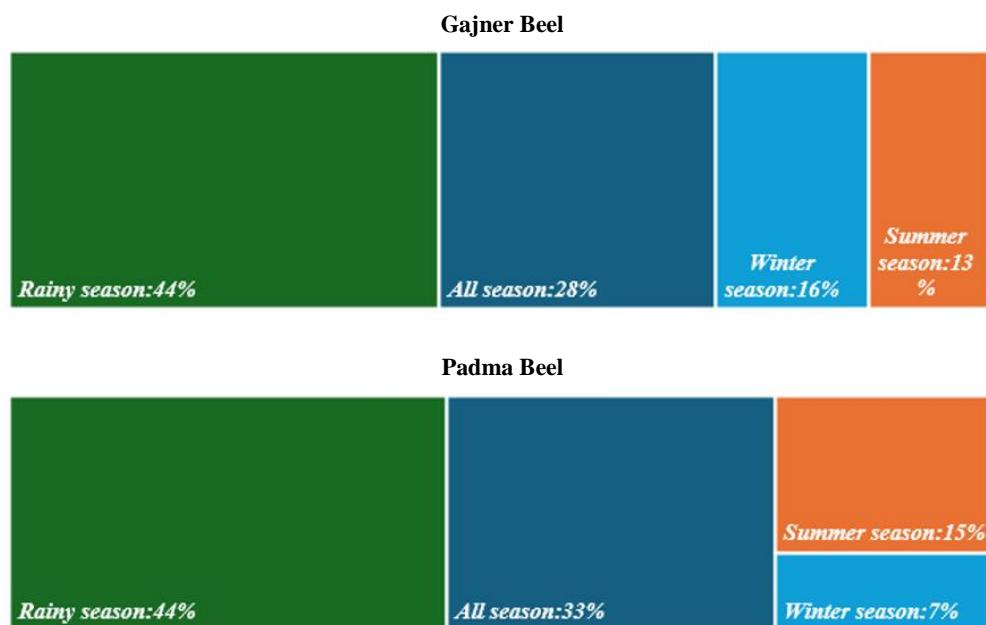
Aquatic weeds recorded both in GB and PB:		Order	Family	Local name	Common name	Scientific name	Types	Frequency		Availability	Origin	Con. Stat.
GB	PB							GB	PB			
Alismatales	Araceae	Topapana	Water lettuce	<i>Pistia stratiotes</i>	FF	F	F	AS	N	LC	LC	
		Kachu	Chinese Potato	<i>Colocasia esculenta</i>	EM	F	F	AS	N	LC	LC	
	Sonapana	Common duckweed		<i>Spirodela polyrhiza</i>	FF	R	R	AS	N	LC	LC	
Asterales	Hydrocharitaceae	Pata jhanji	Eel-grass	<i>Vallisneria spiralis</i>	SU	R	R	SS	N	LC	LC	
		Helenga	Water cress	<i>Enhydra fluctans</i>	EM	F	F	RS	N ⁽¹⁾	NE	NE	
	Asteraceae	Kesuti	False daisy	<i>Eclipta prostrata</i>	EM	R	R	AS	N	LC	LC	
Commelinaceae	Nak ful	Indian lilac		<i>Acemella paniculata</i>	EM	M	R	RS	N	LC	LC	
	Kachuripana	Water hyacinth		<i>Pontederia crassipes</i>	FF	F	F	AS	E ⁽²⁾	NE	NE	
	Matancha	Alligator weed		<i>Alternanthera philoxeroides</i>	EM	F	F	SS	E ⁽³⁾	NE	NE	
Caryophyllales	Amaranthaceae	Bishkatali	Polygonum	<i>Polygonum glabrum</i>	EM	F	F	SS	N	LC	LC	
		Kata jhanji/ Sheola	Con's tail	<i>Ceratophyllum demersum</i>	SU	M	R	SS	N	LC	LC	
	Polygonaceae	Redshank	Knotgrass									
Ceratophyllales	Ceratophyllaceae	Kata jhanji/ Sheola										
	Liiales	Pontederiaceae	Baranukha	Leaf pondweed	<i>Monochoria hastata</i>	FF	R	R	SS	N	LC	
Nymphaeales	Nymphaeaceae	Shada shapla	Blue lotus	<i>Nymphaea noctiflora</i>	RF	F	F	RS	N	LC	LC	
	Oxalidales	Amrool shak	Indian sord	<i>Oxalis corniculata</i>	EM	F	F	RS	U ⁽⁴⁾	NE	NE	
	Cyperaceae	Chechra	Bog bulrush	<i>Schoenoplectiella mucronata</i>	EM	M	M	RS	N	LC	LC	
Poales		Mutha	Nut grass/Coco-grass	<i>Cyperus rotundus</i>	EM	M	M	WS	N	LC	LC	
	Poaceae	Dol	Asian	<i>Hygroryza aristata</i>	EM	R	R	RS	N ⁽⁵⁾	NE	NE	
	Convolvulaceae	Kolmi	Water spinach	<i>Ipomoea aquatica</i>	EM	F	F	AS	N	LC	LC	
Solanales		Dhol kolmi	Bush morning glory	<i>Ipomoea fistulosa</i>	EM	M	M	RS	E ⁽⁶⁾	NE	NE	
	Salviniales	Kutipana	Mosquito fern	<i>Azolla pinnata</i>	FF	F	F	AS	N	LC	LC	
	Salviaceae											

NB.: FF-Free floating, RF-Rooted floating, EM-Emergent, SU-Submerged, M-Moderate, R-Rare, F-Frequent, AS-All Season, RS-Rainy Season-SS-Summer Season, WS-Winter Season, E-Exotic, N-Native, U-Unknown, LC=Least concern, NE-Not Evaluated, VU-Vulnerable, Con. Stat.- Conservation Status, ¹(Ali et al., 2013); ²(Cherwoo et al., 2024); ³(Sosa et al., 2008); ⁴(Groom et al., 2019); ⁵(Ahmed et al., 2008); ⁶(Acevedo-Rodríguez and Strong, 2012); ⁷(Acharya et al., 2009); ⁸(ITIS, 2011)

Table 1. List of aquatic macrophytes of northwestern and southwestern Bangladesh (GB and PB) (cont.)


Order	Family	Local name	Common name	Scientific name	Types	Frequency		Availability	Origin	Con. Stat.
						GB	PB			
Aquatic weeds recorded only in GB:										
Alismatales	Hydrocharitaceae	Najas	Brittle naiad	<i>Najas minor</i>	SU	R	RS	N	LC	LC
		Hydrilla	Waterthyme	<i>Hydrilla verticillata</i>	SU	R	RS	N	LC	LC
Apiales	Apiaceae	Thankuni	Gotu kola	<i>Centella asiatica</i>	EM	R	AS	N	LC	LC
Asterales	Menyanthaceae	Chandmata	Crested floating heart	<i>Nymphoides cristata</i>	EM	R	RS	N	LC	LC
Commelinaceae	Commelinaceae	Kanaidoga	Asiatic dayflower	<i>Commelinia appendiculata</i>	EM	R	RS	N ⁷⁾	NE	
Fabales	Fabaceae	Shola	Indian jointvetch	<i>Aeschynomene indica</i>	EM	M	RS	N	LC	LC
Lamiales	Linderniaceae	Chhoto	Spannow false pimpernel	<i>Lindernia antipoda</i>	EM	M	RS	N	LC	LC
Myrtales	Lythraceae	helencha	Yellow ammannia	<i>Ammannia pedicellata</i>	EM	R	WS	E	VU	
Poales	Cyperaceae	Haincha	Giant bulrush	<i>Scripus grossus</i>	EM	R	WS	U	NE	
	Poaceae	Kesur	Swamp rice grass	<i>Leersia hexandra</i>	EM	R	AS	N	LC	
Salviniales	Marsileaceae	Arai	Pepperwort	<i>Marsilea quadrifolia</i>	EM	M	WS	N	LC	
Aquatic weeds recorded only in PB:										
Apiales	Araliaceae	Poichia lily	Lawn	<i>Hydrocotyle sibthorpioides</i>	EM	R	AS	N	LC	LC
Lamiales	Plantaginaceae	Ambulla	Marshpennywort	<i>Limnophila indica</i>	SU	R	RS	N	LC	LC
Nymphaeales	Nymphaeaceae	Lalshapla	Asian marsh weed	<i>Nymphaea rubra</i>	RF	R	RS	N	LC	LC
		Golapi	Red water lily	<i>Nymphaea pubescens</i>	RF	R	RS	N	LC	LC
		Shapla	pink water lily							
Poales	Poaceae	Nolkhagra	Tall reed	<i>Phragmites karka</i>	EM	R	AS	N	LC	LC
Proteales	Nelumbonaceae	Poddio	Pink lotus	<i>Nelumbo nucifera</i>	RF	F	RS	E ⁸⁾	NE	

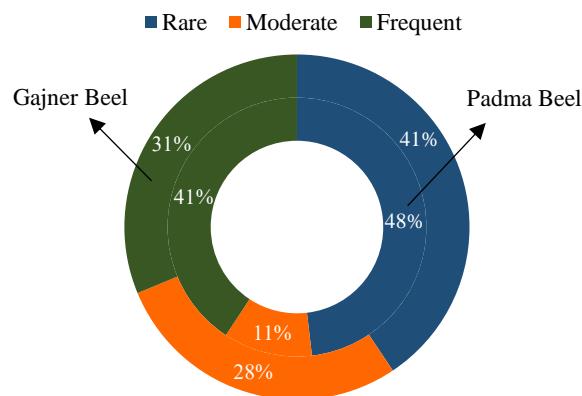
NB.: FF-Free floating, RF-Roofed floating, EM-Emergent, SU-Submerged, M-Moderate, R-Rare, F-Rare, AS-All Season, RS-Rainy Season-SS-Summer Season, WS-Winter Season, E-Exotic, NE-Native, U-Unknown, LC=Least concern, NE-Not Evaluated, VU-Vulnerable, Con. Stat.- Conservation Status, ¹(Ali et al., 2013); ²(Cherwoo et al., 2024); ³(Sosa et al., 2008); ⁴(Groom et al., 2019); ⁵(Ahmed et al., 2008); ⁶(Acevedo-Rodríguez and Strong, 2012); ⁷(Acharya et al., 2009); ⁸(ITIS, 2011)


Based on habitats, four types of aquatic plants have been found, and their percentage distributions are presented in [Figure 4](#).

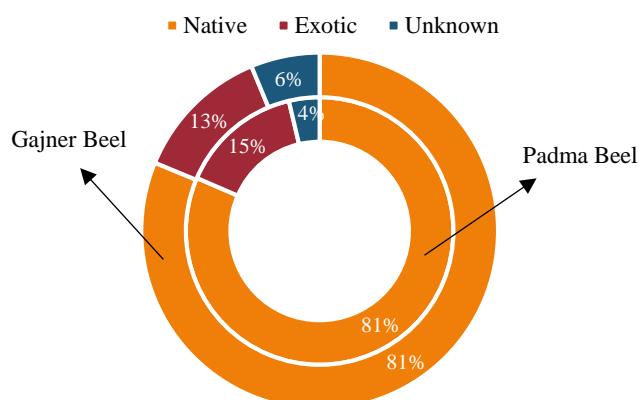
Most of the species were emergent aquatic plants, comprising 69% and 56%, respectively. In the

present study, most aquatic plants (44%) grew during the rainy season in both ecosystems, followed by year-round (all seasons), summer, and winter seasons ([Figure 5](#)).

Figure 4. Types of aquatic plants (%) recorded in northwestern (GB) and southwestern (PB) Bangladesh


Figure 5. Seasonal availability of aquatic plants in northwestern (GB) and southwestern (PB) Bangladesh

In both ecosystems, most aquatic plants were rare, with 41% and 48% in GB and PB, respectively. 28% and 11% of aquatic macrophytes were classified as moderate, while 31% and 41% of aquatic weeds were frequently observed in GB and PB, respectively ([Figure 6](#)).


[Figure 7](#) shows that native aquatic plants dominated (81%), followed by exotic species (13% in

GB, 15% in PB). However, the origin of 6% and 4% of plants in GB and PB, respectively, was unknown. The conservation status, documented from the IUCN Red List, shows most aquatic plants represented as Least Concern (LC), accounting for 72% in GB and 74% in PB, respectively. In contrast, about a quarter of aquatic plants were classified as Not Evaluated (NE) in both wetlands. Only 3% of aquatic plants

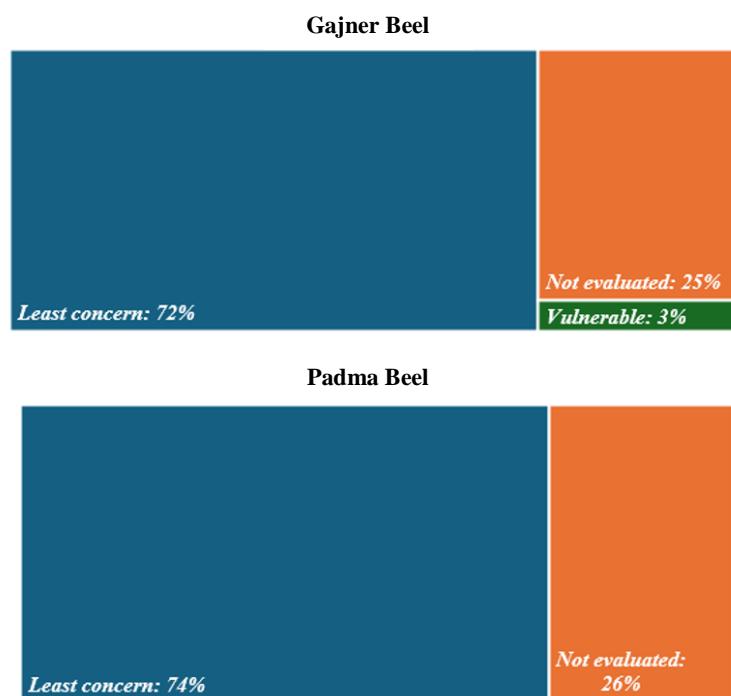
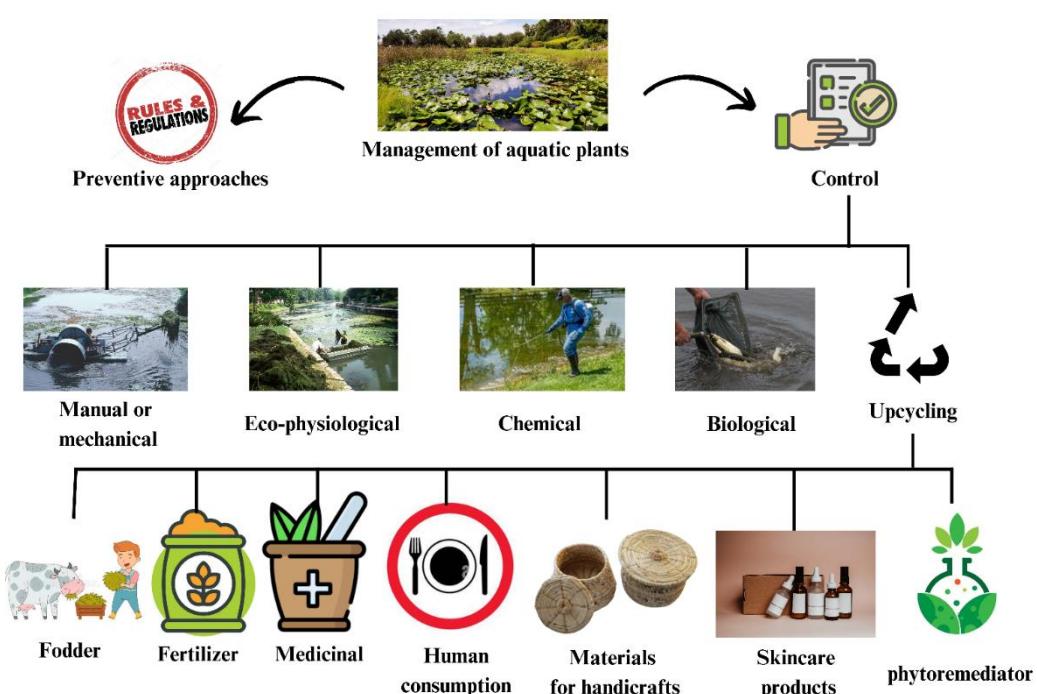

recorded in GB were vulnerable (Figure 8). The Jaccard's similarity value between the two ecosystems was 0.5526, and Sorenson's similarity index (SSI) was 0.71186.

Figure 6. Frequency of occurrence of aquatic plants in northwestern (GB) and southwestern (PB) Bangladesh

Figure 7. Origin of aquatic plants in northwestern (GB) and southwestern (PB) Bangladesh

Figure 8. Conservation status of aquatic plants in northwestern (GB) and southwestern (PB) Bangladesh


No preventive measures were documented for the invasive aquatic plants in both regions. As a control measure for frequently available aquatic weeds, 94%, 3%, and 3% of the farmers followed manual/mechanical, chemical and biological methods in GB. In contrast, only manual/mechanical (97%) and biological (3%) methods were used in PB. Eco-physiological approaches were not employed in any location. However, aquatic weeds found in both areas have several potential uses that have financial and environmental values (Figure 9). Figure 9 illustrates general methods of management of aquatic plants, prioritizing potential uses documented by the literature.

Twenty-eight aquatic plant species were documented as being used by communities, with similar utilization patterns observed across the study areas. Specifically, 21 species are used as traditional

medicine (55%), while six are consumed as food (16%), four are provided as animal feed (11%), two are utilized as materials for handicrafts and fertilizers (5%), and five are used for other purposes (13%). In addition, 10 species (26%) in these regions remain untapped for any purpose (Table 2).

Table 2. Different uses of recorded aquatic plants in the northwestern (GB) and southwestern (PB) Bangladesh

Upcycling potential	Species number	Percentage (%)
Medicine	21	55
Human food	6	16
Fodder	4	11
Handcraft materials	2	5
Fertilizers	2	5
Others	5	13
No use	10	26

Figure 9. Schematic diagram of management of aquatic plants focusing on potential uses

Traditionally, 21 aquatic macrophyte species serve medicinal purposes for treating fever, jaundice, cough, wounds, snake bites, and food poisoning, administered raw, cooked, mashed, or liquefied. *Nymphaea nouchali* and *N. rubra* (Shapla) are consumed cooked or fried, while *A. philoxiroides* and *Centella asiatica* are prepared as vegetables. *Colocasia esculenta* is consumed fried/mashed, and *Nelumbo nucifera* seeds provide dietary protein.

Several species (*Pistia stratiotes*, *Azolla pinnata*, *Spirodela polyrhiza*, *Hygroryza aristata*) serve as animal/fish feed, whereas *Pontederia crassipes* and *Schoenoplectiella mucronata* are crafted into mats, bags, boxes, and ropes. Agricultural applications include organic fertilizers (*P. stratiotes*, *Hydrilla verticillata*), floating beds (*A. pinnata*, *P. stratiotes*), and ornamental uses (*N. rubra*, *N. nucifera*).

4. DISCUSSION

This study documented 27 aquatic plant species in PB, fewer than the 32 recorded in GB. Other studies in Bangladesh, [Rashid et al. \(2014\)](#) documented 77 species (23 families) in the northwestern region, while [Hossain et al. \(2024\)](#) recorded 47 species (25 families) in the southeastern region, which supports the findings. However, [Hasan et al. \(2021\)](#) reported 23 species (15 families) in southwestern Bangladesh. There is not much data regarding the diversity and variation of aquatic plants in Bangladesh to compare. The observed variations are likely due to geographical differences, including soil composition, flood elevation, and hydrology ([Rahaman et al., 2019](#); [Wantzen and Junk, 2000](#)).

Alismatales and Poales were the dominant orders in both wetlands, which is similar to the findings in southeastern Bangladesh ([Hossain et al., 2024](#)). [Sultana et al. \(2021\)](#) mentioned 50% emergent plant occurrence which is lower than our findings. The study highlighted the peak abundance during the rainy season. The observation is consistent with the result reported by [Chowdhury and Ahmed \(2012\)](#). Many plants were in the rare category, which is supported by the findings of [Ame et al. \(2022\)](#). Additionally, 72% of plants in GB and 74% in PB are classified as LC. A similar result has been recorded by [Ashrafuzzaman et al. \(2023\)](#), where 67.14% of plants were LC. In both ecosystems, about 25% plants are in the NE category, underscoring the necessity of studying the diversity and conservation status, focusing on the management of aquatic plants in Bangladesh. This study is the first of its kind and will form the baseline of future studies.

Effective invasive plant management requires either prevention, which demands comprehensive knowledge, or control, which often involves resource-intensive methods such as mechanical, chemical, or biological measures that lack scalability. Although eco-physiological approaches like habitat manipulation or allelopathy are promising ([Gross, 2003](#); [Inderjit and Duke, 2003](#)), their implementation remains complex. As a result, current practices are predominantly manual. Upcycling could provide a sustainable alternative, generating both economic and ecological benefits. Upcycling aquatic plants means transforming undesired plant biomass into products like human food, fertilizer, therapeutics, cosmetics, handicraft materials, and phytoremediators, and thus contributes to renewable energy, sustainable agriculture, and water management ([Ezzariai et al., 2021](#); [Ansari et al., 2020](#); [Mustafa and Hayder, 2021](#)).

Furthermore, the integration of these approaches into community-based management shifts invasive control towards proactive strategies, enhancing ecosystem health and local economic growth ([Newaz and Rahman, 2019](#)).

Among 38 aquatic plants studied, five are edible for humans with edible seeds, rhizomes, leaves, and petals. These are *Nymphaea nouchali*, *Nymphaea rubra*, *Colocasia esculenta*, *Alternanthera philoxeroides*, and *Nelumbo nucifera*, ([Conard, 1905](#); [Nahar et al., 2022](#); [Jane et al., 1992](#); [Temesgen and Retta, 2015](#)). *Azolla pinnata*, *Colocasia esculenta*, *Hygroryza aristata*, *Pistia stratiotes*, and *Spirodela polyrhiza* demonstrate suitability as cost-effective feed alternatives for livestock and aquaculture, maintaining production efficiency ([Babu et al., 2022](#); [Mathur et al., 2013](#); [Sudaryono, 2006](#); [Fasakin et al., 1999](#); [Ravindran et al., 1996](#)).

The study recorded a total of 24 aquatic plant species that possess significant therapeutic potential. For example, *Pistia stratiotes* and *Enhydra fluctuans* exhibit diuretic and antimicrobial activities, respectively ([Ali et al., 2013](#); [Gupta and Prakash, 2014](#)). Anti-cancer, antioxidant, antibacterial, and skin nourishing properties are evident in aquatic plants like *Eclipta prostrata* ([Feng et al., 2019](#); [Zhu, 2016](#)), *Spirodela polyrhiza* ([Lee et al., 2016](#)), and *Marsilea quadrifolia* ([Ripa et al., 2009](#)). Several species displayed anti-diabetic (*Nymphaea rubra*, *Nymphaea pulescens*, *Nelumbo nucifera*) and anti-inflammatory (*Colocasia esculenta*, *Lindernia antipoda*) effects ([Angadi et al., 2013](#); [Ishrat et al., 2024](#); [Phulera et al., 2014](#); [Kaur et al., 2019](#); [Sahare et al., 2023](#); [Prajapati et al., 2011](#)). Furthermore, hepatoprotection by *Centella asiatica* ([Roy et al., 2013](#)), antiparasitic action by *Cyperus rotundus* and *Polygonum glabrum* ([Peerzada et al., 2015](#); [Muddathir et al., 1987](#)), and neuroprotection by *Ipomoea fistulosa* ([Phulera et al., 2014](#)) were evident. *Hydrocotyle sibthorpioides* exhibits anti-hepatitis-B activities ([Huang et al., 2013](#)).

Aquatic plants demonstrate other applications across multiple sectors. *Pontederia crassipes* offers sustainable alternatives for plastic-reducing handicrafts ([Sierra-Carmona et al., 2022](#)), while *Nymphaea rubra* and *Centella asiatica* hold cosmetic potential ([Kamma et al., 2019](#); [Hoque et al., 2023](#)). Several species, including *Azolla pinnata*, *Hydrilla verticillata*, *Spirodela polyrhiza*, *Marsilea quadrifolia*, *Phragmites karka*, and *Ceratophyllum demersum*, effectively remove heavy metals ([Jangwattana and Iwai, 2010](#); [Ahmed et al., 2018](#);

Rahman et al., 2007; Rai, 2021; Singh et al., 2022; Qadri et al., 2022), with *Vallisneria spiralis* and *Leersia hexandra* aiding broader environmental remediation (Chen et al., 2022; Han et al., 2020). Beyond these uses, *Azolla pinnata* functions as a bioinsecticide (Ravi et al., 2020), *Hydrilla verticillata* enhances biogas production (Jain and Kalamdhad, 2018), *Colocasia esculenta* provides plastic alternatives (Briones et al., 2020), and *Scirpus grossus* mitigates noise pollution (Suhaeri et al., 2024).

Local communities of both Beels play a vital role in utilizing and managing aquatic plants, similar to global practices where wetlands provide essential resources for livelihood (FAO, 2019; Campos-Silva and Peres, 2016, Khan et al., 2022). The multiple uses of these plants, covering food security, traditional medicine and income generation, pave the way for achieving sustainability (Prasad et al., 2008; Wiart, 2017; World Bank, 2016) but are hindered by a lack of awareness, market access, and management (Gettys et al., 2014; King et al., 2021). Addressing the challenges, aligning with conservation strategies and collaboration among stakeholders will be key to ensuring sustainability in both ecological and economic aspects in the long run (FAO, 2019; King et al., 2021).

The study perfectly aligns with international conservation frameworks and strongly supports the Ramsar Convention (1971) and the Sustainable Development Goals (SDGs) 6, 13, 14, and 15 (UN, 2015), thus escalating the integrity of the ecosystem and sustainable use of the resources in changing climates. However, the lack of preventative measures against invasive species highlights the critical need for the enhancement of control mechanisms in Bangladesh, which will also support the aims of the Global Invasive Species Programme (GISP) (Meyerson et al., 2022). These findings promote eco-physiological approaches, upcycling invasive biomass, and community-based management for long-term wetland sustainability and resource management.

5. CONCLUSION

Despite their label as “aquatic weeds,” it is essential to recognize the significance of native and beneficial aquatic flora. Although Bangladesh is rich in aquatic plants, regional data on these species remains limited. The diversity, origin, and conservation status of aquatic plants in northwest and southwest Bangladesh have been stated in this study. The study emphasized upcycling aquatic plants over

eradication. Shifts in these plant communities indicate ecological changes and pollution impacts, making accurate species identification key for management. Despite moderate biodiversity, invasive species remain a major threat due to weak prevention. Future strategies should combine invasive species control with upcycling to boost ecosystem resilience and human benefits. Effective conservation depends on community involvement, policies aligned with global standards, and focused research on wetland and aquatic plant management.

ACKNOWLEDGEMENTS

The authors would like to acknowledge local people for their assistance during data collection.

AUTHOR CONTRIBUTIONS

Conceptualization and Methodology, Md. Foysul Hossain; Formal Analysis, Md. Foysul Hossain, Koushik Chakroborty; Data Curation, Md. Foysul Hossain, Sumiya Bhuyain, Abrar Hossain, Mst. Mosfeka Khatun Ritu; Writing-Original Draft Preparation, Md. Foysul Hossain, Koushik Chakroborty, Gazlima Chowdhury, Writing-Review and Editing, Md. Foysul Hossain, Koushik Chakroborty, Gazlima Chowdhury, Roksana Jahan.

DECLARATION OF CONFLICT OF INTEREST

The authors declare no conflict of interest.

REFERENCES

- Acevedo-Rodríguez P, Strong MT. Catalogue of Seed Plants of the West Indies. Washington, D.C.: Smithsonian Institution; 2012.
- Acharya J, Banerjee D, Mukherjee A. A contribution to the study of *Commelinaceae* R.Br. in Darjeeling - Sikkim Himalayas. Pleione 2009;3(1):18-27.
- Ahmed ZF, Ameer QAA, Abbas RF. Release cumulative power between (*Ceratophyllum demersum* L) and *Hydrilla verticillata* (plant to Phytoremediation lead in the polluted water aquatic ecosystem. Journal of the College of Basic Education 2018;24(101):79-91.
- Ahmed ZU, Hassan MA, Begum ZNT, Khondker M, Kabir SMH, Ahmad M, et al. Encyclopedia of Flora and Fauna of Bangladesh, Volume 6: Angiosperms: Dicotyledons Acanthaceae-Asteraceae. Dhaka: Asiatic Society of Bangladesh; 2008. p. 1-408.
- Ali R, Billah M, Hassan M, Dewan SMR. *Enhydra fluctuans* Lour: A review. Research Journal of Pharmacy and Technology 2013;6(9):927-9.
- Aloo P, Ojwang W, Omondi R, Njiru JM, Oyugi D. A review of the impacts of invasive aquatic weeds on the biodiversity of some tropical water bodies with special reference to Lake Victoria (Kenya). Biodiversity Journal 2013;4(4):471-82.
- Ame MA, Khatun L, Khatun S, Sumona SA, Rahman AM. Investigation of aquatic vascular flora at Sadullapur Upazila of Gaibandha District, Bangladesh. GSC Biological and Pharmaceutical Sciences 2022;21(1):175-87.

Angadi KK, Kandru A, Rahaman A. Antihyperglycaemic, antihyperlipidaemic and antioxidant assays (in vivo) of *Nymphaea pubescens* leaf extract. International Journal of Pharma and Bio Science 2013;4(2):624-30.

Ansari AA, Naeem M, Gill SS, AlZuaibr FM. Phytoremediation of contaminated waters: An eco-friendly technology based on aquatic macrophytes application. The Egyptian Journal of Aquatic Research 2020;46(4):371-6.

Ashrafuzzaman M, Jone MJH, Ashraf SB. Aquatic plants of Bangladesh agricultural University botanical Garden: Species diversity and potential uses. Indian Journal of Ecology 2023;50(3):555-65.

Babu AS, Krishna CR, Kumari NN. Estimation of fodder quality and digestibility parameters of *Pistia stratiotes* plant meal. Journal of Krishi Vigyan 2022;10(2):137-40.

Banglapedia. The Asiatic Society of Bangladesh [Internet]. 2012 [cited 2024 Sep 14]. Available from: <https://en.banglapedia.org/index.php/Beel>.

Bao Q, Liu Z, Zhao M, Hu Y, Li D, Han C, et al. Role of carbon and nutrient exports from different land uses in the aquatic carbon sequestration and eutrophication process. Science of the Total Environment 2022;813:Article No. 151917.

Basar MH, Rahman AHMM. Aquatic vascular flora at Sadar Upazila of Chapai Nawabganj District, Bangladesh. Discovery 2023;59:e17d1019.

Bangladesh Meteorological Department (BMD). Temperature data [Internet]. 2012 [cited 2024 Sep 14]. Available from: <https://live6.bmd.gov.bd/p/Temperature-Data>.

Briones MF, Jazmin PF, Pajarillaga BE, Juvinal JG, Leon AA, Rustia JM, et al. Biodegradable film from wild taro *Colocasia esculenta* (L.) Schott starch. Agricultural Engineering International: CIGR Journal 2020;22(1):152-5.

Campos-Silva JV, Peres CA. Community-based management induces rapid recovery of a high-value tropical freshwater fishery. Scientific Reports 2016;6(1):Article No. 34745.

Chambers PA, Lacoul P, Murphy KJ, Thomaz SM. Global diversity of aquatic macrophytes in freshwater. Hydrobiologia 2008;595(1):9-26.

Chen M, Zhang X, Jiang P, Liu J, You S, Lv Y. Advances in heavy metals detoxification, tolerance, accumulation mechanisms, and properties enhancement of *Leersia hexandra* Swartz. Journal of Plant Interactions 2022;17(1):766-78.

Cherwoo L, Berwal B, Kumar S, Datta A, Prabhu GN, Oo HN, et al. Water hyacinth biomass valorization: fostering biodiversity and sustainable development in the bioeconomy. In: Biodiversity and Bioeconomy: Status Quo, Challenges, and Opportunities. Elsevier Inc; 2024. p. 445-74.

Chowdhury AH, Ahmed R. Water, sediment and macrophyte quality of some shrimp culture ponds and freshwater ecosystems of Koyra. Bangladesh Journal of Botany 2012;41(1):35-41.

Conard HS. The Waterlilies: A Monograph of the Genus *Nymphaea*. Washington, DC: Carnegie Institution of Washington; 1905. p. 243-63.

Dudgeon D, Arthington AH, Gessner MO, Kawabata ZI, Knowler DJ, Léveque C, et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biological Reviews 2006;81(2):163-82.

Engelhardt KA, Ritchie ME. Effects of macrophyte species richness on wetland ecosystem functioning and services. Nature 2001;411(6838):687-9.

Ezzariai A, Hafidi M, Ben Bakrim W, Kibret M, Karouach F, Sobeh M, et al. Identifying advanced biotechnologies to generate biofertilizers and biofuels from the world's worst aquatic weed. Frontiers in Bioengineering and Biotechnology 2021;9:Article No. 769366.

Fasakin EA, Balogun AM, Fasuru BE. Use of duckweed, *Spirodela polyrrhiza* L. Schleiden, as a protein feedstuff in practical diets for tilapia, *Oreochromis niloticus* L. Aquaculture Research 1999; 30(5):313-8.

Feng L, Zhai YY, Xu J, Yao WF, Cao YD, Cheng FF, et al. A review on traditional uses, phytochemistry and pharmacology of *Eclipta prostrata* (L.) L. Journal of Ethnopharmacology 2019;245:Article No. 112109.

Food and Agricultural Organization of the United Nations (FAO). The State of the World's Biodiversity for Food and Agriculture. Rome, Italy: FAO Commission on Genetic Resources for Food and Agriculture Assessments; 2019.

Gettys LA, Haller WT, Petty DG. Biology and Control of Aquatic Plants: A Best Management Practices Handbook. 4th ed. Marietta, GA, USA: Aquatic Ecosystem Restoration Foundation; 2014. p. 214.

Giri A. Various types of aquatic weeds in a village fish pond and their control. International Journal of Environmental Sciences and Natural Resources 2020;25(3):142-6.

Groom QJ, Van der Straeten J, Hoste I. The origin of *Oxalis corniculata* L. Peer J 2019;7:e6384.

Gross EM. Allelopathy of aquatic autotrophs. Critical Reviews in Plant Sciences 2003;22(3-4):313-39.

Gupta C, Prakash D. Phytonutrients as therapeutic agents. Journal of Complementary and Integrative Medicine 2014;11(3):151-69.

Han F, Zhang Y, Liu Z, Wang C, Luo J, Liu B, et al. Effects of maifanite on growth, physiological and phytochemical process of submerged macrophytes *Vallisneria spiralis*. Ecotoxicology and Environmental Safety 2020;189:Article No. 109941.

Hasan MM, Islam MT, Laskar MA, Sultana T. Distribution and diversity of aquatic macrophytes and the assessment of physico-chemical parameters of Dakatia Beel in Khulna district, Bangladesh. Asian Journal of Medical and Biological Research 2021;7(2):118-25.

Hoque M, Rafi IK, Hossain MS. *Centella asiatica*: A mini review of its medicinal properties and different uses. World Journal of Advanced Research and Reviews 2023;19(2):1185-91.

Hossain MF, Chowdhury G, Nabil TA, Hossain A, Bhuyain S, Mithi MMF, et al. Diversity, abundance, and seasonal variation of aquatic macrophytes in Southeastern Bangladesh. Asian Journal of Fisheries and Aquatic Research 2024;26:55-66.

Huang Q, Zhang S, Huang R, Wei L, Chen Y, Lv S, et al. Isolation and identification of an anti-hepatitis B virus compound from *Hydrocotyle sibthorpioides* Lam. Journal of Ethno-Pharmacology 2013;150(2):568-75.

Inderjit, Duke SO. Ecophysiological aspects of allelopathy. Planta 2003;217:529-39.

Ishrat N, Gupta A, Khan MF, Shahab U, Khan MS, Ahmad N, et al. Phytoconstituents of *Nymphaea rubra* flowers and their anti-diabetic metabolic targets. Fitoterapia 2024;176:Article No. 106014.

Integrated Taxonomic Information System (ITIS). Integrated Taxonomic Information system [Internet]. 2011 [cited 2024 Sep 14]. Available from: <https://www.itis.gov/>.

International Union for Conservation of Nature (IUCN). The IUCN Red List of Threatened Species [Internet]. 2024 [cited 2024 Sep 14]. Available from: <https://www.iucnredlist.org>.

Jaccard P. The distribution of the flora in the alpine zone. *New Phytologist* 1912;11(2):37-50.

Jain MS, Kalamdhad AS. A review on management of *Hydrilla verticillata* and its utilization as potential nitrogen-rich biomass for compost or biogas production. *Bioresource Technology Reports* 2018;1:69-78.

Jane J, Shen L, Chen J, Lim S, Kasemsuwan T, Nip W. Physical and chemical studies of taro starches and flours. *Cereal Chemistry* 1992;69(5):528-35.

Jangwattana R, IWAI CB. Using *Azolla pinnata* for wastewater treatment from poultry farm. *International Journal of Engineering Research and Development* 2010;1(2): Article No. 23.

Journey WK, Skillicorn P, Spira W. Duckweed Aquaculture: A New Aquatic Farming System for Developing Countries. Washington DC: The World Bank; 1993.

Kamma M, Lin WC, Lau SC, Chansakaow S, Leelapornpisid P. Anti-aging cosmeceutical product containing of *Nymphaea rubra* Roxb. ex Andrews Extract. *Chiang Mai Journal of Science* 2019;46:1143-60.

Kaur P, Kaur L, Kaur N, Singh A, Kaur J, Kaur H, et al. A brief review on pharmaceutical uses of *Nelumbo nucifera*. *Journal of Pharmacognosy and Phytochemistry* 2019;8(3):3966-72.

Kevin MK, Lancar ML. Aquatic Weeds and Their Management. India: International Commission on Irrigation and Drainage; 2002. p. 15-64.

Khan MHI, Ahsan SMM, Fatema MK, Iqbal SMS, Molla MHR, Gabr MH, et al. Institutionalizing the community-based management approach for natural wetlands toward the exploring policy gaps. *Egyptian Journal of Aquatic Biology and Fisheries* 2022;26(6):439-65.

King SL, Laubhan MK, Tashjian P, Vradenburg J, Fredrickson L. Wetland conservation: Challenges related to water law and farm policy. *Wetlands* 2021;41(5):Article No. 54.

Lacoul P, Freedman B. Environmental influences on aquatic plants in freshwater ecosystems. *Environmental Reviews* 2006; 14(2):89-136.

Lee HJ, Kim MH, Choi YY, Kim EH, Hong J, Kim K, et al. Improvement of atopic dermatitis with topical application of *Spirodela polyrhiza*. *Journal of Ethnopharmacology* 2016; 180:12-7.

Madsen JD, Wersal RM. A review of aquatic plant monitoring and assessment methods. *Journal of Aquatic Plant Management* 2017;55(1):1-2.

Maltby E. The Changing wetland paradigm. In: Maltby E, Barker T, editors. *The Wetlands Handbook*. John Wiley and Sons, Inc.; 2009.

Mathur GN, Sharma R, Choudhary PC. Use of *Azolla (Azolla pinnata)* as cattle feed supplement. *Journal of Krishi Vigyan* 2013;2(1):73-5.

McKinley DC, Miller-Rushing AJ, Ballard HL, Bonney R, Brown H, Cook-Patton SC, et al. Citizen science can improve conservation science, natural resource management, and environmental protection. *Biological Conservation* 2017;208:15-28.

Meyerson LA, Pauchard A, Brundu G, Carlton JT, Hierro JL, Kueffer C, et al. Moving toward global strategies for managing invasive alien species. In: *Global Plant Invasions*. Cham: Springer International Publishing; 2022. p. 331-60.

Muddathir AK, Balansard G, Timon-David P, Babadjamian A, Yagoub AK, Julien MJ. Anthelmintic properties of *Polygonum glabrum*. *Journal of Pharmacy and Pharmacology* 1987; 39(4):296-300.

Mustafa HM, Hayder G. Recent studies on applications of aquatic weed plants in phytoremediation of wastewater: A review article. *Ain Shams Engineering Journal* 2021;12(1):355-65.

Nahar L, Nath S, Sarker SD. "Malancha" [*Alternanthera philoxeroides* (Mart.) Griseb.]: A potential therapeutic option against viral diseases. *Biomolecules* 2022;12(4): Article No. 582.

Newaz MW, Rahman S. Wetland resource governance in Bangladesh: An analysis of community-based co-management approach. *Environmental Development* 2019;32:Article No. 100446.

Pasha MK, Uddin SB. *Dictionary of Plant Names of Bangladesh (Vascular Plants)*. Chittagong, Dhaka, Bangladesh: Janokalyan Prokashani; 2013. p. 1-434.

Paul P. Aquatic plant diversity of ponds in Thrissur District, Kerala, India. *Indian Journal of Ecology* 2022;49(1):174-7.

Peerzada AM, Ali HH, Naeem M, Latif M, Bukhari AH, Tanveer A. *Cyperus rotundus* L.: Traditional uses, phytochemistry, and pharmacological activities. *Journal of Ethnopharmacology* 2015;174:540-60.

Phulera S, Gurung N, Arora KM, Kumar G, Karthik L, Rao KV. Evaluation of phytochemical composition, antioxidant and cytotoxic activity of *Ipomoea fistulosa* leaves (Convolvulaceae). *Research Journal of Pharmacy and Technology* 2014;7(4):454-9.

Prajapati R, Kalariya M, Umbarkar R, Parmar S, Sheth N. *Colocasia esculenta*: A potent indigenous plant. *International Journal of Nutrition, Pharmacology, Neurological Diseases* 2011;1(2):90-6.

Prasad KN, Shivamurthy GR, Aradhya SM. *Ipomoea aquatica*, an underutilized green leafy vegetable: A review. *International Journal of Botany* 2008;4(1):123-9.

Qadri H, Uqab B, Javeed O, Dar GH, Bhat RA. *Ceratophyllum demersum*: An accretion biotool for heavy metal remediation. *Science of the Total Environment* 2022;806:Article No.150548.

Rahaman MA, Rahman MM, Hossain MS. Climate-resilient agricultural practices in different agro-ecological zones of Bangladesh. In: Filho WL, editor. *Handbook of Climate Change Resilience*. Cham: Springer; 2019. p. 1-27.

Rahman MA, Hasegawa H, Ueda K, Maki T, Okumura C, Rahman MM. Arsenic accumulation in duckweed (*Spirodela polyrhiza* L.): A good option for phytoremediation. *Chemosphere* 2007;69(3):493-9.

Rahman MA, Sultana MA, Islam MA, Hossain MY. Stock assessment of barred spiny eel, *Macrognathus pанcalus* (Hamilton, 1822) in a wetland ecosystem, northwestern Bangladesh: A fundamental approach to ensure sustainability and conservation. *Heliyon* 2024;10(5):e26492.

Rai PK. Heavy metals and arsenic phytoremediation potential of invasive alien wetland plants *Phragmites karka* and *Arundo donax*: Water-Energy-Food (WEF) Nexus linked sustainability implications. *Bioresource Technology Reports* 2021;15:Article No. 100741.

Ramsar Convention. The Ramsar Convention on Wetlands. Iran: Ramsar; 1971.

Rashid MA, Naz S, Zaman M, Hasan M, Sarkar MAQ. Hydrobiological studies of the Chalan Beel Wetland in

Bangladesh. Plant Environment Development 2014;3(1): 35-41.

Ravi R, Rajendran D, Oh WD, Mat Rasat MS, Hamzah Z, Ishak IH, et al. The potential use of *Azolla pinnata* as an alternative bio-insecticide. Scientific Reports 2020;10(1):Article No. 19245.

Ravindran V, Sivakanesan R, Cyril HW. Nutritive value of raw and processed colocasia (*Colocasia esculenta*) corn meal for poultry. Animal Feed Science and Technology 1996; 57(4):335-45.

Ripa FA, Nahar L, Haque M, Islam MM. Antibacterial, cytotoxic and antioxidant activity of crude extract of *Marsilea quadrifolia*. European Journal of Scientific Research 2009;33(1):123-9.

Roy DC, Barman SK, Shaik MM. Current updates on *Centella asiatica*: Phytochemistry, pharmacology and traditional uses. Medicinal Plant Research 2013;3(4):20-36.

Sahare AY, Chavhan BK, Dhone PS, Agrawal TR. Phytochemical investigation and evaluation of antioxidant, and anti-inflammatory activity of aerial parts of *Lindernia antipoda*. Rasayan Journal of Chemistry 2023;16(1):284-9.

Schuyt KD. Economic consequences of wetland degradation for local populations in Africa. Ecological Economics 2005;53(2):177-90.

Sierra-Carmona CG, Hernández-Orduña MG, Murrieta-Galindo R. Alternative uses of water Hyacinth (*Pontederia crassipes*) from a sustainable perspective: A systematic literature review. Sustainability 2022;14(7):Article No. 3931.

Singh S, Karwadiya J, Srivastava S, Patra PK, Venugopalan VP. Potential of indigenous plant species for phytoremediation of arsenic contaminated water and soil. Ecological Engineering 2022;175:Article No. 106476.

Sonal D, Jagruti R, Geeta P. Avifaunal diversity and water quality analysis of an inland wetland. Journal of Wetlands Ecology 2010;4:1-32.

Sorensen T. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. Biologiske Skrifter 1948;5:1-34.

Sosa A, Greizerstein E, Cardo MV, Telesnick MC, Julien MH. The evolutionary history of an invasive species: Alligator weed, *Alternanthera philoxeroides*. In: Julien MH, Sforza R, Bon MC, Evans HC, Hatcher PE, Hinz HL, et al, editors. Proceedings of the XII International Symposium on Biological Control of Weeds: CAB International United Kingdom; 2008. p. 443-50.

Sudaryono A. Use of Azolla (*Azolla pinnata*) meal as a substitute for defatted soybean meal in diets of juvenile black tiger shrimp (*Penaeus monodon*). Journal of Coastal Development 2006;9(3):145-54.

Suhraeri S, Fulazzaky MA, Husaini H, Dirhamsyah M, Hasanuddin I. Application of *Scirpus grossus* fiber as a sound absorber. Heliyon 2024;10(7):e28961.

Sultana T, Islam MT, Hasan MM, Laskar MA. Survey on aquatic macrophytes and physico-chemical quality of water from Satla Beel of Barishal District, Bangladesh. International Journal of Fisheries and Aquatic Studies 2021;9(5):1-5.

Temesgen M, Retta N. Nutritional potential, health and food security benefits of taro *Colocasia esculenta* (L.): A review. Food Science and Quality Management 2015;36(0):23-30.

United Nations (UN). Transforming our world: the 2030 agenda for sustainable development [Internet]. 2015 [cited 2024 Sep 15]. Available from: <https://sdgs.un.org/2030agenda>.

Wantzen KM, Junk WJ. The importance of stream-wetland-systems for biodiversity: A tropical perspective. In: Gopal B, Junk WJ, DJA, editors. Biodiversity in Wetlands: Assessment, Function and Conservation; Volume 1. Leiden: Backhuys Publishers; 2000. p. 11-34.

Wiart C. Medicinal Plants in Asia for Metabolic Syndrome: Natural Products and Molecular Basis. 1st ed. Boca Raton, FL: CRC Press; 2017. p. 520.

Wilk-Woźniak E, Walusiak E, Burchardt L, Cerbin S, Chmura D, Gałka M, et al. Effects of the environs of waterbodies on aquatic plants in oxbow lakes (habitat 3150). Ecological Indicators 2019;98:736-42.

Wood KA, O'Hare MT, McDonald C, Searle KR, Daunt F, Stillman RA. Herbivore regulation of plant abundance in aquatic ecosystems. Biological Reviews 2017;92(2):1128-41.

World Bank. Seaweed Aquaculture for Food Security, Income Generation and Environmental Health. Washington, DC: World Bank; 2016.

Zhu F. Chemical composition, health effects, and uses of water caltrop. Trends in Food Science and Technology 2016;49: 136-45.