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Small and Medium Agricultural Enterprises (SMAEs) are crucial for 

economic development in many developing countries, particularly in rural 

areas. Following a disaster, SMAEs experience the most profound impacts 

on their capital, logistics, workforce, and marketing operations. This study 

examines the impact of landslides on SMAEs in Selopamioro village, 

Bantul Regency of Special Region Yogyakarta. The study focused on the 

economic sensitivity of SMAEs and assessed their spatial distribution and 

classifications using drone aerial imagery and a village landslide database 

from 2010 to 2024. A total of 120 SMAEs were identified and classified 

by type in accordance with Indonesian laws. A representative sample of 

60 SMAEs was validated using the Slovin formula. The study employed 

a hybrid survey methodology, combining interviews with village and 

hamlet leaders and on-site surveys using standardized questionnaires. The 

results showed that SMAEs in all hamlets of Selopamioro village have 

relatively low sensitivity, indicating that recent landslides have had 

limited effects on their sustainability. The village’s disaster response 

capacity was moderate, but the study identified deficiencies in planning 

for potential future landslides. This study provides valuable insights for 

SMAEs and local governments regarding proactive risk mitigation 

strategies. 
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HIGHLIGHTS 

The study provides valuable insights into the economic impacts of landslides on SMAEs and highlights the 

need for proactive measures to build resilience and reduce vulnerability in landslide-prone areas. 

1. INTRODUCTION

Small and medium agricultural enterprises 

(SMAEs) play a crucial rolerural employment and 

economic development in developing countries such 

as Indonesia (FAO, 2012). They contribute 

significantly to employment generation and Gross 

Domestic Product (GDP) growth (Eskesen et al., 

2014), and their success in meeting the demand for 
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rice (Anggreini and Asyikin, 2023) is closely linked to 

social security, economic stability (Nurhaedah, 2022), 

political stability, and national security. SMAEs are 

essential for economic sustainability in both 

developed and developing nations (Radović-Marković 

et al., 2017) and they continuously strive to mitigate 

disaster impacts while working toward  autonomous 

recovery (Satpathy et al., 2025). However, SMAEs are 

highly vulnerable to disasters, which can severely 

affect their capital, logistics, labor, and marketing 

sectors (Morrish and Jones, 2020). To enhance the 

income of SMAEs’, governments should support 

small business development (Nasution et al., 2022; 

Ebrahim et al., 2023).The impact of landslides on 

agriculture differs between SMAEs and larger 

agricultural enterprises, as SMAEs often lack financial 

resilience and alternative resources. Landslides can 

result in long-term soil degradation, reduced crop 

yields, and disruptions in supply chains, 

disproportionately affecting smallholder farmers. I 

particular, road blockages caused by landslides hinder 

transportation and market access, further exacerbating 

economic losses. Alstadt et al. (2012) argues that 

investments in transportation infrastructure are 

essential for improving labor market ensuring efficient 

goods distribution, which, fosters economic growth.  

Accessibility is crucial for business 

development, especially in rural areas where slope 

stability is at risk (Raza et al., 2022). Agricultural land 

use, such as monocropping and terraced farming, 

significantly influences slope stability, surface flow 

regulation, and vegetation loss due to erosion (Garcia-

Chevesich et al., 2021). Landslides cause damage to 

land and agricultural infrastructure, including 

irrigation systems, dams, farm roads, and production 

facilities (Kainthola et al., 2021; Manurung et al., 

2016). Climate change has been increasing the 

likelihood of landslides, indirectly affecting SMAEs. 

Slope stability depends on various factors, with 

precipitation being the most significant (Gallage et al., 

2021; Jemec et al., 2023). Climate change can alter the 

frequency and severity of extreme precipitation 

globally, escalating risks associated with rainfall-

induced landslides (Gariano and Guzzetti, 2022; 

Jakob, 2022). Landslides result in significant human 

and economic losses in China (Lin et al., 2020) and 

Indonesia (Sharif, 2021; Utami et al., 2021). Hilly 

areas often experience landslides, particularly in low- 

lying areas between hills, which can adversely impact 

on humans and the environment (Intarat et al., 2024; 

Lau and Zawawi, 2021). Landslides in remote areas 

have the potential to cause unexpected ecological and 

social damage (Putra et al., 2021). Various landslide 

studies have been conducted globally, categorized into 

landslide inventories (Hong et al., 2020; Ngadisih et 

al., 2017), hazard assessment (Mersha and Meten, 

2020), and risk assessment (Wubalem, 2020). 

The study utilizes landslide inventory to assess 

the age, activity, depth, and velocity of landslides in a 

village. However, this method faces challenges such 

as spectral differences, object-based classification, 

difficulty in obtaining bi-temporal imagery, and less 

accuracy when applied to other areas (Gariano and 

Guzzetti, 2022; Lin et al., 2020; Sukristiyanti et al., 

2021). It also suffers from frequent classification 

errors. The study aims to assess the risks of SMAEs in 

a village and evaluate the risks of disasters affecting 

their sustainability. This study aims to assess the risks 

faced by SMAEs in a village and evaluate the risks of 

disasters affecting their sustainability. It seeks to 

develop a landslide disaster risk assessment method 

that integrates physical and socio-economic aspects at 

the village level, filling a gap in previous research that 

has primarily focused on larger administrative units. 

By incorporating SMAEs, which play a vital yet often 

overlooked role in rural economies, this study 

provides a more comprehensive risk evaluation. The 

modified approach supports a bottom-up disaster risk 

reduction strategy, contributing to the Sustainable 

Development Goals (SDGs), particularly in the areas 

of poverty alleviation and rural resilience. The novelty 

of this study lies in the risk assessment concept that 

integrates both physical and socio-economic aspects at 

the smallest administrative level (i.e., village). 

Previous studies have primarily focused on risk 

assessment at the district or sub-district level. To 

support the achievement of the SDGs through a 

bottom-up approach that begins at the village level, we 

have modified existing risk assessment methods. 

Accordingly, this study adopts several parameters 

commonly used for risk assessment at the 

district/provincial level and adapts them to the village 

level. 

2. METHODOLOGY

2.1 Study site

Selopamioro Village, located in Imogiri 

District, Bantul Regency, is the research area with a 

history of landslides and a large number of SMAEs. 

The village spans 2,275 hectares (ha), including 

lowlands at an altitude of 100 meters above sea level. 

The topography consists of 30% flat to wavy areas and 
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70% wavy to hilly, which limits the land available for 

cultivation by farmers. The topography consists of 

30% flat to wavy areas and 70% wavy to hilly, making 

land cultivation by farmers relatively small. The 

village is divided into several hamlets, including 

Lenteng I, Lenteng II, Lemahrubuh, Jetis, Kedungjati, 

Nogosari, Nawungan I, Nawungan II, Kajor Wetan, 

Kajor Kulon, Siluk I, Siluk II, Pelemantung, Putat, 

Kalidadap I, Kalidadap II, and Srunggo I. Selopamioro 

Village was chosen because it is identified as the 

poorest and most disaster-prone village in the district. 

Strengthening SMAEs is expected to drive economic 

growth and help the village escape poverty through 

disaster risk reduction-based development. 

2.2 Data collection 

2.2.1 Landslides inventory  

Landslide distribution and classifications were 

determined manually from aerial images obtained by 

a drone flight in 2022. The aerial photographs 

provided a comprehensive view of the affected areas 

and facilitated the mapping of the landslides. 

Additionally, historical landslide data was obtained 

from the village office, which has maintained a 

database of landslide occurrences since 2010. The 

landslide inventory technique was also used by 

Thongley and Vansarochana (2021) in Bhutan. It uses 

a workflow consisting of landslide inventory, 

preparation factors, NGO (Non-Government 

Organization) development, and then validating the 

data. To classify landslides, visual identification is 

used without orthomapping. The image capture 

technique used is oblique aerial photography. This 

technique provides a distinctive landslide viewpoint 

compared to using vertical (orthogonal) aerial 

photography. Another advantage of aerial 

photography is the 20 MP image resolution, which can 

help landslide observations. Thus, aerial photography 

can be used to determine the characteristics of 

landslides based on visual appearance (Figure 1). 

Figure 1. Elevation map of the village Selopamioro, including spots of observed landslide occurrence 

2.2.2 SMAEs data acquisition   

Information regarding the number and 

categories of SMAEs was obtained from the village 

administration, including a detailed listing of SMAEs 

operating in the region, categorized according to the 

stipulations outlined in Law No. 20 of 2008 

concerning Micro, Small, and Medium Enterprises, 

which define the classification of such businesses in 

Indonesia. During the initial mapping phase, 120 

SMAEs were identified. 
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2.2.3 Selection of samples  

The Slovin formula was used to determine the 

sample size from 120 identified SMAEs, resulting in 

60 SMAEs. The capacity assessment included 19 

respondents, including village officials and their staff.  

The equation (1) was used to determine the 

sample size from a known population (Sugiyono, 

2017). The sample was validated through consultations 

with village and hamlet leaders to confirm the current 

status of the SMAEs, leading to adjustments in the data. 

This study aimed to assess the vulnerability of SMAEs 

actors in Selopamioro to landslides. 

n =  
N

1 + Ne2 (1) 

Where; n=sample size; N=population size; 

e=Allowance for inaccuracy due to tolerable sampling 

error, then squared.  

The value of e=0.1 (10%) is used for large 

populations. The value of e=0.2 (20%) is used for 

small populations. In this study, we used the value of 

e=0.2 because the sample population was small. 

(1) Capacity and Hazard Assessment

A survey was conducted to assess disaster

capacity in SMAEs, involving interviews with village 

and hamlet leaders. The index technique (Table 1) was 

used to evaluate the resilience of SMAEs to landslides, 

incorporating input from local leadership. The study 

focuses on regional capacity, represented by the 

village government administration unit. Village-level 

policy makers are needed for SMAE resilience. The 

hazard evaluation used the frequency ratio method to 

examine historical and geographic elements 

contributing to landslide hazards. 

Table 1. Disaster capability index 

Component Value (%) Class 

Low Medium High 

(0-0.333) (0.334-0.666) (0.667-1) 

Regional resilience 40 Value transformation 

0-0.40

Value transformation 

0.41-0.80 

Value transformation 

0.81-1 

Community preparedness 60 <0.33 0.34-0.66 0.67-1 

(2) SMAEs actor survey

A survey was conducted on the proprietors

and managers of 60 selected SMAEs, based on field 

updates. Many reductions were due to profession 

changes, address changes, and deceased business 

actors. Data was collected using a structured survey tool 

to assess understanding of landslide hazards, readiness, 

and vulnerability. An interview instrument with a Likert 

scale was used to quantify responses (Table 2). 

Table 2. Likert scale 

Class Description 

1 Very unsuitable 

2 Unsuitable 

3 Quite suitable 

4 Suitable 

5 Very suitable 

2.3 Data analysis 

2.3.1 Hazard assessment  

In this study, 60% of the data inventory was 

collected and used for model training, while the 

remaining 40% was reserved to test the accuracy level. 

The data distribution was plotted into the parameters 

of the landslide hazard model. The parameters used in 

this study include water related factors such as Stream 

Power Index (SPI) and Topographic Wetness Index 

(TWI), along with topographic factors like slope, 

aspect, plan curvature, profile curvature, and elevation 

(Al’Afif et al., 2024; Samodra et al., 2017). All water-

related and topographic factors are compiled using 

FABDEM with a spatial resolution of 30×30 meter. 

Additional factors used include geological formation, 

distance to faults, distance to roads, distance to rivers, 

and land use sourced from the 2018 Indonesia 

Topographic Map at a scale of 1:25,000. Twelve 

factors influencing landslides were analyzed in raster 

format with a 30×30 resolution, adjusted to the spatial 

resolution of FABDEM (Figure 2). 

The frequency ratio method (equation 2) was 

used to assess landslide threat in a site study. This 

method identifies future landslide events using the 

same conditions as past ones. The ratio between 

landslide area and total area, along with the probability 

of a landslide event occurring compared to its absence 

for a given attribute factors, are crucial elements. The 

greater the ratio, the stronger the relationship between 

landslide events and related factors. This method helps 

identify regions of elevated risk (Pratiwi, 2018). 
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FR =
LAi/LDi

∑LAi/∑LDi
(2) 

Where; FR=frequency ratio; LAi=number of 

pixels of containing landslide in the i-th variable class; 

LDi=number of pixels of each class in the whole area 

in the i-th variable class; ∑LAi=total number of pixels 

of containing landslide in the i-th variable class; 

∑LDi=total number of pixels of whole area in the i-th 

variable class. 

The FR values were standardized to a 

probability value range of [0, 1] as relative frequency 

(RF) in the subsequent stage. The RF values are 

obtained by dividing the FR value by the total sum of 

FR values within a single parameter.  

Figure 2. Maps of landslide controlling factors: (a) slope, (b) elevation, (c) aspect, (d) profile curvature, (e) land use, (f) geology, (g) 

distance to fault, (h) TWI, (i) distance to river, (j) distance to road, (k) SPI, and (l) plan curvature 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

329



Ngadisih et al. / Environment and Natural Resources Journal 2025; 23(4): 325-342

Figure 2. Maps of landslide controlling factors: (a) slope, (b) elevation, (c) aspect, (d) profile curvature, (e) land use, (f) geology, (g) 

distance to fault, (h) TWI, (i) distance to river, (j) distance to road, (k) SPI, and (l) plan curvature (cont.) 

The RF still has the limitation of treating all 

conditioning elements equally after equalization. To 

overcome this limitation and consider the 

interdependencies among the independent variables, 

the prediction rate (PR) was generated for the 

evaluation of each conditioning component using the 

training data set (Youssef et al., 2023). Equation (3) 

was used to get the PR for each class: 

PR =
(RF max − RF min)

(RF max − RF min)min
 (3) 

The PR of each component and the RF of each 

class were then combined to form the landslide 

susceptibility index (LSI), as illustrated below: 

LSI =  ∑( RF × PR)   (4) 

The vulnerability map for landslides is generated 

using the LSI value, ensuring accuracy and reliability. 

The model’s success rate is evaluated using the 

Receiver Operating Characteristic (ROC) from 60% of 

training data and 40% of testing data, with the AUC 

value above 0.5 or 50% indicating a successful model. 

(3) Vulnerability and capacity index

Vulnerability indices are crucial in assessing

the susceptibility of communities to hazards. These 

indices include social, economic, physical, and 

environmental factors. Environmental vulnerability is 

not considered due to the absence of protected area land 

use, and regional geography, infrastructure, and 

historical exposure are not considered. The disaster 

vulnerability index is strengthened by considering these 

factors. The susceptibility and capability of SMAEs are 

assessed using an index approach that consolidates data 

from surveys. Vulnerability indices include social 

vulnerability, economic vulnerability, and physical 

vulnerability. Social vulnerability includes factors like 

gender, age, age group, disability group, and income 

level. Economic vulnerability includes business capital 

size, while physical vulnerability refers to the value of 

business buildings. In this study, environmental 

vulnerability is not considered due to the absence of 

protected area land use. 

(4) Risk evaluation

The overall risk to SMAEs from landslides

was determined by integrating the hazard, 

vulnerability, and capacity assessments into a unified 

risk index. The risk was spatially mapped, providing a 

clear visual representation of the most vulnerable 

areas. Disaster risk studies can be carried out using the 

equation (3) and the flow diagram of this research is 

presented in Figure 3. 

Risk = Hazard ×  
Vulnerability

Capacity
 (5) 

(i) (j) 

(k) (l) 
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Figure 3. Method’s flow chart

3. RESULTS AND DISCUSSION

3.1 Landslide inventory

The preliminary inventory in Selopamioro 

village identifies multiple landslide sites and scars 

caused by natural and anthropogenic factors, such as 

deforestation and poor agricultural practices (Fadilah 

et al., 2019). The inventory was compiled through 

field surveys and image analysis using remote 

sensing imagery from 2010 to 2020. Selopamioro 

Village has a slope gradient ranging from flat to 

moderate, with some hamlets having a gentle slope. 

Landslide points are dispersed throughout the village 

area, aligning with research by Damayanti et al. 

(2023) indicating Selopamioro Village has the 

highest level of landslide vulnerability in Imogiri 

Sub-district, after Wukirsari Village, with a 

vulnerability area of 364.4 hectares. Landslide 

inventory is presented on the map in Figure 4. 
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Figure 4. Landslide inventory map 

3.2 Distribution SMAEs 

SMAEs in this study is categorized into three 

sectors: Upstream Agroindustry, Downstream 

Agroindustry, and Primary Sector. Upstream industry 

produces agricultural tools and machinery and the 

production facility industry used in the agricultural 

cultivation process. The Downstream industry 

processes agricultural products into raw materials or 

goods that are ready to be consumed or is a post-

harvest industry and agricultural product processing 

(Pratiwi et al., 2017). The SMAEs sector in 

Selopamioro Village is predominantly composed of 

Downstream Agroindustry in each hamlet. As shown 

in Figure 5, the hamlet with the most downstream 

SMAEs is Siluk I, followed by Pelemantung, Jetis, 

Lemahrubuh, and Nawungan I. Siluk I Hamlet is 

located in a relatively flat area, such as soil type, water 

drainage, and human activities, can also play a role in 

mitigating or exacerbating the risk in flat areas with no 

landslide points, as are Pelemantung, Lemahrubuh, 

and Nawungan I. In contrast, Jetis Hamlet, despite 

being located on a steep slope, has no recorded 

landslide points, according to the inventory data, 

which has allowed for the construction of many 

SMAEs in the area. Srunggo II Hamlet, located on a 

moderate slope, has a considerable number of 

landslide points, which has limited the number of 

SMAEs built there. Similarly, Kajor Wetan Hamlet is 

located in an area with a high level of landslide hazard, 

affecting the number of same in that location. 

Research by Nagara and Wibowo (2024) indicates that 

steeper land has greater potential for landslides, 

leading to higher difficulties and costs associated with 

land acquisition, including in the construction of 

SMAEs. 

3.3 Vulnerability assessment 

The study used a disaster vulnerability index for 

SMAEs in Selopamioro village, focusing on physical, 

social, and economic components. The analysis 

revealed that all SMAEs had low overall vulnerability 

to landslides, suggesting a low risk of landslide 

impacts on these enterprises (Table 3). Disaster 

vulnerability is linked to property damage and human 

casualties, and higher vulnerability can result in 

increased damage or prolonged recovery periods 

(Heryawan et al., 2016). The vulnerability indices 

analyzed were social vulnerability, economic 

vulnerability, and physical vulnerability. Social 

vulnerability, which includes factors like gender, age, 

disability group, and income level, emerged as the 

most significant contributor to overall SMAE 

vulnerability in Selopamioro. However, the study by 

Febriani (2020) found that economic vulnerability was 
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higher in certain regions of Selopamioro Village, 

while social vulnerability was more moderate. This 

discrepancy may be due to the focus on SMAEs actors 

as the unit of analysis, rather than village 

administration. 

Figure 5. SMAEs distribution in Selopamioro 

Table 3. Total vulnerability table of Selopamioro Village 

No Hamlet Social vulnerability Economy vulnerability Physics vulnerability Total vulnerability 

Volume Class Volume Class Volume Class Volume Class 

1   Jetis    1.4 Low 0.6 Low 0.4 Low 0.81 Low 

2 Kajor Kulon 1.5 Low 0.6 Low 0.4 Low 0.85 Low 

3 Kajor Wetan 1.5 Low 0.6 Low 0.4 Low 0.85 Low 

4 Kalidadap I 1.5 Low 0.6 Low 0.4 Low 0.85 Low 

5 Kalidadap II 1.6 Low 0.6 Low 0.4 Low 0.89 Low 

6 Kedung Jati 1.5 Low 0.6 Low 0.4 Low 0.85 Low 

7 Lanteng I 1.4 Low 0.6 Low 0.4 Low 0.81 Low 

8 Lanteng II 1.5 Low 0.6 Low 0.4 Low 0.85 Low 

9 Lemahrubuh 1.4 Low 0.6 Low 0.4 Low 0.81 Low 

10 Nawungan I 1.4 Low 0.6 Low 0.4 Low 0.81 Low 

11 Nawungan II 1.4 Low 0.6 Low 0.4 Low 0.81 Low 

12 Nogosari 1.5 Low 0.6 Low 0.4 Low 0.85 Low 

13 Pelemantung 1.4 Low 0.6 Low 0.4 Low 0.81 Low 

14 Putat 1.4 Low 0.6 Low 0.4 Low 0.81 Low 

15 Siluk I 1.4 Low 0.6 Low 0.4 Low 0.81 Low 

16 Siluk II 1.5 Low 0.6 Low 0.4 Low 0.85 Low 

17 Srunggo I 1.5 Low 0.6 Low 0.4 Low 0.85 Low 

18 Srungggo II 1.4 Low 0.6 Low 0.4 Low 0.81 Low 

Class index Low 1-1.6

Medium 1.7-2.3 

High 2.4-3.0 
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3.4 Capacity index analysis 

The Capacity Index Analysis was used to 

evaluate the preparedness of 18 hamlets in 

Selopamioro Village for mitigating landslide risk. The 

results showed a “Medium” capacity level, indicating 

a lack of resilience to disasters (Table 4). The index 

ranged from 0.4 to 0.8, indicating significant gaps in 

preparedness measures. One example was the absence 

of an early warning system for disasters, indicating 

that while some measures are in place, there are still 

significant gaps that need to be addressed. 

Selopamioro Village has a “Medium” capacity 

level for landslide preparedness, but its priority index 

for all hamlets is low (Figure 6). Factors contributing 

to this include insufficient policies and regulations 

related to landslide prevention and mitigation, 

inadequate coordination and resource allocation in the 

disaster response framework, and the absence of 

comprehensive landslide risk evaluations for specific 

regions. Currently, comprehensive landslide risk 

evaluations for particular regions within the village are 

missing under Integrated Risk Assessment and 

Planning, regarding the main barriers to conducting 

comprehensive landslide evaluations, including 

insufficient data, lack of expertise, and limited 

resources. These evaluations are not fully incorporated 

into the village’s development plans. In the 

Information System Development, Training, and 

Logistics domain, early warning systems, 

communication protocols, and public awareness 

campaigns regarding landslides are inadequate. 

Training programs for homeowners and emergency 

workers on landslide preparedness and response are 

also limited. The absence of equipment or vital 

resources for disaster mitigation can hinder response 

operations. Specific methods for mitigating landslide 

hazards in highly sensitive village regions are lacking. 

Current mitigation strategies, including slope 

stabilization and drainage improvement, are 

inadequate and require further development. 

Purnamasari et al. (2024) with their research in Central 

Java added that the material layer is very important for 

sustainable land management strategies aimed at 

controlling landslides. In addition, the potential depth 

of the sliding plane is managed through effective 

environmental management practices, including 

proper disposal of household waste and minimizing 

steep slope cutting.

Table 4. Total capacity table of Selopamioro Village 

No Hamlet Priority index Hamlet 

capacity 

index 

Capacity 

level 
Strengthening 

policies and 

institutions 

Risk 

assessment 

and integrated 

planning 

Information 

system 

development, 

training and 

logistic 

Thematic 

handling of 

disaster-prone 

areas 

Increasing the 

effectiveness of 

disaster prevention 

and mitigation 

1 Jetis 1.6 0.6 0.2 0.5 0.5 0.74 Medium 

2 Kajor Kulon 1.4 0.6 0.2 0.5 0.2 0.65 Medium 

3 Kajor Wetan 1.7 0.6 0.2 0.5 0.5 0.76 Medium 

4 Kalidadap I 1.5 0.6 0.2 0.5 0.4 0.64 Medium 

5 Kalidadap II 1.5 0.3 0.2 0.25 0.25 0.53 Medium 

6 Kedung Jati 1.7 0.5 0.2 0.5 0.5 0.74 Medium 

7 Lanteng I 1.4 0.6 0.2 0.5 0.3 0.67 Medium 

8 Lanteng II 1.6 0.6 0.2 0.5 0.5 0.74 Medium 

9 Lemahrubuh 1.5 0.6 0.2 0.5 0.4 0.69 Medium 

10 Nawungan I 1.7 0.6 0.2 0.5 0.5 0.76 Medium 

11 Nawungan II 1.4 0.6 0.1 0.3 0.5 0.6 Medium 

12 Nogosari 1.2 0.6 0.1 0.2 0.5 0.53 Medium 

13 Pelemantung 1.4 0.3 0.1 0.5 0.4 0.6 Medium 

14 Putat 1.7 0.3 0.2 0.5 0.5 0.7 Medium 

15 Siluk I 1.5 0.5 0.2 0.2 0.5 0.59 Medium 

16 Siluk II 1.7 0.6 0.2 0.25 0.4 0.66 Medium 

17 Srunggo I 1.4 0.6 0.2 0.5 0.3 0.67 Medium 

18 Srungggo II 1.7 0.4 0.2 0.5 0.2 0.67 Medium 
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Figure 6. Landslide Vulnerability in Selopamioro 

3.5 Hazard analysis 

A key step in landslide susceptibility modeling 

is identifying the connection between previous 

landslides and their contributing factors. Based on 

calculations in Table 5, the factors of elevation, 

geological formation, profile curvature, and plane 

curvature had the highest values compared to other 

landslide determining factors. Meanwhile, land use, 

SPI, distance to roads, slope, TWI, distance to faults, 

aspect, and distance to rivers had the lowest values. 

Table 5. Frequency ratio (FR), Relative frequency (RF) for each class, and the prediction rate (PR) for each conditioning factor 

Factor Class 

code 

Class Class 

pixels 

Percent 

class 

pixels 

Hotspot 

pixels 

Percent 

hotspot 

pixels 

FR RF PR 

Land use 1 Water body 340 1.5 0 0.0 0.00 0.00 1.6 

2 Building/structure 2 0.0 0 0,0 0.00 0.00 

3 Grassland 13 0.1 0 0.0 0.00 0.00 

4 Plantation/garden 1,148 5.0 3 0.1 0.02 0.28 

5 Settlement and activity 

Areas 

3,664 16.0 15 0.6 0.03 0.44 

6 Paddy field 2,290 10.0 1 0.0 0.00 0.05 

7 Rainfed paddy field 2,256 9.8 1 0.0 0.00 0.05 

8 Shrubland 1,571 6.9 2 0.1 0.01 0.14 

9 Cultivated land 11,637 50.8 5 0.2 0.00 0.05 

Total 22,921 27 0.08 1.00 

Elevation 

(m) 

1 6.5-100 7,962 34.7 22 0.8 0.02 0.79 2.8 

2 100-200 7,219 31.5 2 0.1 0.00 0.08 

3 200-300 6,273 27.4 3 0.1 0.00 0.14 

4 300-377.75 1,467 6.4 0 0.0 0.00 0.00 

Total 22,921 27 0.03 1.00 
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Table 5. Frequency ratio (FR), Relative frequency (RF) for each class, and the prediction rate (PR) for each conditioning factor (cont.) 

Factor Class 

code 

Class Class 

pixels 

Percent 

class 

pixels 

Hotspot 

pixels 

Percent 

hotspot 

pixels 

FR RF PR 

Slope (%) 1 0-2 1,640 7.2 0 0.0 0.00 0.00 1.3 

2 2-4 685 3.0 0 0.0 0.00 0.00 

3 4-8 1,657 7.2 1 0.0 0.01 0.13 

4 8-16 4,771 20.8 4 0.1 0.01 0.18 

5 16-35 8,692 37.9 15 0.6 0.01 0.36 

6 35-55 4,418 19.3 7 0.3 0.01 0.33 

7 >55 1,058 4.6 0 0.0 0.00 0.00 

Total 22,921 27 0.04 1.00 

Aspect 1 North 5,916 25.8 6 0.2 0.01 0.10 1.0 

2 Northeast 4,241 18.5 7 0.3 0.01 0.17 

3 East 2,770 12.1 3 0.1 0.01 0.11 

4 Southeast 1,087 4.7 3 0.1 0.02 0.28 

5 South 769 3.4 0 0.0 0.00 0.00 

6 Southwest 1,486 6.5 2 0.1 0.01 0.14 

7 West 2,731 11.9 3 0.1 0.01 0.11 

8 Northwest 3,921 17.1 3 0.1 0.01 0.08 

Total 22,921 27 0.08 1.00 

Plan 

curvature 

1 <-2.7 16 0.1 0 0.0 0.00 0.00 1.8 

2 -2.7 to -0.3 4,213 18.4 8 0.3 0.02 0.51 

3 -0.3 to 0.8 17,463 76.2 18 0.7 0.01 0.27 

4 0.8 to 2.5 1,211 5.3 1 0.0 0.01 0.22 

5 >2.5 18 0.1 0 0.0 0.00 0.00 

Total 22,921 27 0.03 1.00 

Profile 

curvature 

1 <-2.7 15 0.1 0 0.0 0.00 0.00 2.4 

2 -2.7 to -0.3 4,993 21.8 3 0.1 0.01 0.11 

3 -0.3 to 0.8 16,300 71.1 18 0.7 0.01 0.20 

4 0.8 to 2.5 1,563 6.8 6 0.2 0.03 0.69 

5 >2.5 50 0.2 0 0.0 0.00 0.00 

Total 22,921 27 0.05 1.00 

Stream 

power index 

(SPI) 

1 <-8.6 3,900 17.0 1 0.0 0.00 0.05 1.5 

2 -8.6 to -3.2 4,053 17.7 7 0.3 0.01 0.32 

3 -3.2 to 2.2 13,276 57.9 15 0.6 0.01 0.21 

4 2.2 to 7.6 1,692 7.4 4 0.1 0.02 0.43 

Total 22,921 27 0.05 1.00 

Topographic 

wetness 

index 

(TWI) 

1 0.5-4.5 1,525 6.7 3 0.1 0.02 0.28 1.2 

2 4.5-6 9,889 43.1 11 0.4 0.01 0.16 

3 6-8 7,158 31.2 9 0.3 0.01 0.18 

4 8-11 3,133 13.7 1 0.0 0.00 0.04 

5 >11 1,216 5.3 3 0.1 0.02 0.35 

Total 22,921 27 0.06 1.00 

Geology 1 Alluvium 2,288 10.0 10 0.4 0.04 0.76 2.4 

2 Undifferentiated 

Volcanic Rocks 

1,050 4.6 0 0.0 0.00 0.00 

3 Formasi Ngalanggran 15,475 67.5 16 0.6 0.01 0.18 

4 Sambipitu Formation 1,150 5.0 0 0.0 0.00 0.00 

5 Wonosari Formation 2,958 12.9 1 0.0 0.00 0.06 

Total 22,921 27 0.05 1.00 
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Table 5. Frequency ratio (FR), Relative frequency (RF) for each class, and the prediction rate (PR) for each conditioning factor (cont.) 

Factor Class 

code 

Class Class 

pixels 

Percent 

class 

pixels 

Hotspot 

pixels 

Percent 

hotspot 

pixels 

FR RF PR 

Distance to 

fault (m) 

1 0-500 5,467 23.9 7 0.3 0.01 0.25 1.1 

2 500-1,000 6,886 30.0 8 0.3 0.01 0.22 

3 1,000-1,500 7,511 32.8 7 0.3 0.01 0.18 

4 1,500-2,000 2,727 11.9 5 0.2 0.02 0.35 

5 >2,000 330 1.4 0 0.0 0.00 0.00 

Total 22,921 27 0.04 1.00 

Distance to 

road (m) 

1 <25 2,604 11.4 8 0.3 0.03 0.46 1.5 

2 25-50 5,464 23.8 12 0.4 0.02 0.33 

3 50-100 5,307 23.2 4 0.1 0.01 0.11 

4 100-200 5,123 22.4 1 0.0 0.00 0.03 

5 >200 4,423 19.3 2 0.1 0.00 0.07 

Total 22,921 27 0.06 1.00 

Distance to 

river (m) 

1 <10 1,849 8.1 3 0.1 0.01 0.31 1.0 

3 25-50 4,526 19.7 6 0.2 0.01 0.25 

4 50-100 5,523 24.1 7 0.3 0.01 0.24 

5 >100 11,023 48.1 11 0.4 0.01 0.19 

Total 22,921 27 0.04 1.00 

Based on the results of the analysis using the 

frequency ratio, the landslide hazard index value in the 

study area ranges from 0-1 (Figure 7). The closer the 

value is to 1, the higher the level of danger. Landslides 

in the study area strongly influenced by topographic 

conditions where landslides occur in areas with an 

altitude of 0-100 m with a slope of 16-55%. Although 

the soil moisture level is at 4.5-6, the dominant surface 

material of the landslide is in the Nglanggaran 

geological formation, which is old volcanic material 

that has weathered so that landslides are easy to occur. 

This is not much different from the research of Radjah 

et al. (2020) in Karangkobar. Their research shows 

that the highest FR value is found in the distance of the 

area from the highway in the range of 0-25 m, the 

distance from the river in the range of 100-125 m, flat 

curvature and use of garden land. 

An accuracy test was conducted to determine 

the level of accuracy between landslide maps and 

landslide distribution (Figure 8). From the AUC 

calculation, the success rate value obtained from the 

training data was a value of 0.887 (Figure 9). While 

the prediction rate value from the testing data was 

0.849. From both values, it can be concluded that the 

level of accuracy is good. 

Hazard is one of the variables used to calculate 

the risk level. The determination of the index class is 

based on the Landslide Hazard Map obtained from the 

official website of the Center for Volcanology and 

Geological Disaster Mitigation (PVMBG). The 

landslide map classifies the hazard index class into 

three classes, namely low, medium, and high. Tian et 

al. (2017) identified three factors contributing to 

landslides: (1) terrain data (elevation, slope angle, 

slope aspect, curvature, slope position, distance to 

drainage); (2) geological data (lithology); and (3) 

seismic data (seismic intensity, peak ground 

acceleration, and distance to the causative source). 

Fadilah et al. (2019) asserted that landslides mostly 

result from gravitational pressures on steep slopes, 

with contributing factors including excessive rainfall, 

improper land use, and geological formations.  

The level of landslide hazard is classified into 

three classes (Figure 7). Selopamioro Village has 

59.2% high hazard zones, 21.8% medium hazard 

zones and 19% low hazard zones. The high landslide 

hazard in Selopamioro Village is affected by its steep 

slope. The higher the hazard and vulnerability level, 

the higher the area’s risk level. In line with research by 

Budha et al. (2020), which states that the class of 

factors that have a greater influence on higher 

landslide hazards include land with an altitude range 

of 1,000 m to 1,500 m and slopes steeper than 30°. 
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Figure 7. Landslide capacity map of Selopamioro 

Figure 8. Landslide hazard maps with frequency ratio 

Based on the analysis of the map in Figure 7, the 

hazard risk in Selopamioro Village ranges from 

moderate to high. The dominant risk level is high, 

which covers Pelemantung Hamlet, Kalidadap I, 

Kalidadap II, Kajor Kulon, Kajor Wetan, and Jetis. In 

areas with a high level of danger, based on the 

Landslide Inventory, there are landslide points in each 

area. Based on the distribution of SMAEs, areas with 
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a high level of danger are areas with a low number of 

SMAEs. Landslides are one of the most destructive 

hazard processes causing loss of life and damage to the 

built environment (Luo et al., 2023). Therefore, the 

establishment of business buildings in areas with high 

landslide hazard levels is very risky for the 

sustainability of SMAEs. Establishing business 

infrastructure in high-risk zones poses significant 

challenges to the sustainability of SMAEs. 

Policymakers must prioritize comprehensive land-use 

planning, integrating slope stabilization projects and 

drainage improvements to enhance safety and 

minimize risk (Cheung, 2021). 

Figure 9. (a) Succes rate training data sample, (b) Prediction rate testing data sample 

The study emphasizes the significance of 

community-based disaster risk management 

(CBDRM) in addressing landslide hazards. It suggests 

that local communities should be involved in 

participatory planning processes to develop effective 

mitigation strategies. The village government and 

villagers have been implementing mitigation measures 

such as strengthening slopes and forming the Disaster 

Risk Reduction Forum (FPRB). The study also 

highlights the role of climate change in exacerbating 

landslide hazards (Holcombe et al., 2013). Rainfall 

induces changes in surface and groundwater 

dynamics that reduce the slope stability conditions and 

cause landslides (Guzzetti et al., 2022). The study 

suggests that integrating modern technologies like 

remote sensing, GIS, and AI for hazard prediction and 

management is crucial. CNN-based landslide 

susceptibility mapping has demonstrated high 

accuracy in predicting vulnerable areas (Yi et al., 

2020). 

Future research should focus on the socio-

economic impacts of landslides on SMAE and explore 

long-term strategies to increase resilience. Steps such as 

terracing, improving land use practices, and vegetation 

restoration can significantly reduce risk (Mujiyo et al., 

2024). By implementing these recommendations, 

policymakers and stakeholders can support sustainable 

development in disaster-prone rural areas. For example, 

in Sambak Village, Magelang, research conducted by 

Wibawanti et al. (2023) has implemented mitigation 

activities in controlling landslides vegetatively. This 

program is called “Climate Village Program 

(ProKlim)” involves planting vegetation in landslide-

prone areas. This activity can serve as a reference for 

Selopamioro Village. 

4. CONCLUSION

This study assessed the risk of landslides to 

small and medium agro-industry enterprises (SMAEs) 

in Selopamioro village, Indonesia. The findings 

indicate that the current level of vulnerability of 

SMAEs to landslides is relatively low across the 

village, suggesting that existing landslides do not 

significantly impact the sustainability of these 

businesses. However, the capacity for disaster 

response in Selopamioro village is only moderate, 

highlighting a potential gap in preparedness for future 

landslides.  

These findings offer valuable insights for both 

SMAEs and local authorities. While the current 

vulnerability of SMAEs appears low, proactive 

measures to mitigate future landslide risks are still 

recommended. SMAEs can explore options such as 

improving infrastructure resilience, implementing 
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early warning systems, and developing evacuation 

plans. Local authorities should focus on strengthening 

disaster preparedness efforts in Selopamioro Village. 

This may involve capacity building initiatives for local 

communities, investing in critical infrastructure, and 

developing comprehensive landslide risk management 

plans. The hazard risk in Selopamioro Village ranges 

from moderate to high. The dominant risk level is 

high, which covers Pelemantung Hamlet, Kalidadap I, 

Kalidadap II, Kajor Kulon, Kajor Wetan, and Jetis.  
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