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Air pollution levels have remained a significant issue worldwide despite 

advancements in technology, primarily due to rapid industrialization and 

urbanization. Among the various pollutants, PM2.5 significantly impacts air 

quality, posing health risks such as respiratory and cardiovascular diseases. 

Accurate prediction of PM2.5 levels is essential for effective air quality 

management. However, multicollinearity in air quality data can hinder model 

performance. To address this issue, this study introduces the AdjcorT-RBFNN, a 

two-stage feature selection method, to classify air quality in Klang, Selangor. The 

AdjcorT-RBFNN model selects the optimal combination of 9 feature 

combinations from 10 variables and outperforms the RBFNN model, which uses 

all 10 variables. With 7 hidden nodes and a learning rate of 0.01 for both models, 

AdjcorT-RBFNN achieves higher accuracy (0.62), sensitivity (0.64), specificity 

(0.60), precision (0.60), F1 score (0.62), and AUROC (0.62), confirming its 

effectiveness in classification tasks. The optimal features for predicting air 

quality in Klang are identified as PM2.5, PM10, relative humidity, SO2, wind 

direction, O3, CO, ambient temperature, and NO2. Monte Carlo simulations 

validate the model’s effectiveness, showing that AdjcorT-RBFNN consistently 

outperforms RBFNN, especially with strong negative correlations (ρ=-0.8) and 

larger sample sizes (N=150 and 200) further enhance classification accuracy. 

Compared to RBFNN, AdjcorT-RBFNN enhances class discrimination and 

reduces false positives, improving its reliability in detecting true classifications. 

These findings highlight the importance of feature selection in improving model 

performance, particularly in datasets with multicollinearity. Researchers, and 

health organizations can leverage AdjcorT-RBFNN for more accurate air quality 

predictions, supporting informed pollution control strategies. 
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1. INTRODUCTION

Air quality prediction has emerged as a 

significant issue in recent years, due to the increasing 

effects of air pollution on human health, climate 

change, and ecosystems. PM2.5, fine particulate 

matter with a diameter of 2.5 micrometers or smaller, 

is a major air pollutant often associated with severe 

health risks. These particles are small enough to be 

inhaled deeply into the lungs, and because of their size, 

they can also enter the bloodstream. PM2.5 is 

primarily generated from industrial emissions, vehicle 

exhaust, biomass burning, and other sources of 

combustion, as well as natural sources such as dust 

storms and wildfires. Due to its fine nature, PM2.5 can 
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carry a variety of toxic compounds, including heavy 

metals, organic chemicals, and acids, which contribute 

to its toxicity. Pregnancy complications, lung cancer, 

cardiovascular and respiratory disorders, and other 

health problems have all been connected to exposure 

to PM2.5. Notably, Jalali et al. (2021) found a 

substantial correlation between elevated PM2.5 levels 

and higher mortality rates in a country in the Eastern 

Mediterranean. Furthermore, prolonged exposure to 

high levels of PM2.5 is known to cause oxidative 

stress, inflammation, and damage to cells and tissues, 

which exacerbate these health effects. 

As a result, PM2.5 pollution has become a 

serious public health concern worldwide, including in 

Malaysia, where the Department of Environment 

Malaysia (DOE) began measuring PM2.5 in April 

2017. Machine learning, particularly neural networks, 

is increasingly applied in classification and regression 

tasks. One of the primary advantages of using machine 

learning for air quality classification is its ability to 

process complex datasets and identify non-linear 

relationships among variables. A study by Zhang et al. 

(2023) on air quality index prediction in six Chinese 

urban areas found that ensemble approaches enhanced 

prediction accuracy by including numerous data 

sources, such as pollution and meteorological data. 

Additionally, Liu (2024) highlighted the limitations of 

traditional empirical models, stating that machine 

learning offers more accurate predictions for air 

quality management. Radial Basis Function Neural 

Network (RBFNN) is one of the well-known neural 

networks that offer fast convergence compared to 

others, such as Multi-Layer Perceptrons (Zhou et al., 

2019a), primarily due to its simpler structure and 

fewer training parameters. A study by Li et al. (2022) 

on predicting water quality parameters also found that 

the RBFNN model demonstrated promising 

performance with high accuracy in individual 

indicator predictions, though it still exhibited a 

significant accuracy gap in some cases. 

While neural networks offer advantages in 

processing complex datasets, effective feature 

selection is crucial in improving the reliability and 

performance of machine learning models. Suresh et al. 

(2022) emphasize that reducing the complexity of the 

dataset through feature selection can lead to improved 

model performance. Nazari et al. (2023) also highlight 

that feature selection helps classification algorithms 

focus on the most relevant features, reducing 

computational burden and improving accuracy. 

Similarly, Ul-Saufie et al. (2022) demonstrate that 

wrapper feature selection approaches can improve air 

pollution prediction by selecting important features, 

with brute-force being particularly effective. 

Nevertheless, a major challenge in predictive 

modelling is addressing multicollinearity among air 

pollutants and meteorological factors, which can lead 

to inaccurate predictions. Many air pollutants are 

strongly correlated, meaning their concentrations tend 

to change together or also know has multicollinearity 

exist. Zhou et al. (2019b) found a high correlation 

between PM2.5 and PM10 levels in their study on air 

pollution and respiratory diseases. Their findings 

indicate that PM2.5 often constitutes a significant 

portion of PM10 concentrations, contributing to 

shared health impacts on respiratory health. Similarly, 

gases like carbon monoxide (CO) and nitrogen dioxide 

(NO2) also demonstrate correlated increases, primarily 

as a result of vehicle emissions and combustion 

processes inherent to urban environments (Wang et 

al., 2022). When these relationships are not properly 

addressed, machine learning models may struggle to 

determine which factors are truly important, thus 

reducing the reliability of predictions. 

This study focuses on Klang, Selangor, due to its 

severe pollution levels, heavily influenced by industrial 

emissions and port-related activities. Klang’s air quality 

is largely affected by both local industrial zones and 

transboundary pollution from shipping activities, 

making it a crucial case study. Mohtar et al. (2022) 

highlighted in their study that the Klang station in Klang 

Valley, near Malaysia’s busiest shipping port, Port 

Klang, often experiences the highest concentrations of 

particulate matter, making it a significant contributor to 

the country’s air pollution issues. Despite its 

importance, few studies have examined feature 

selection techniques focused on multicollinearity issues 

for air quality classification in Klang.  

Furthermore, this study considers ten key input 

variables influencing PM2.5 levels, including six 

pollutants (PM10, SO2, NO2, O3, and CO). These 

pollutants were selected due to their significant impact 

on air pollution, as supported by previous studies on 

air quality classification, such as the study by Sapari 

et al. (2023). Moreover, Liu et al. (2020) found that 

changes in wind speed and temperature directly 

influence pollutant concentrations in China. 

Specifically, their study reported that an increase in 

wind speed generally improves air quality by 

dispersing pollutants away from densely populated 

areas. In addition, Wattimena et al. (2022) highlighted 

the importance of meteorological factors such as wind 
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speed, cloud volume, air pressure, temperature, 

relative humidity, and precipitation in forecasting air 

quality indices and improving prediction accuracy. 

However, only four meteorological parameters (wind 

direction, wind speed, relative humidity, and 

temperature) were included in this study, as these are 

the key parameters consistently recorded by the DOE. 

The AdjcorT two-stage feature selection 

method has been shown to enhance RBFNN 

classification by mitigating multicollinearity, as 

demonstrated in a study by Arafin et al. (2024). In their 

study, they applied the method to Shah Alam’s air 

quality dataset, improving predictive accuracy. 

However, their study did not explore its applicability 

in different urban environments with distinct pollution 

sources, such as Klang. This research aims to fill this 

gap by applying the AdjcorT-RBFNN method to 

Klang’s air quality dataset and verifying its 

performance through Monte Carlo simulations.  

By systematically evaluating the effect of 

multicollinearity and comparing AdjcorT-RBFNN 

with a RBFNN model, this study seeks to enhance air 

quality classification for improved environmental 

decision-making. 

2. METHODOLOGY

2.1 Data description

The air quality dataset for the Klang, Selangor 

(CA21B) area was obtained from the Department of 

Environment (DOE) for the years 2018 to 2022. The 

extracted variables include Particulate Matter (PM2.5 

and PM10), Sulphur Dioxide (SO2), Nitrogen Dioxide 

(NO2), Ground-Level Ozone (O3), Carbon Monoxide 

(CO), wind direction, wind speed, relative humidity 

and ambient temperature, all in hourly format, 

comprising a total of 43,824 samples. However, the 

PM2.5 data for 1st January 2018, is not available for 

every hour. Therefore, we removed 24 data points 

from 1st January 2018, reducing the dataset to 43,800 

samples. Moreover, the dataset contains missing 

values as shown in Table 1. According to the table, the 

percentage of missing values of all variables are below 

10%, with NO2 has the highest missing value (7.7%). 

Meanwhile, data of ambient temperature has lowest 

missing value which is 0.4% of dataset. According to 

Chen and Li (2024), failure of monitoring instruments 

is one of the most common causes of missing data. The 

instruments malfunction might happen due to the 

extreme weather, power outages, or periodic 

maintenance, resulting in gaps in data collection. 

(Ghazali et al., 2021). Additionally, missing values in 

air quality datasets can adversely affect the 

performance of analytical models, leading to 

misleading (Ghazali et al., 2021). Thus, this study 

employed a widely used imputation method to impute 

the missing values which is linear interpolation. 

According to Van Rossum et al. (2023), linear 

interpolation is a simple method yet it has been shown 

to yield higher imputation accuracy. 

Table 1. Percentage of missing values 

Variable N Missing value 

PM2.5 43,572 228 (0.5%) 

PM10 43,462 338 (0.8%) 

SO2 40,648 3,152 (7.2%) 

NO2 40,414 3,386 (7.7%) 

O3 41,450 2,350 (5.4%) 

CO 41,219 2,581 (5.9%) 

WD 43,596 204 (0.5%) 

WS 43,594 206 (0.5%) 

Humidity 43,511 289 (0.7%) 

Temperature 43,606 194 (0.4%) 

2.2 Research framework 

Figure 1 shows the research framework 

employed in this study to predict PM2.5 levels in 

Klang, Malaysia. The process begins with the 

collection of air quality data from the Department of 

Environment, Malaysia, for the years 2018 to 2022. 

Then, the data undergoes pre-processing, involving 

linear interpolation for imputing missing values, 

conversion of hourly data to daily averages, binary 

classification of PM2.5 levels, min-max normalization 

for feature scaling, and the application of the Synthetic 

Minority Oversampling Technique (SMOTE) to 

handle class imbalance.  

Next, we use Spearman Correlation to explore 

the correlation between independent variables within 

the dataset to understand its extent and impact on 

model performance. To address this, the AdjcorT 

feature selection method is employed to rank variables 

based on their correlation and importance, mitigating 

the influence of multicollinearity. Subsequently, 

feature subsets are evaluated using an Artificial Neural 

Network (ANN) model to identify the best 

combinations for PM2.5 prediction. Additionally, two 

models are then developed and compared: a standard 

RBFNN and a Two-Stage AdjcorT-RBFNN, which 

integrates AdjcorT feature selection with RBFNN. 

The models are evaluated based on classification 

metrics such as accuracy, sensitivity, specificity, and 
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AUROC to identify the best-performing model. 

Finally, the robustness of the selected model is 

validated using simulation data with varying sample 

sizes and correlations, ensuring its reliability in 

identifying important predictors under various 

conditions. 

Figure 1. Research framework 

2.3 Adjusted correlation sharing t-test 

Ibrahim (2020) extended the variable selection 

method which is correlation sharing t-statistics (corT), 

by developing an adjusted version namely adjusted 

correlation sharing t-test (AdjcorT). Both methods 

rank the importance of features while considering the 

high correlation between variables. However, the 

algorithm of AdjcorT allowed both positive and 

negative correlation between variables, meanwhile 

corT considers only positive correlations. The 

standard t-statistics were calculated first using 

equation shows in (1). Si is the pooled standard 

deviation within the group for the i-th variable. x̅ij

represents the average of the i-th variable for the j-th 

class or target variable (where j=0 or j=1). The 

equation of AdjcorT is displayed in (2): 

Ti =  
x̅i1−x̅i0

Si
 (1) 

ri = sign (
x̅i1−x̅i0

Si
) × [max(0≤ρ≤1)

1

w
∑ |Tj|j∈Cρ(i) ]   (2) 

A score, or an AdjcorT value, ri, is assigned to 

each variable. This value represents the average of all t-

statistics for variables that have a correlation (in 

absolute value) of at least ρ with variable i. 

Additionally, w denotes the cardinality of Cρ(i), where 

Cρ(i) is the set of indices of variables whose correlation 

(in absolute value) with variable xi is greater than or 

equal to ρ. According to Ibrahim (2020), the optimal 

value of ρ should be chosen to maximize the average. 

Moreover, since the t-scores for each variable are 

calculated to determine the correlation, this method is 

applicable only to continuous variables. 
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2.4 Artificial neural network 

Artificial Neural Network (ANN) is a machine 

learning that designed inspired of biological neural 

networks. An ANN has three layers: the input layer 

(which consists of input variables), the hidden layer 

(which applies activation functions), and the output 

layer. They are designed to identify patterns and address 

complex problems by learning from data. ANNs consist 

of interconnected artificial neurons, also known as 

nodes, that work collaboratively to process information. 

Each neuron receives input, processes it, and generates 

output that can be transmitted to successive neurons in 

the network. This design enables artificial neural 

networks to perform tasks such as classification, 

regression, and pattern recognition. In our study, we 

used R Studio to implement an ANN model using the 

nnet package. To effectively train an ANN, several key 

hyperparameters must be set. These include the number 

of hidden neuron and learning rate, where the number 

of hidden neurons we set is 7 and 0.01 for learning rate 

as suggested by Ul-Saufie et al. (2022). The activation 

function used in the hidden layer is the logistic sigmoid, 

which maps inputs to a range between 0 and 1. 

2.5 Radial basis function neural network (RBFNN) 

RBFNN is a subset of ANN that share the same 

theoretical framework, consisting of three layers 

which is input, hidden and output layer. The difference 

is that RBFNNs use a radial basis function, typically 

Gaussian functions, as the activation function. 

RBFNN are particularly effective in addressing 

nonlinear relationships in data, such as air quality 

measurements. Their ability to approximate complex 

functions with relatively few parameters makes them 

highly suitable for tasks like pattern recognition and 

function approximation. The RSNNS package in 

RStudio was used to implement the RBFNN. 

2.6 Performance metrics 

Different performance metrics are essential for 

evaluating and comparing machine learning 

classification models, enabling informed decisions 

about model selection and improvement (Akshay et al., 

2022). According to Ibrahim (2020), accuracy, 

sensitivity, specificity, and Area Under the Receiver 

Operating Characteristic (AUROC) are common key 

metrics used in previous study to assess classification 

model. For instance, Alalwany and Mahgoub (2024) 

employed accuracy, precision, recall, F1 score, and 

ROC metrics for evaluating the performance of their 

model on an ensemble learning-based real-time 

intrusion detection scheme for in-vehicle networks. 

Moreover, Chandra et al. (2022) used performance 

metrics including accuracy, specificity, F1 score, 

sensitivity, and precision to predict Jakarta’s air quality. 

In this study, accuracy, sensitivity, specificity, 

precision, F1 score, and AUROC are used to evaluate 

model performance of using real-world data and 

simulated data. Both real-world air quality data and 

simulated data were used to assess the classification 

effectiveness of the RBFNN and adjcorT-RBFNN 

models. The real data evaluation examines model 

performance based on actual air quality measurements 

from Klang, while the simulated data evaluation helps 

analyze the models’ behavior under controlled 

conditions, particularly in handling multicollinearity. 

The combination of these two evaluations ensures a 

comprehensive assessment of the models’ predictive 

capabilities. The specific settings for generating the 

simulated datasets, including sample sizes, correlation 

structures, and iteration processes, are detailed in 

Section 2.7. 

2.7 Monte carlo simulation 

Monte Carlo Simulation is a computational 

technique used to model the probability of different 

outcomes in systems influenced by randomness. It 

relies on repeated random sampling to approximate 

results, making it useful for solving problems involving 

uncertainty and complex decision-making (Liu, 2024). 

This method is widely applied in finance, engineering, 

healthcare, and machine learning, where it helps 

optimize strategies by evaluating potential scenarios. 

Monte Carlo Simulation is particularly valuable when 

analytical solutions are infeasible due to system 

complexity. In this study, Monte Carlo Simulation was 

employed to systematically generate datasets with 

varying correlation structures and sample sizes. This 

process allowed for the evaluation of how different 

levels of correlation affect the classification 

performance of RBFNN and adjcorT-RBFNN. 

To achieve this, we use RStudio to run both the 

RBFNN and AdjcorT-RBFNN models using simulated 

data with varying sample sizes (n=50, 100, 150, 200) 

and correlation values (ρ=-0.8, -0.5, -0.2, 0, 0.2, 0.5, 

0.8) to evaluate the impact of correlation and sample 

size on classification accuracy. Each scenario was 

simulated over 100 iterations to ensure statistical 

robustness and reduce variability in performance 

estimates. During each iteration, the models were 

trained and evaluated on a newly generated dataset, 

allowing us to analyse how correlation and sample size 
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influence classification performance. By incorporating 

multiple iterations, we mitigated the effects of random 

variations in individual datasets, ensuring more reliable 

comparisons between the models. This simulation-

based validation helps confirm whether AdjcorT 

effectively addresses multicollinearity and enhances the 

classification capability of RBFNN, particularly under 

different correlation strengths. 

3. RESULTS AND DISCUSSION

3.1 Data pre-processing

Data transformation was employed in this 

study, where the hourly dataset was converted to daily 

data by aggregating the values over 24 hours. 

Moreover, the dependent variable, PM2.5D+1 values 

was transformed into binary data. Kalajdjieski et al. 

(2020) suggested separating the air quality category 

into two groups only, polluted and not polluted. Table 

2 shows the PM2.5 breakpoints (24-hour average) 

according to DOE guidelines. 

The descriptive statistics of the dataset after 

data transformation are shown in Table 3. The total 

number of samples (N) was reduced to 1,824 because 

the hourly data was transformed into daily data. Based 

on the table, the average PM2.5 levels is 26 µg/m3, 

while the maximum value is 154 µg/m3. Moreover, the 

standard deviation of SO2 is the lowest (0.001), while 

the highest standard deviation is 35, which 

corresponds to wind direction. This wide difference in 

scale can affect the accuracy of classification. Hence, 

we employed min-max normalization to standardize 

these measurements, thereby enhancing the 

interpretability of the results, following a study by 

Aarthi et al. (2023). In addition, the distribution of 

PM2.5 categories is not balanced as shown in Figure 

2, where not polluted (86%) category is more than 

polluted (14%). To address this issue, the applied 

Synthetic Minority Over-sampling Technique 

(SMOTE) was applied to the dataset. 

Table 2. Binary labels for the respective PM2.5 breakpoint and AQI categories 

AQI category PM2.5 breakpoints Binary labels 

Good 0.0-12.0 Not polluted 

Moderate 12.1-35.4 Not polluted 

Unhealthy for sensitive groups 35.5-55.4 Polluted 

Unhealthy 55.5-150.4 Polluted 

Very unhealthy 150.5-250.4 Polluted 

Hazardous 250.5 and above Polluted 

Table 3. Descriptive statistics before data pre-processing 

Variable N Mean Median Std. Dev. Skewness Min Max 

PM2.5 1,824 26.309 24.206 12.341 3.720 9.134 154.845 

PM10 1,824 35.890 33.103 15.529 2.880 10.774 180.227 

SO2 1,824 0.002 0.001 0.001 2.512 0.000 0.009 

NO2 1,824 0.017 0.016 0.005 0.453 0.003 0.040 

O3 1,824 0.015 0.015 0.005 0.662 0.002 0.040 

CO 1,824 0.871 0.852 0.264 0.305 0.122 1.835 

WD 1,824 169.988 161.410 35.632 1.093 72.039 327.733 

WS 1,824 1.375 1.319 0.340 0.933 0.556 3.500 

Humidity 1,824 80.518 80.413 5.916 -0.092 58.659 100.000 

Temperature 1,824 28.350 28.442 1.157 -0.367 23.204 31.281 

The descriptive statistics after data pre-

processing were recomputed, as shown in Table 4. 

This table presents the descriptive statistics of the 

variables after data normalization and standardization. 

The total number of samples increased due to the 

application of the SMOTE up-sampling technique. 

The dataset now consists of 3,089 samples, with 80% 

used for training and 20% for testing. According to the 

table, the minimum and maximum values of all 

variables are 0 and 1, respectively. This result 

indicates that all variables has successfully scaled into 

a standard range between 0 and 1. Furthermore, 
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Figure 3 shows the distribution of PM2.5 category 

after employed SMOTE technique are more balanced 

now with 50.9% of dataset are not polluted category 

while 49.1% of dataset are polluted category. Hence, 

the dataset is more suitable to train for classification 

task because SMOTE method SMOTE can 

significantly enhance the classification performance 

of machine learning models, particularly in scenarios 

where the minority class is critical as highlighted by 

Ariansyah et al. (2023). 

Figure 2. PM2.5D+1 distribution (Before SMOTE) 

Table 4. Descriptive statistics after data pre-processing 

Variable N Mean Median Std. Dev Skewness Min Max 

PM2.5 3,089 0.127 0.108 0.087 2.908 0 1 

PM10 3,089 0.158 0.136 0.094 2.259 0 1 

SO2 3,089 0.172 0.147 0.120 2.691 0 1 

NO2 3,089 0.381 0.368 0.133 0.621 0 1 

O3 3,089 0.349 0.329 0.137 0.694 0 1 

CO 3,089 0.349 0.329 0.137 0.694 0 1 

WD 3,089 0.373 0.337 0.130 1.288 0 1 

WS 3,089 0.284 0.266 0.113 0.718 0 1 

Humidity 3,089 0.515 0.506 0.140 0.044 0 1 

Temperature 3,089 0.644 0.660 0.137 -0.474 0 1 

Figure 3. PM2.5D+1 distribution (After SMOTE) 

3.2 Correlation between features 

The high correlation between features or also 

known as multicollinearity might distort the accuracy 

of predictive model because the highly correlated 

variables may share similar characteristics. For 

instance, a study by Kılıçoğlu and Yerlikaya-Özkurt 

(2024) highlighted that the high correlation among 

independent variables may reduce the reliability of 

regression coefficients, making it difficult to draw 

meaningful inference from the model. Spearman 

correlation is less sensitive to outliers than pearson 

correlation due to its ranking of data rather than raw 

values, reducing extreme values’ influence on the 

correlation coefficient (Hou et al., 2022). Moreover, 

the spearman correlation is a non-parametric measure, 

and hence it does not assume a specific distribution for 

the data making it more reliable than pearson 

correlation (Hou et al., 2022).  

Therefore, Spearman correlation matrix was 

computed to examine the correlation between 

variables in Klang’s air quality dataset as shown in 

Table 5. Spearman correlation values range from -1 to 

1, where values closer to 1 indicate a strong positive 

correlation, and values closer to -1 indicate a strong 

negative correlation. According to the analysis, the 

Spearman correlation value between PM2.5 and PM10 

is 0.94, suggesting a very strong positive correlation 

between these variables. Furthermore, relative 

humidity and ambient temperature show a strong 

negative correlation, with a value of -0.84. 

Additionally, both particulate matters (PM10 and 

PM2.5) have moderate positive correlations with CO, 

with a value of 0.55 and 0.59 respectively. In addition, 

NO2 also have moderate positive correlations with 
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CO, with a value of 0.57. Notably, wind speed also 

shows moderate negative correlation with CO with 

spearman correlation of -0.5. Other variables exhibit 

correlation values below±0.5.  

Although certain variables, such as PM10 and 

PM2.5, exhibit high correlation, they should not be 

removed solely based on this criterion. Despite their 

strong raltionship, each variable may capture unique 

characteristics that contribute to air quality 

classification. For instance, PM2.5 and PM10, while 

strongly correlated, represent different particle size 

fractions with distinct health and environmental 

implications. Removing one could result in the loss of 

valuable information that enhances model 

performance. While multicollinearity can pose 

challenges in linear models by inflating variance and 

reducing interpretability, its impact on non-linear 

models like RBFNN is less pronounced. RBFNN can 

effectively learn complex relationships even when 

inputs are correlated. However, a high degree of 

multicollinearity may introduce redundancy, which is 

why the AdjcorT feature selection method was applied 

in Section 3.4. AdjcorT identifies the most informative 

features while preserving key variables that contribute 

to classification accuracy, ensuring that the model 

benefits from a diverse yet relevant set of inputs. 

Table 5. Spearman correlation matrix 

Variables PM2.5 PM10 SO2 NO2 O3 CO WD WS Humidity Temperature 

PM2.5 1.00 0.94 0.09 0.37 0.16 0.59 -0.20 -0.07 -0.33 0.33 

PM10 0.94 1.00 0.18 0.39 0.16 0.55 -0.16 -0.05 -0.37 0.33 

SO2 0.09 0.18 1.00 0.03 0.06 0.03 0.09 0.18 -0.20 0.09 

NO2 0.37 0.39 0.03 1.00 -0.05 0.57 -0.08 -0.50 0.14 -0.22

O3 0.16 0.16 0.06 -0.05 1.00 -0.01 0.02 0.05 -0.39 0.36 

CO 0.59 0.55 0.03 0.57 -0.01 1.00 -0.10 -0.23 -0.14 0.07 

WD -0.20 -0.16 0.09 -0.08 0.02 -0.10 1.00 0.03 0.07 -0.09

WS -0.07 -0.05 0.18 -0.50 0.05 -0.23 0.03 1.00 -0.47 0.42 

Humidity -0.33 -0.37 -0.20 0.14 -0.39 -0.14 0.07 -0.47 1.00 -0.84

Temperature 0.33 0.33 0.09 -0.22 0.36 0.07 -0.09 0.42 -0.84 1.00 

3.3 Feature combinations 

The first stage involves finding the best feature 

combinations using the AdjcorT feature selection 

method. Figure 4 shows the ranking of feature 

importance, where higher values indicate greater 

significance of the variable to the target variable 

(PM2.5D+1). According to the table, particulate matter 

(PM2.5 and PM10) are the most important variables 

for predicting PM2.5 in Klang, with AdjcorT values 

of 7.7 and 7.5, respectively, followed by relative 

humidity, SO2, wind direction, O3, CO, ambient 

temperature and NO2. Additionally, wind speed is the 

least important feature for classifying PM2.5 in Klang. 

The features were then added to the ANN model one 

by one according to their ranking as shown in Figure 

4 to determine the best feature combinations, as 

suggested by Arafin et al. (2024). The learning rate is 

set at 0.01 and the number of hidden nodes is 

determined by summing the number of variables and 

classes, dividing the result by two, and then adding one 

(Ul Saufie et al., 2022). Thus, this study use number 

of hidden nodes is 7. Table 6 presents the ANN model 

performances with varying numbers of features, based 

on accuracy, sensitivity, specificity, precision, F1 

score, and AUROC. The highest value for each 

performance metric is typed in bold font. According to 

the table, the model with nine features achieves the 

best performance, with higher accuracy (0.67), 

sensitivity (0.85), F1 score (0.7), and AUROC (0.68). 

Arafin et al. (2024) concluded that eight features are 

sufficient to predict next-day PM2.5 concentrations in 

the urban area of Shah Alam. In contrast, this study 

found that nine features are needed to predict PM2.5 

concentrations. The optimal feature combination for 

classifying PM2.5D+1 in Klang includes PM2.5, PM10, 

relative humidity, SO2, wind direction, O3, CO, 

ambient temperature, and NO2, based on AdjcorT 

value ranking. 

3.4 Best model identification 

In this section, the performance of the RBFNN 

model with all 10 variables is compared to the two-

stage AdjcorT-RBFNN model, which utilizes the 9 

best feature combinations. The RBFNN model with all 
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Figure 4. Feature ranking by AdjcorT value 

Table 6. Model Performances for different numbers of features combination 

No of features 1 2 3 4 5 6 7 8 9 10 

Accuracy 0.58 0.55 0.61 0.59 0.63 0.66 0.67 0.65 0.67 0.67 

Sensitivity 0.60 0.66 0.63 0.60 0.61 0.67 0.72 0.69 0.85 0.69 

Specificity 0.55 0.51 0.59 0.57 0.66 0.65 0.62 0.62 0.60 0.64 

Precision 0.55 0.51 0.59 0.57 0.66 0.65 0.62 0.62 0.60 0.64 

F1 score 0.58 0.58 0.61 0.58 0.63 0.66 0.67 0.65 0.70 0.66 

AUROC 0.58 0.56 0.61 0.58 0.62 0.66 0.67 0.65 0.68 0.67 

10 variables represents the standard approach, while 

the AdjcorT-RBFNN model applies the AdjcorT 

method to mitigate multicollinearity by selecting the 9 

most relevant features. Based on the results in Table 6, 

wind speed was excluded in the AdjcorT-RBFNN 

model. The number of hidden nodes is 7 for both 

models, RBFNN and AdjcorT-RBFNN. In addition, 

the learning rate for both models are set to 0.01. Table 

7 presents a comparison of performance metrics for 

both models, with the highest values highlighted in 

bold font. According to the table, the two-stage 

AdjcorT-RBFNN model outperforms the RBFNN 

model, achieving higher accuracy (0.62), sensitivity 

(0.64), specificity (0.60), precision (0.60), F1 score 

(0.62), and AUROC (0.62). This finding is consistent 

with the research conducted by Arafin et al. (2024), 

which demonstrates that the AdjcorT-RBFNN model 

can enhance the performance of the RBFNN model. 

However, their study excludes relative humidity and 

ambient temperature as an important feature for 

classifying PM2.5D+1 in Shah Alam. In contrast, our 

study found that both meteorological parameter, 

which is relative humidity and ambient temperature 

are important factor to predict PM2.5. The differences 

in the selection of the best features may be due to the 

different study areas, as our study was conducted in a 

Klang, while theirs was conducted in Shah Alam. 

Table 7. RBFNN and AdjcorT-RBFNN model performances 

Model RBFNN AdjcorT-RBFNN 

Accuracy 0.59 0.62 

Sensitivity 0.61 0.64 

Specificity 0.56 0.60 

Precision 0.56 0.60 

F1 Score 0.58 0.62 

AUROC 0.59 0.62 

3.5 Monte Carlo simulations 

A Monte Carlo simulation was applied to verify 

the best model, AdjcorT-RBFNN, using simulated 

data. The simulations of both models were run using 

various scenarios, with different sample sizes (N=50, 

100, 150, 200) and correlations (ρ=-0.8, -0.5, -0.2, 0, 

0.2, 0.5, 0.8). The line charts of accuracy, sensitivity, 

specificity, precision, F1 score, and AUROC for both 

models are shown in Figures 5, 6, 7, 8, 9, and 10, 

respectively. Based on Figure 5, the accuracy of the 

AdjcorT-RBFNN model is highest with strong 

negative correlation (ρ=-0.8) across all sample sizes. 

The accuracy decreases as correlation weakens, but it 
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gradually improves with positive correlation. 

However, it doesn’t reach the high levels seen with 

negative correlations. Additionally, larger sample 

sizes, particularly N=150 and N=200, result in better 

accuracy. The RBFNN model exhibits less variation 

across correlation levels, consistently achieving lower 

accuracy than AdjcorT-RBFNN. Under strong 

positive correlation (ρ=0.8) and N=200, RBFNN 

attains 50.9% accuracy, whereas AdjcorT-RBFNN 

reaches 60.3%, demonstrating its superior ability to 

select important features. Figure 6 demonstrates that 

the AdjcorT-RBFNN model’s sensitivity is high with 

strong negative correlation and decreases as 

correlation weakens, improving with positive 

correlation but not returning to initial levels. Larger 

sample sizes improve sensitivity, especially for N=150 

and N=200. In contrast, the RBFNN model's 

sensitivity remains consistent and high across all 

correlation levels, while AdjcorT-RBFNN’s 

sensitivity fluctuates with changes in correlation and 

sample size. 

(a) AdjcorT-RBFNN (b) RBFNN

Figure 5. Accuracy of simulation AdjcorT-RBFNN and RBFNN model 

(a) AdjcorT-RBFNN (b) RBFNN

Figure 6. Sensitivity of simulation AdjcorT-RBFNN and RBFNN model 

Figure 7 illustrates specificity, showing low 

values for both models, especially for RBFNN (below 

11%) and AdjcorT-RBFNN (21-52%). The AdjcorT-

RBFNN model performs better at correctly identifying 

negative cases, particularly with negative correlations 

and larger sample sizes. Figure 8 shows the precision 

of the simulations for both models. According to the 

line charts, AdjcorT-RBFNN performs better, 
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especially with strong correlations, while RBFNN 

consistently shows lower precision with minimal 

variation. The AdjcorT-RBFNN model is particularly 

effective at reducing false positives among predicted 

positive cases, especially with stronger correlations 

and larger sample sizes. Figure 9 compares F1 scores, 

showing that AdjcorT-RBFNN performs better with 

larger sample sizes and stronger correlations, 

especially for negative correlations. In contrast, 

RBFNN maintain a stable F1 scores between 64% and 

70% across all conditions. Lastly, Figure 10 compares 

AUROC values. The AdjcorT-RBFNN model shows 

varying AUROC depending on the correlation, with 

the highest value (74%) for strong negative correlation 

(ρ=-0.8) and N=200. As correlation weakens, AUROC 

decreases. RBFNN’s AUROC remains between 50% 

and 55%, suggesting that the model has limited ability 

to distinguish between classes. To sum up, the 

AdjcorT-RBFNN model outperforms RBFNN in 

discriminating between classes, particularly with 

strong correlations, as demonstrated by simulated 

data. Similarly, Ibrahim (2020) highlighted that the 

AdjcorT provides a flexible variable selection 

approach for classification, particularly in medium to 

large datasets with negative correlations. 

(a) AdjcorT-RBFNN (b) RBFNN

Figure 7. Specificity of simulation AdjcorT-RBFNN and RBFNN model 

(a) AdjcorT-RBFNN (b) RBFNN

Figure 8. Precision of simulation AdjcorT-RBFNN and RBFNN model 
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(a) AdjcorT-RBFNN (b) RBFNN

Figure 9. F1 Score of simulation AdjcorT-RBFNN and RBFNN model 

(a) AdjcorT-RBFNN (b) RBFNN

Figure 10. AUROC of Simulation AdjcorT-RBFNN and RBFNN Model 

4. CONCLUSION

This study aims to classify air quality in Klang, 

Selangor while considering the high correlation 

between features using the two-stages feature 

selection method, AdjcorT-RBFNN. This study found 

that the AdjcorT-RBFNN model outperformed the 

RBFNN model, achieving higher performance 

metrics, including accuracy, sensitivity, specificity, 

precision, F1 score, and AUROC. Specifically, the 

AdjcorT-RBFNN model achieved an accuracy of 0.62, 

a sensitivity of 0.64, a specificity of 0.60, a precision 

of 0.60, an F1 score of 0.62, and an AUROC of 0.62, 

which were consistently higher than those of the 

standard RBFNN model. Based on the AdjcorT 

method, 9 features were identified as the best feature 

combination to predict air quality in Klang, namely 

PM2.5, PM10, relative humidity, SO2, wind direction, 

O3, CO, ambient temperature and NO2. These features 

were selected based on their importance ranking, 

ensuring that only the most relevant predictors were 

retained while reducing redundancy caused by 

multicollinearity. 

Moreover, this study verified the AdjcorT-

RBFNN model’s performance using simulated data. 

Based on the simulation results, the findings 

demonstrate that the AdjcorT-RBFNN model 

consistently outperforms the RBFNN model in 

distinguishing between classes, particularly when 

there are strong positive and negative correlations 

between the variables. When the correlation was 

strong (ρ=-0.8), the AdjcorT-RBFNN model achieved 

the highest accuracy, especially for larger sample sizes 

(N=150 and N=200). In contrast, the RBFNN model 

exhibited lower accuracy across all correlation levels, 

with less variation. Specifically, when ρ=0.8 and 

N=200, AdjcorT-RBFNN achieved an accuracy of 
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60.3%, outperforming RBFNN, which only reached 

50.9%. Furthermore, AUROC values showed that 

AdjcorT-RBFNN was most effective under strong 

negative correlations, reaching 74% when ρ=-0.8 and 

N=200, whereas RBFNN’s AUROC remained 

between 50% and 55% across all conditions. The 

AdjcorT-RBFNN model’s ability to select relevant 

features based on correlation strength allows it to 

better handle complex data relationships, resulting in 

improved performance in terms of accuracy, 

sensitivity, and other key metrics. In contrast, the 

RBFNN model shows a more limited ability to 

differentiate between classes, as it lacks a dedicated 

feature selection mechanism to address 

multicollinearity. These results further highlight the 

importance of an effective feature selection method in 

improving model performance, especially when the 

dataset exhibits high multicollinearity. 

The two-stage feature selection method, 

AdjcorT-RBFNN, has been shown to enhance 

RBFNN classification by considering the high 

correlation between features, using both real and 

simulated datasets. However, this study limited to air 

quality data in Klang an urban area. Therefore, we 

suggest future researchers apply this method to air 

quality data in other urban, suburban or rural areas to 

confirm its effectiveness. Moreover, due to the 

compromised results of the simulation, we also 

suggest future researchers apply this two-stage feature 

selection method in other areas where 

multicollinearity issues exist. 
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