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Air pollution levels have remained a significant issue worldwide despite
advancements in technology, primarily due to rapid industrialization and
urbanization. Among the various pollutants, PM2.5 significantly impacts air
quality, posing health risks such as respiratory and cardiovascular diseases.
Accurate prediction of PM2.5 levels is essential for effective air quality
management. However, multicollinearity in air quality data can hinder model
performance. To address this issue, this study introduces the AdjcorT-RBFNN, a
two-stage feature selection method, to classify air quality in Klang, Selangor. The
AdjcorT-RBFNN model selects the optimal combination of 9 feature
combinations from 10 variables and outperforms the RBFNN model, which uses
all 10 variables. With 7 hidden nodes and a learning rate of 0.01 for both models,
AdjcorT-RBFNN achieves higher accuracy (0.62), sensitivity (0.64), specificity
(0.60), precision (0.60), F1 score (0.62), and AUROC (0.62), confirming its
effectiveness in classification tasks. The optimal features for predicting air
quality in Klang are identified as PM2.5, PM10, relative humidity, SO», wind
direction, O3, CO, ambient temperature, and NO,. Monte Carlo simulations
validate the model’s effectiveness, showing that AdjcorT-RBFNN consistently
outperforms RBFNN, especially with strong negative correlations (p=-0.8) and
larger sample sizes (N=150 and 200) further enhance classification accuracy.
Compared to RBFNN, AdjcorT-RBFNN enhances class discrimination and
reduces false positives, improving its reliability in detecting true classifications.
These findings highlight the importance of feature selection in improving model
performance, particularly in datasets with multicollinearity. Researchers, and
health organizations can leverage AdjcorT-RBFNN for more accurate air quality
predictions, supporting informed pollution control strategies.

1. INTRODUCTION

Air quality prediction has emerged as a
significant issue in recent years, due to the increasing
effects of air pollution on human health, climate
change, and ecosystems. PM2.5, fine particulate
matter with a diameter of 2.5 micrometers or smaller,
is a major air pollutant often associated with severe

health risks. These particles are small enough to be
inhaled deeply into the lungs, and because of their size,
they can also enter the bloodstream. PM25 is
primarily generated from industrial emissions, vehicle
exhaust, biomass burning, and other sources of
combustion, as well as natural sources such as dust
storms and wildfires. Due to its fine nature, PM2.5 can
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carry a variety of toxic compounds, including heavy
metals, organic chemicals, and acids, which contribute
to its toxicity. Pregnancy complications, lung cancer,
cardiovascular and respiratory disorders, and other
health problems have all been connected to exposure
to PM2.5. Notably, Jalali et al. (2021) found a
substantial correlation between elevated PM2.5 levels
and higher mortality rates in a country in the Eastern
Mediterranean. Furthermore, prolonged exposure to
high levels of PM2.5 is known to cause oxidative
stress, inflammation, and damage to cells and tissues,
which exacerbate these health effects.

As a result, PM2.5 pollution has become a
serious public health concern worldwide, including in
Malaysia, where the Department of Environment
Malaysia (DOE) began measuring PM2.5 in April
2017. Machine learning, particularly neural networks,
is increasingly applied in classification and regression
tasks. One of the primary advantages of using machine
learning for air quality classification is its ability to
process complex datasets and identify non-linear
relationships among variables. A study by Zhang et al.
(2023) on air quality index prediction in six Chinese
urban areas found that ensemble approaches enhanced
prediction accuracy by including numerous data
sources, such as pollution and meteorological data.
Additionally, Liu (2024) highlighted the limitations of
traditional empirical models, stating that machine
learning offers more accurate predictions for air
guality management. Radial Basis Function Neural
Network (RBFNN) is one of the well-known neural
networks that offer fast convergence compared to
others, such as Multi-Layer Perceptrons (Zhou et al.,
2019a), primarily due to its simpler structure and
fewer training parameters. A study by Li et al. (2022)
on predicting water quality parameters also found that
the RBFNN model demonstrated promising
performance with high accuracy in individual
indicator predictions, though it still exhibited a
significant accuracy gap in some cases.

While neural networks offer advantages in
processing complex datasets, effective feature
selection is crucial in improving the reliability and
performance of machine learning models. Suresh et al.
(2022) emphasize that reducing the complexity of the
dataset through feature selection can lead to improved
model performance. Nazari et al. (2023) also highlight
that feature selection helps classification algorithms
focus on the most relevant features, reducing
computational burden and improving accuracy.
Similarly, Ul-Saufie et al. (2022) demonstrate that
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wrapper feature selection approaches can improve air
pollution prediction by selecting important features,
with brute-force being particularly effective.

Nevertheless, a major challenge in predictive
modelling is addressing multicollinearity among air
pollutants and meteorological factors, which can lead
to inaccurate predictions. Many air pollutants are
strongly correlated, meaning their concentrations tend
to change together or also know has multicollinearity
exist. Zhou et al. (2019b) found a high correlation
between PM2.5 and PM10 levels in their study on air
pollution and respiratory diseases. Their findings
indicate that PM2.5 often constitutes a significant
portion of PM10 concentrations, contributing to
shared health impacts on respiratory health. Similarly,
gases like carbon monoxide (CO) and nitrogen dioxide
(NO) also demonstrate correlated increases, primarily
as a result of vehicle emissions and combustion
processes inherent to urban environments (\Wang et
al., 2022). When these relationships are not properly
addressed, machine learning models may struggle to
determine which factors are truly important, thus
reducing the reliability of predictions.

This study focuses on Klang, Selangor, due to its
severe pollution levels, heavily influenced by industrial
emissions and port-related activities. Klang’s air quality
is largely affected by both local industrial zones and
transboundary pollution from shipping activities,
making it a crucial case study. Mohtar et al. (2022)
highlighted in their study that the Klang station in Klang
Valley, near Malaysia’s busiest shipping port, Port
Klang, often experiences the highest concentrations of
particulate matter, making it a significant contributor to
the country’s air pollution issues. Despite its
importance, few studies have examined feature
selection techniques focused on multicollinearity issues
for air quality classification in Klang.

Furthermore, this study considers ten key input
variables influencing PM2.5 levels, including six
pollutants (PM10, SO, NO;, Oz, and CO). These
pollutants were selected due to their significant impact
on air pollution, as supported by previous studies on
air quality classification, such as the study by Sapari
et al. (2023). Moreover, Liu et al. (2020) found that
changes in wind speed and temperature directly
influence pollutant concentrations in  China.
Specifically, their study reported that an increase in
wind speed generally improves air quality by
dispersing pollutants away from densely populated
areas. In addition, Wattimena et al. (2022) highlighted
the importance of meteorological factors such as wind
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speed, cloud volume, air pressure, temperature,
relative humidity, and precipitation in forecasting air
quality indices and improving prediction accuracy.
However, only four meteorological parameters (wind
direction, wind speed, relative humidity, and
temperature) were included in this study, as these are
the key parameters consistently recorded by the DOE.

The AdjcorT two-stage feature selection
method has been shown to enhance RBFNN
classification by mitigating multicollinearity, as
demonstrated in a study by Arafinetal. (2024). In their
study, they applied the method to Shah Alam’s air
quality dataset, improving predictive accuracy.
However, their study did not explore its applicability
in different urban environments with distinct pollution
sources, such as Klang. This research aims to fill this
gap by applying the AdjcorT-RBFNN method to
Klang’s air quality dataset and verifying its
performance through Monte Carlo simulations.

By systematically evaluating the effect of
multicollinearity and comparing AdjcorT-RBFNN
with a RBFNN model, this study seeks to enhance air
quality classification for improved environmental
decision-making.

2. METHODOLOGY
2.1 Data description

The air quality dataset for the Klang, Selangor
(CA21B) area was obtained from the Department of
Environment (DOE) for the years 2018 to 2022. The
extracted variables include Particulate Matter (PM2.5
and PM10), Sulphur Dioxide (SO.), Nitrogen Dioxide
(NO2), Ground-Level Ozone (O3), Carbon Monoxide
(CO), wind direction, wind speed, relative humidity
and ambient temperature, all in hourly format,
comprising a total of 43,824 samples. However, the
PM2.5 data for 1% January 2018, is not available for
every hour. Therefore, we removed 24 data points
from 1% January 2018, reducing the dataset to 43,800
samples. Moreover, the dataset contains missing
values as shown in Table 1. According to the table, the
percentage of missing values of all variables are below
10%, with NO- has the highest missing value (7.7%).
Meanwhile, data of ambient temperature has lowest
missing value which is 0.4% of dataset. According to
Chen and Li (2024), failure of monitoring instruments
is one of the most common causes of missing data. The
instruments malfunction might happen due to the
extreme weather, power outages, or periodic
maintenance, resulting in gaps in data collection.
(Ghazali et al., 2021). Additionally, missing values in
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air quality datasets can adversely affect the
performance of analytical models, leading to
misleading (Ghazali et al., 2021). Thus, this study
employed a widely used imputation method to impute
the missing values which is linear interpolation.
According to Van Rossum et al. (2023), linear
interpolation is a simple method yet it has been shown
to yield higher imputation accuracy.

Table 1. Percentage of missing values

Variable N Missing value
PM2.5 43,572 228 (0.5%)
PM10 43,462 338 (0.8%)
SOz 40,648 3,152 (7.2%)
NO2 40,414 3,386 (7.7%)
O3 41,450 2,350 (5.4%)
Cco 41,219 2,581 (5.9%)
WD 43,596 204 (0.5%)
WS 43,594 206 (0.5%)
Humidity 43,511 289 (0.7%)
Temperature 43,606 194 (0.4%)

2.2 Research framework

Figure 1 shows the research framework
employed in this study to predict PM2.5 levels in
Klang, Malaysia. The process begins with the
collection of air quality data from the Department of
Environment, Malaysia, for the years 2018 to 2022.
Then, the data undergoes pre-processing, involving
linear interpolation for imputing missing values,
conversion of hourly data to daily averages, binary
classification of PM2.5 levels, min-max normalization
for feature scaling, and the application of the Synthetic
Minority Oversampling Technique (SMOTE) to
handle class imbalance.

Next, we use Spearman Correlation to explore
the correlation between independent variables within
the dataset to understand its extent and impact on
model performance. To address this, the AdjcorT
feature selection method is employed to rank variables
based on their correlation and importance, mitigating
the influence of multicollinearity. Subsequently,
feature subsets are evaluated using an Artificial Neural
Network (ANN) model to identify the best
combinations for PM2.5 prediction. Additionally, two
models are then developed and compared: a standard
RBFNN and a Two-Stage AdjcorT-RBFNN, which
integrates AdjcorT feature selection with RBFNN.
The models are evaluated based on classification
metrics such as accuracy, sensitivity, specificity, and
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AUROC to identify the best-performing model.
Finally, the robustness of the selected model is
validated using simulation data with varying sample

sizes and correlations, ensuring its reliability in

Figure 1. Research framework

identifying important predictors under various
conditions.
Extract air quality data for Year 2018 to 2022 from
Department of Environment, Malaysia
Data Pre-processing

1. Data Imputation using linear interpolation
2. Data Transformation

* Convert hourly data to daily data

e Convert PM2.5 to binary data
3. Data scaling using min-max normalization
4. Data augmentation using SMOTE upsampling technique

A4
Explore multicollinearity on air quality data
Features Ranking by AdjcorT
ANN model evaluation to find the
best features combinations
RBFNN Two Stages AdjcorT-RBFNN
Identification of the best model
Verify the best model using simulation data
Ti — Xj1~Xijg (1)

2.3 Adjusted correlation sharing t-test

Ibrahim (2020) extended the variable selection
method which is correlation sharing t-statistics (corT),
by developing an adjusted version namely adjusted
correlation sharing t-test (AdjcorT). Both methods
rank the importance of features while considering the
high correlation between variables. However, the
algorithm of AdjcorT allowed both positive and
negative correlation between variables, meanwhile
corT considers only positive correlations. The
standard t-statistics were calculated first using
equation shows in (1). S; is the pooled standard
deviation within the group for the i-th variable. ;;
represents the average of the i-th variable for the j-th
class or target variable (where j=0 or j=1). The
equation of AdjcorT is displayed in (2):
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Sj

r; = sign (%) X [maX(Ospsl)%Zjecp(i)rrj” )

A score, or an AdjcorT value, r;, is assigned to
each variable. This value represents the average of all t-
statistics for variables that have a correlation (in
absolute value) of at least p with variable i.
Additionally, w denotes the cardinality of C, (i), where
C, (i) is the set of indices of variables whose correlation
(in absolute value) with variable x; is greater than or
equal to p. According to Ibrahim (2020), the optimal
value of p should be chosen to maximize the average.
Moreover, since the t-scores for each variable are
calculated to determine the correlation, this method is
applicable only to continuous variables.
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2.4 Artificial neural network

Artificial Neural Network (ANN) is a machine
learning that designed inspired of biological neural
networks. An ANN has three layers: the input layer
(which consists of input variables), the hidden layer
(which applies activation functions), and the output
layer. They are designed to identify patterns and address
complex problems by learning from data. ANNs consist
of interconnected artificial neurons, also known as
nodes, that work collaboratively to process information.
Each neuron receives input, processes it, and generates
output that can be transmitted to successive neurons in
the network. This design enables artificial neural
networks to perform tasks such as classification,
regression, and pattern recognition. In our study, we
used R Studio to implement an ANN model using the
nnet package. To effectively train an ANN, several key
hyperparameters must be set. These include the number
of hidden neuron and learning rate, where the number
of hidden neurons we set is 7 and 0.01 for learning rate
as suggested by Ul-Saufie et al. (2022). The activation
function used in the hidden layer is the logistic sigmoid,
which maps inputs to a range between 0 and 1.

2.5 Radial basis function neural network (RBFNN)

RBFNN is a subset of ANN that share the same
theoretical framework, consisting of three layers
which is input, hidden and output layer. The difference
is that RBFNNs use a radial basis function, typically
Gaussian functions, as the activation function.
RBFNN are particularly effective in addressing
nonlinear relationships in data, such as air quality
measurements. Their ability to approximate complex
functions with relatively few parameters makes them
highly suitable for tasks like pattern recognition and
function approximation. The RSNNS package in
RStudio was used to implement the RBFNN.

2.6 Performance metrics

Different performance metrics are essential for
evaluating and comparing machine learning
classification models, enabling informed decisions
about model selection and improvement (Akshay et al.,
2022). According to Ibrahim (2020), accuracy,
sensitivity, specificity, and Area Under the Receiver
Operating Characteristic (AUROC) are common key
metrics used in previous study to assess classification
model. For instance, Alalwany and Mahgoub (2024)
employed accuracy, precision, recall, F1 score, and
ROC metrics for evaluating the performance of their
model on an ensemble learning-based real-time
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intrusion detection scheme for in-vehicle networks.
Moreover, Chandra et al. (2022) used performance
metrics including accuracy, specificity, F1 score,
sensitivity, and precision to predict Jakarta’s air quality.

In this study, accuracy, sensitivity, specificity,
precision, F1 score, and AUROC are used to evaluate
model performance of using real-world data and
simulated data. Both real-world air quality data and
simulated data were used to assess the classification
effectiveness of the RBFNN and adjcorT-RBFNN
models. The real data evaluation examines model
performance based on actual air quality measurements
from Klang, while the simulated data evaluation helps
analyze the models’ behavior under controlled
conditions, particularly in handling multicollinearity.
The combination of these two evaluations ensures a
comprehensive assessment of the models’ predictive
capabilities. The specific settings for generating the
simulated datasets, including sample sizes, correlation
structures, and iteration processes, are detailed in
Section 2.7.

2.7 Monte carlo simulation

Monte Carlo Simulation is a computational
technique used to model the probability of different
outcomes in systems influenced by randomness. It
relies on repeated random sampling to approximate
results, making it useful for solving problems involving
uncertainty and complex decision-making (Liu, 2024).
This method is widely applied in finance, engineering,
healthcare, and machine learning, where it helps
optimize strategies by evaluating potential scenarios.
Monte Carlo Simulation is particularly valuable when
analytical solutions are infeasible due to system
complexity. In this study, Monte Carlo Simulation was
employed to systematically generate datasets with
varying correlation structures and sample sizes. This
process allowed for the evaluation of how different
levels of correlation affect the classification
performance of RBFNN and adjcorT-RBFNN.

To achieve this, we use RStudio to run both the
RBFNN and AdjcorT-RBFNN models using simulated
data with varying sample sizes (n=50, 100, 150, 200)
and correlation values (p=-0.8, -0.5, -0.2, 0, 0.2, 0.5,
0.8) to evaluate the impact of correlation and sample
size on classification accuracy. Each scenario was
simulated over 100 iterations to ensure statistical
robustness and reduce variability in performance
estimates. During each iteration, the models were
trained and evaluated on a newly generated dataset,
allowing us to analyse how correlation and sample size
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influence classification performance. By incorporating
multiple iterations, we mitigated the effects of random
variations in individual datasets, ensuring more reliable
comparisons between the models. This simulation-
based validation helps confirm whether AdjcorT
effectively addresses multicollinearity and enhances the
classification capability of RBFNN, particularly under
different correlation strengths.

3. RESULTS AND DISCUSSION
3.1 Data pre-processing

Data transformation was employed in this
study, where the hourly dataset was converted to daily
data by aggregating the values over 24 hours.
Moreover, the dependent variable, PM2.5p.1 values
was transformed into binary data. Kalajdjieski et al.
(2020) suggested separating the air quality category

The descriptive statistics of the dataset after
data transformation are shown in Table 3. The total
number of samples (N) was reduced to 1,824 because
the hourly data was transformed into daily data. Based
on the table, the average PM2.5 levels is 26 pg/m?,
while the maximum value is 154 pg/m?®. Moreover, the
standard deviation of SO; is the lowest (0.001), while
the highest standard deviation is 35, which
corresponds to wind direction. This wide difference in
scale can affect the accuracy of classification. Hence,
we employed min-max normalization to standardize
these measurements, thereby enhancing the
interpretability of the results, following a study by
Aarthi et al. (2023). In addition, the distribution of
PM2.5 categories is not balanced as shown in Figure
2, where not polluted (86%) category is more than
polluted (14%). To address this issue, the applied

into two groups only, polluted and not polluted. Table ~ Synthetic  Minority ~ Over-sampling  Technique

2 shows the PM2.5 breakpoints (24-hour average) (SMOTE) was applied to the dataset.

according to DOE guidelines.

Table 2. Binary labels for the respective PM2.5 breakpoint and AQI categories
AQI category PM2.5 breakpoints Binary labels
Good 0.0-12.0 Not polluted
Moderate 12.1-35.4 Not polluted
Unhealthy for sensitive groups 35.5-55.4 Polluted
Unhealthy 55.5-150.4 Polluted
Very unhealthy 150.5-250.4 Polluted
Hazardous 250.5 and above Polluted

Table 3. Descriptive statistics before data pre-processing
Variable N Mean Median Std. Dev. Skewness Min Max
PM2.5 1,824 26.309 24.206 12.341 3.720 9.134 154.845
PM10 1,824 35.890 33.103 15.529 2.880 10.774 180.227
SO2 1,824 0.002 0.001 0.001 2.512 0.000 0.009
NO2 1,824 0.017 0.016 0.005 0.453 0.003 0.040
Os 1,824 0.015 0.015 0.005 0.662 0.002 0.040
CO 1,824 0.871 0.852 0.264 0.305 0.122 1.835
WD 1,824 169.988 161.410 35.632 1.093 72.039 327.733
WS 1,824 1.375 1.319 0.340 0.933 0.556 3.500
Humidity 1,824 80.518 80.413 5.916 -0.092 58.659 100.000
Temperature 1,824 28.350 28.442 1.157 -0.367 23.204 31.281

The descriptive statistics after data pre-
processing were recomputed, as shown in Table 4.
This table presents the descriptive statistics of the
variables after data normalization and standardization.
The total number of samples increased due to the
application of the SMOTE up-sampling technique.
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The dataset now consists of 3,089 samples, with 80%
used for training and 20% for testing. According to the
table, the minimum and maximum values of all
variables are 0 and 1, respectively. This result
indicates that all variables has successfully scaled into
a standard range between 0 and 1. Furthermore,
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Figure 3 shows the distribution of PM2.5 category
after employed SMOTE technique are more balanced
now with 50.9% of dataset are not polluted category
while 49.1% of dataset are polluted category. Hence,
the dataset is more suitable to train for classification
task because SMOTE method SMOTE can
significantly enhance the classification performance
of machine learning models, particularly in scenarios
where the minority class is critical as highlighted by
Ariansyah et al. (2023).

Table 4. Descriptive statistics after data pre-processing

1,800
1,600 -
1,400 A
1,200 A
1,000 A
800
600
400 1
200

= Not Polluted
Polluted

253, 14%

Polluted
Figure 2. PM2.5p.+1 distribution (Before SMOTE)

Variable N Mean Median Std. Dev Skewness Min Max
PM2.5 3,089 0.127 0.108 0.087 2.908 0 1
PM10 3,089 0.158 0.136 0.094 2.259 0 1
SOz 3,089 0.172 0.147 0.120 2.691 0 1
NO2 3,089 0.381 0.368 0.133 0.621 0 1
O3 3,089 0.349 0.329 0.137 0.694 0 1
co 3,089 0.349 0.329 0.137 0.694 0 1
WD 3,089 0.373 0.337 0.130 1.288 0 1
ws 3,089 0.284 0.266 0.113 0.718 0 1
Humidity 3,089 0.515 0.506 0.140 0.044 0 1
Temperature 3,089 0.644 0.660 0.137 -0.474 0 1
1,800 correlation is less sensitive to outliers than pearson
= Not Polluted . . .
1,600 - 1518, 49% Polluted correlation due to its ranking of data rather than raw
1,400 A values, reducing extreme values’ influence on the
1,200 correlation coefficient (Hou et al., 2022). Moreover,
1,000 the spearman correlation is a non-parametric measure,
and hence it does not assume a specific distribution for
800 o -
the data making it more reliable than pearson
600 1 correlation (Hou et al., 2022).
400 Therefore, Spearman correlation matrix was
200 - computed to examine the correlation between
0 | = variables in Klang’s air quality dataset as shown in
Polluted

Figure 3. PM2.5p+1 distribution (After SMOTE)

3.2 Correlation between features

The high correlation between features or also
known as multicollinearity might distort the accuracy
of predictive model because the highly correlated
variables may share similar characteristics. For
instance, a study by Kilicoglu and Yerlikaya-Ozkurt
(2024) highlighted that the high correlation among
independent variables may reduce the reliability of
regression coefficients, making it difficult to draw
meaningful inference from the model. Spearman
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Table 5. Spearman correlation values range from -1 to
1, where values closer to 1 indicate a strong positive
correlation, and values closer to -1 indicate a strong
negative correlation. According to the analysis, the
Spearman correlation value between PM2.5 and PM10
is 0.94, suggesting a very strong positive correlation
between these variables. Furthermore, relative
humidity and ambient temperature show a strong
negative correlation, with a value of -0.84.
Additionally, both particulate matters (PM10 and
PM2.5) have moderate positive correlations with CO,
with a value of 0.55 and 0.59 respectively. In addition,
NO; also have moderate positive correlations with
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CO, with a value of 0.57. Notably, wind speed also
shows moderate negative correlation with CO with
spearman correlation of -0.5. Other variables exhibit
correlation values below+0.5.

Although certain variables, such as PM10 and
PM2.5, exhibit high correlation, they should not be
removed solely based on this criterion. Despite their
strong raltionship, each variable may capture unique
characteristics that contribute to air quality
classification. For instance, PM2.5 and PM10, while
strongly correlated, represent different particle size
fractions with distinct health and environmental
implications. Removing one could result in the loss of

Table 5. Spearman correlation matrix

valuable information that enhances model
performance. While multicollinearity can pose
challenges in linear models by inflating variance and
reducing interpretability, its impact on non-linear
models like RBFNN is less pronounced. RBFNN can
effectively learn complex relationships even when
inputs are correlated. However, a high degree of
multicollinearity may introduce redundancy, which is
why the AdjcorT feature selection method was applied
in Section 3.4. AdjcorT identifies the most informative
features while preserving key variables that contribute
to classification accuracy, ensuring that the model
benefits from a diverse yet relevant set of inputs.

Variables PM2.5 PM10 SO2 NO2 O3 CO WD WS Humidity =~ Temperature
PM2.5 1.00 0.94 0.09 0.37 0.16 0.59 -0.20 -0.07 -0.33 0.33
PM10 0.94 1.00 0.18 0.39 0.16 0.55 -0.16 -0.05 -0.37 0.33
SOz 0.09 0.18 1.00 0.03 0.06 0.03 0.09 0.18 -0.20 0.09
NO2 0.37 0.39 0.03 1.00 -0.05 0.57 -0.08 -050 0.14 -0.22
Os 0.16 0.16 0.06 -0.05 1.00 -0.01  0.02 0.05 -0.39 0.36
Cco 0.59 0.55 0.03 0.57 -0.01 1.00 -0.10 -023 -0.14 0.07
WD -0.20 -0.16 0.09 -0.08 0.02 -0.10  1.00 0.03 0.07 -0.09
WS -0.07 -0.05 0.18 -0.50 0.05 -0.23  0.03 1.00 -0.47 0.42
Humidity -0.33 -0.37 -0.20 0.14 -0.39 -0.14  0.07 -0.47  1.00 -0.84
Temperature 0.33 0.33 0.09 -0.22 0.36 0.07 -0.09 042 -0.84 1.00

3.3 Feature combinations

The first stage involves finding the best feature
combinations using the AdjcorT feature selection
method. Figure 4 shows the ranking of feature
importance, where higher values indicate greater
significance of the variable to the target variable
(PM2.5p+1). According to the table, particulate matter
(PM2.5 and PM10) are the most important variables
for predicting PM2.5 in Klang, with AdjcorT values
of 7.7 and 7.5, respectively, followed by relative
humidity, SO,, wind direction, Os;, CO, ambient
temperature and NO,. Additionally, wind speed is the
least important feature for classifying PM2.5 in Klang.
The features were then added to the ANN model one
by one according to their ranking as shown in Figure
4 to determine the best feature combinations, as
suggested by Arafin et al. (2024). The learning rate is
set at 0.01 and the number of hidden nodes is
determined by summing the number of variables and
classes, dividing the result by two, and then adding one
(Ul Saufie et al., 2022). Thus, this study use number
of hidden nodes is 7. Table 6 presents the ANN model
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performances with varying numbers of features, based
on accuracy, sensitivity, specificity, precision, F1
score, and AUROC. The highest value for each
performance metric is typed in bold font. According to
the table, the model with nine features achieves the
best performance, with higher accuracy (0.67),
sensitivity (0.85), F1 score (0.7), and AUROC (0.68).
Arafin et al. (2024) concluded that eight features are
sufficient to predict next-day PM2.5 concentrations in
the urban area of Shah Alam. In contrast, this study
found that nine features are needed to predict PM2.5
concentrations. The optimal feature combination for
classifying PM2.5p.1 in Klang includes PM2.5, PM10,
relative humidity, SO, wind direction, Oz, CO,
ambient temperature, and NO,, based on AdjcorT
value ranking.

3.4 Best model identification

In this section, the performance of the RBFNN
model with all 10 variables is compared to the two-
stage AdjcorT-RBFNN model, which utilizes the 9
best feature combinations. The RBFNN model with all
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Figure 4. Feature ranking by AdjcorT value
Table 6. Model Performances for different numbers of features combination
No of features 1 2 3 4 5 6 7 8 9 10

Accuracy 0.58 0.55 0.61 0.59 0.63 0.66 0.67 0.65 0.67 0.67
Sensitivity 0.60 0.66 0.63 0.60 0.61 0.67 0.72 0.69 0.85 0.69
Specificity 0.55 0.51 0.59 0.57 0.66 0.65 0.62 0.62 0.60 0.64
Precision 0.55 0.51 0.59 0.57 0.66 0.65 0.62 0.62 0.60 0.64
F1 score 0.58 0.58 0.61 0.58 0.63 0.66 0.67 0.65 0.70 0.66
AUROC 0.58 0.56 0.61 0.58 0.62 0.66 0.67 0.65 0.68 0.67

10 variables represents the standard approach, while
the AdjcorT-RBFNN model applies the AdjcorT
method to mitigate multicollinearity by selecting the 9
most relevant features. Based on the results in Table 6,
wind speed was excluded in the AdjcorT-RBFNN
model. The number of hidden nodes is 7 for both
models, RBFNN and AdjcorT-RBFNN. In addition,
the learning rate for both models are set to 0.01. Table
7 presents a comparison of performance metrics for
both models, with the highest values highlighted in
bold font. According to the table, the two-stage
AdjcorT-RBFNN model outperforms the RBFNN
model, achieving higher accuracy (0.62), sensitivity
(0.64), specificity (0.60), precision (0.60), F1 score
(0.62), and AUROC (0.62). This finding is consistent
with the research conducted by Arafin et al. (2024),
which demonstrates that the AdjcorT-RBFNN model
can enhance the performance of the RBFNN model.
However, their study excludes relative humidity and
ambient temperature as an important feature for
classifying PM2.5p+1 in Shah Alam. In contrast, our
study found that both meteorological parameter,
which is relative humidity and ambient temperature
are important factor to predict PM2.5. The differences
in the selection of the best features may be due to the
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different study areas, as our study was conducted in a
Klang, while theirs was conducted in Shah Alam.

Table 7. RBFNN and AdjcorT-RBFNN model performances

Model RBFNN AdjcorT-RBFNN
Accuracy 0.59 0.62
Sensitivity 0.61 0.64
Specificity 0.56 0.60
Precision 0.56 0.60
F1 Score 0.58 0.62
AUROC 0.59 0.62

3.5 Monte Carlo simulations

A Monte Carlo simulation was applied to verify
the best model, AdjcorT-RBFNN, using simulated
data. The simulations of both models were run using
various scenarios, with different sample sizes (N=50,
100, 150, 200) and correlations (p=-0.8, -0.5, -0.2, 0,
0.2, 0.5, 0.8). The line charts of accuracy, sensitivity,
specificity, precision, F1 score, and AUROC for both
models are shown in Figures 5, 6, 7, 8, 9, and 10,
respectively. Based on Figure 5, the accuracy of the
AdjcorT-RBFNN model is highest with strong
negative correlation (p=-0.8) across all sample sizes.
The accuracy decreases as correlation weakens, but it
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gradually improves with positive correlation.
However, it doesn’t reach the high levels seen with
negative correlations. Additionally, larger sample
sizes, particularly N=150 and N=200, result in better
accuracy. The RBFNN model exhibits less variation
across correlation levels, consistently achieving lower
accuracy than AdjcorT-RBFNN. Under strong
positive correlation (p=0.8) and N=200, RBFNN
attains 50.9% accuracy, whereas AdjcorT-RBFNN
reaches 60.3%, demonstrating its superior ability to
select important features. Figure 6 demonstrates that

(a) AdjcorT-RBFNN
78%
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68% - n=200
>
8
S 63% -
3]
<
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-0.8 -0.5 -0.2 0 0.2 0.5 0.8

Correlations

the AdjcorT-RBFNN model’s sensitivity is high with
strong negative correlation and decreases as
correlation weakens, improving with positive
correlation but not returning to initial levels. Larger
sample sizes improve sensitivity, especially for N=150
and N=200. In contrast, the RBFNN model's
sensitivity remains consistent and high across all
correlation  levels, while  AdjcorT-RBFNN’s
sensitivity fluctuates with changes in correlation and
sample size.

(b) RBFNN
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Figure 5. Accuracy of simulation AdjcorT-RBFNN and RBFNN model

(a) AdjcorT-RBFNN
100%

n=50

n=100
n=150
n=200

95% A

90% A

Sensitivity

85% A

80%

75%

-0.8  -05 -02 0

Correlations

0.2 0.5 0.8

(b) RBFNN

100%

95%

90% A

Sensitivity

85% -
n=50
n=100
n=150
n=200

80% A

75%

-0.8 -0.2 0

Correlations

0.2 0.5 0.8

Figure 6. Sensitivity of simulation AdjcorT-RBFNN and RBFNN model

Figure 7 illustrates specificity, showing low
values for both models, especially for RBFNN (below
11%) and AdjcorT-RBFNN (21-52%). The AdjcorT-
RBFNN model performs better at correctly identifying
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negative cases, particularly with negative correlations
and larger sample sizes. Figure 8 shows the precision
of the simulations for both models. According to the
line charts, AdjcorT-RBFNN performs better,
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especially with strong correlations, while RBFNN
consistently shows lower precision with minimal
variation. The AdjcorT-RBFNN model is particularly
effective at reducing false positives among predicted
positive cases, especially with stronger correlations
and larger sample sizes. Figure 9 compares F1 scores,
showing that AdjcorT-RBFNN performs better with
larger sample sizes and stronger correlations,
especially for negative correlations. In contrast,
RBFNN maintain a stable F1 scores between 64% and
70% across all conditions. Lastly, Figure 10 compares
AUROC values. The AdjcorT-RBFNN model shows
varying AUROC depending on the correlation, with
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the highest value (74%) for strong negative correlation
(p=-0.8) and N=200. As correlation weakens, AUROC
decreases. RBFNN’s AUROC remains between 50%
and 55%, suggesting that the model has limited ability
to distinguish between classes. To sum up, the
AdjcorT-RBFNN model outperforms RBFNN in
discriminating between classes, particularly with
strong correlations, as demonstrated by simulated
data. Similarly, Ibrahim (2020) highlighted that the
AdjcorT provides a flexible wvariable selection
approach for classification, particularly in medium to
large datasets with negative correlations.
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Figure 7. Specificity of simulation AdjcorT-RBFNN and RBFNN model
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Figure 8. Precision of simulation AdjcorT-RBFNN and RBFNN model
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Figure 9. F1 Score of simulation AdjcorT-RBFNN and RBFNN model
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Figure 10. AUROC of Simulation AdjcorT-RBFNN and RBFNN Model

4. CONCLUSION

This study aims to classify air quality in Klang,
Selangor while considering the high correlation
between features using the two-stages feature
selection method, AdjcorT-RBFNN. This study found
that the AdjcorT-RBFNN model outperformed the
RBFNN model, achieving higher performance
metrics, including accuracy, sensitivity, specificity,
precision, F1 score, and AUROC. Specifically, the
AdjcorT-RBFNN model achieved an accuracy of 0.62,
a sensitivity of 0.64, a specificity of 0.60, a precision
of 0.60, an F1 score of 0.62, and an AUROC of 0.62,
which were consistently higher than those of the
standard RBFNN model. Based on the AdjcorT
method, 9 features were identified as the best feature
combination to predict air quality in Klang, namely
PM2.5, PM10, relative humidity, SO, wind direction,
03, CO, ambient temperature and NO». These features
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were selected based on their importance ranking,
ensuring that only the most relevant predictors were
retained while reducing redundancy caused by
multicollinearity.

Moreover, this study verified the AdjcorT-
RBFNN model’s performance using simulated data.
Based on the simulation results, the findings
demonstrate that the AdjcorT-RBFNN model
consistently outperforms the RBFNN model in
distinguishing between classes, particularly when
there are strong positive and negative correlations
between the variables. When the correlation was
strong (p=-0.8), the AdjcorT-RBFNN model achieved
the highest accuracy, especially for larger sample sizes
(N=150 and N=200). In contrast, the RBFNN model
exhibited lower accuracy across all correlation levels,
with less variation. Specifically, when p=0.8 and
N=200, AdjcorT-RBFNN achieved an accuracy of
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60.3%, outperforming RBFNN, which only reached
50.9%. Furthermore, AUROC values showed that
AdjcorT-RBFNN was most effective under strong
negative correlations, reaching 74% when p=-0.8 and
N=200, whereas RBFNN’s AUROC remained
between 50% and 55% across all conditions. The
AdjcorT-RBFNN model’s ability to select relevant
features based on correlation strength allows it to
better handle complex data relationships, resulting in
improved performance in terms of accuracy,
sensitivity, and other key metrics. In contrast, the
RBFNN model shows a more limited ability to
differentiate between classes, as it lacks a dedicated
feature  selection  mechanism  to  address
multicollinearity. These results further highlight the
importance of an effective feature selection method in
improving model performance, especially when the
dataset exhibits high multicollinearity.

The two-stage feature selection method,
AdjcorT-RBFNN, has been shown to enhance
RBFNN classification by considering the high
correlation between features, using both real and
simulated datasets. However, this study limited to air
quality data in Klang an urban area. Therefore, we
suggest future researchers apply this method to air
quality data in other urban, suburban or rural areas to
confirm its effectiveness. Moreover, due to the
compromised results of the simulation, we also
suggest future researchers apply this two-stage feature
selection ~method in other areas where
multicollinearity issues exist.
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