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Dengue fever remains a significant public health concern in Thailand, characterized by 

recurrent outbreaks and considerable morbidity. Understanding and forecasting temporal 

patterns of dengue incidence are essential for effective prevention and control st rategies. 

This study analyzed monthly dengue fever incidence in Thailand from 2013 to 2024 and 

forecasted trends for 2025-2026 using the Autoregressive Integrated Moving Average 

(ARIMA) model. Data were obtained from the Bureau of Epidemiology, Department of 

Disease Control, and Ministry of Public Health. The optimal ARIMA (1,0,1) model was 

selected based on diagnostic criteria including the Autocorrelation Function (ACF), 

Partial Autocorrelation Function (PACF), and the Ljung-Box test. Model performance 

was evaluated using the Mean Absolute Percentage Error (MAPE), yielding 43.40%, and 

indicating moderately accurate predictions for planning purposes. The model successfully 

captured seasonal trends, with dengue incidence typically peaking mid-year. Forecasts for 

2025-2026 indicate periodic fluctuations, with December 2026 projected to have the 

highest incidence (7,336 cases) and January 2025 the lowest (2,401 cases). While the 

ARIMA model demonstrated utility in forecasting general trends, its limitations include 

the inability to incorporate external variables such as climate, vector control programs, 

vector control efforts, or viral serotype shifts. Despite this, the findings provide actionable 

insights for public health planning and resource allocation aimed at mitigating future 

dengue outbreaks in Thailand. 
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HIGHLIGHTS
ARIMA (1, 0, 1) was applied to forecast dengue incidence in Thailand. Twelve years of climate and case data enhanced the model 

accuracy. Seasonal peaks were detected, with December 2026 as the highest. Forecasts support timely dengue prevention and public 

health planning. 

1. INTRODUCTION

Climate change has emerged as a critical global 

challenge, influencing all aspects of human life, 

including public health (Semenza et al., 2022; Wu and 

Huang, 2022) One of the most significant health 

consequences is the rise in vector-borne diseases, 

which have caused recurrent outbreaks across multiple 

regions (Delrieu et al., 2023). Among these, dengue 

virus (DENV) remains the most prevalent vector-

borne viral infection worldwide, with the majority of 

cases concentrated in South America, Southeast Asia, 

and the Western Pacific (Guo et al., 2017). According 

to the World Health Organization (WHO, 2024), more 

than 12.7 million dengue cases were reported globally 

between January and September 2024 almost double 

the 6.5 million cases recorded in 2023. During this 

same period, dengue-related deaths totaled 8,791. 

Dengue is transmitted primarily by mosquitoes of the 

Aedes genus, notably Aedes aegypti and Aedes 

albopictus, which thrive in tropical and subtropical 

climates (Russo et al., 2020). These vectors are 

capable of spreading the virus even in the absence of 

clearly defined outbreak patterns, complicating 

control and prevention efforts.  
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Thailand is among the countries most affected 

by dengue fever in Southeast Asia. Retrospective data 

from 2019 to 2024 indicate fluctuating but persistent 

disease transmission, with the most severe outbreak 

occurring in 2023, during which 158,620 cases and 

181 deaths were reported (Thai PBS, 2023). Although 

the incidence declined to 105,250 cases and 90 deaths 

in 2024, the first quarter of 2025 still recorded 3,550 

cases, a 4.8-fold decrease from the same period in 

2024. Nevertheless, fatalities continue at an average 

rate of one death per week, indicating that dengue 

remains a persistent public health threat, particularly 

for children, the elderly, and individuals with obesity. 

Currently, no specific antiviral treatment or 

universally available vaccine exists for dengue 

infection. Patient management relies on immune 

system response and supportive care (WHO, 2025). 

This issue places a significant burden on the national 

healthcare system, particularly during epidemic 

periods (Wongkoon et al., 2012). Time series analysis 

is a critical methodological approach in public health 

and infectious disease surveillance, offering valuable 

insights into disease trends and outbreak dynamics 

(Sutriyawan et al., 2024). The Autoregressive 

Integrated Moving Average (ARIMA) model (Bayu et 

al., 2024) is a widely utilized time series forecasting 

technique for seasonal patterns and has been proven 

effective in modeling and predicting dengue fever 

incidence by identifying temporal patterns and 

forecasting future trends. With its high flexibility, the 

ARIMA model can be applied in various ways to 

prevent and control dengue fever, such as identifying 

temporal patterns to determine mosquito control 

measures during high-risk periods and aiding in the 

development of an early warning system for dengue 

outbreaks, thereby enhancing the efficiency and 

accuracy of vector control plans. Furthermore, time 

series analysis provides insights into dengue 

transmission patterns and the impact of environmental 

factors on disease incidence (Aung et al., 2024). The 

application of the ARIMA model has demonstrated 

success in various countries (Sutriyawan et al., 2024; 

Riley et al., 2020), underscoring its effectiveness in 

strengthening outbreak preparedness and public health 

interventions. Thus, this research aims to apply the 

Autoregressive Integrated Moving Average (ARIMA) 

time series model to forecast the incidence of dengue 

fever in Thailand. The ARIMA model was selected 

because it can effectively handle non-stationary time 

series data while providing transparent and 

interpretable results. Its practical applicability makes 

it well suited for public health decision-making, and 

previous studies in tropical settings have demonstrated 

its effectiveness in forecasting infectious disease 

incidence where seasonal patterns are dominant (Aung 

et al., 2024; Sutriyawan et al., 2024). The study 

focuses on identifying temporal patterns and 

predicting future trends, which will aid in the 

development of an early warning system and enhance 

mosquito control planning during high-risk periods. 

Furthermore, the findings will contribute to a deeper 

understanding of the transmission dynamics of dengue 

fever and the factors influencing disease outbreaks. 

The results of this study are expected to provide 

valuable insights for more effective prevention and 

control strategies for dengue fever in the future.  

2. METHODOLOGY

2.1 Study design

This retrospective observational study was 

conducted using historical data from 2013 to 2024. 

The dataset included monthly time-series data on 

rainfall, relative humidity, minimum and maximum 

temperatures, and the number of rainy days, obtained 

from the Thai Meteorological Department. 

Corresponding dengue fever case data for the same 

period were sourced from the Bureau of 

Epidemiology, Department of Disease Control, 

Ministry of Public Health.  

2.2 Study area 

Thailand covers an area of 513,120 square 

kilometers and is located between latitudes 5°37′N and 

20°27′N and longitudes 97°22′E and 105°37′E 

(Government of Thailand, 2025). It is situated in the 

center of Southeast Asia, bordered by the Andaman 

Sea and the Gulf of Thailand (Figure 1) (Freepik, 

2024). To the east, Thailand shares borders with Laos 

and Cambodia; to the north and west, it is bordered by 

Myanmar; and to the south, it borders Malaysia. The 

country is divided into six regions: Northern, 

Northeastern, Central, Eastern, Western, and Southern 

Thailand, comprising 77 provinces with a total 

population of approximately 69 million people (Thai 

Meteorological Department, 2025). Thailand has a 

tropical climate, characterized by high temperatures 

and humidity. In general, the northern and northeastern 

regions experience lower temperatures than Bangkok in 

winter and higher temperatures in summer. The hottest 

months of the year are April and May. The rainy season 

extends from June to late October, while the period 

from November to late February is cooler and less 
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humid. Thailand’s climate is significantly influenced by 

monsoons, including the southwest monsoon, which 

brings moisture from the Indian Ocean during the rainy 

season, and the northeast monsoon, which carries cold, 

dry air from China during the winter season, as reported 

by the Digital Government Development Agency 

(DGA, 2025).  

Figure 1. Map of Thailand 

2.3 Statistical analysis 

Data analysis was conducted using Gretl 

version 2023d, an open-source econometric software. 

The temporal pattern of dengue incidence in Thailand 

was analyzed using the Autoregressive Integrated 

Moving Average (ARIMA) model, following the Box-

Jenkins methodology (Abhinandithe and Vaishnavi, 

2019). Monthly dengue incidence data from 2013 to 

2024 were used to build the time series model. 

To verify stationarity, both the Augmented 

Dickey-Fuller (ADF) and KPSS tests were applied to 

the original series. The ADF test failed to reject the 

null hypothesis of non-stationarity, while the KPSS 

test indicated non-stationarity as well. Consequently, 

first-order differencing (d=1) was applied, after which 

the series achieved stationarity. Candidate 

autoregressive (p) and moving average (q) terms were 

then identified by examining the autocorrelation 

function (ACF) and partial autocorrelation function 

(PACF) plots, supplemented by Gretl’s automatic 

model selection procedure with a periodicity of 12. 

Several ARIMA specifications were estimated 

and compared using the Akaike Information Criterion 

(AIC), where lower values indicate a superior fit. 

Among the candidate models tested, including ARIMA

(1,0,0), ARIMA (1,0,1), and ARIMA (13,0,0) the 

ARIMA (1,0,1) model achieved the lowest AIC value, 

representing the best balance between explanatory 

power and parsimony. Table 1 shows the comparison of 

ARIMA model specifications, including log-likelihood 

and AIC values. Among the candidate models, ARIMA 

(1,0,1) achieved the lowest AIC, confirming its 

suitability as the best-fitting model. 

Table 1. Comparison of candidate ARIMA models for dengue incidence forecasting in Thailand (2013-2024) 

Candidate model p d q Log-lik(L) AIC 

ARIMA (1,0,1) (selected) 1 0 1 -1,355.031 2,718.062 

ARIMA (1,0,0) 1 0 0 -1,375.651 2,719.727 

ARIMA (13,0,0) 13 0 0 -1,375.651 2,757.301 

Residual diagnostics confirmed the adequacy of 

the selected model. The residual ACF and PACF 

remained within the 95% confidence bounds, the 

Ljung-Box test showed no evidence of serial 

correlation, and the stationary R2R^2R2 value 

indicated a strong fit. Residuals were normally 

distributed, independent, and homoscedastic, thereby 

meeting the assumptions of the ARIMA framework. 

Finally, the ARIMA (1,0,1) model was used to 

generate 24-month forecasts of dengue incidence for 

2025-2026. Forecast accuracy was evaluated using the 

Mean Absolute Percentage Error (MAPE), and 95% 

prediction intervals were constructed to reflect 

forecast uncertainty. 

2.4 Ethical consideration 

Ethical approval for the study protocol was 

obtained from the Ethics Committee of Sirindhorn 

College of Public Health, Yala having the approval 

number SCPHYLIRB-2567/452 period. All the 

information obtained was anonymized, and data 

privacy and confidentiality were ensured (IRB/16 

Dec/2024).  
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3. RESULTS

Figure 2 presents a map of Thailand along with 

a spatial representation of the dengue incidence rate 

from 2013 to 2024. This map illustrates the spread of 

dengue fever across all 77 provinces, revealing a 

cyclical pattern of outbreaks. Based on monthly 

dengue case data in Thailand from 2013 to 2024 (a 

total of 144 months), the findings indicate that dengue 

outbreaks exhibit a recurring cycle, with cases 

typically peaking in the mid-year period (May-

September) and declining towards the end of the year 

(November-February). This pattern aligns with the 

rainy season and temperature fluctuations that 

influence the breeding of Aedes mosquitoes. The 

highest number of monthly cases recorded was 

31,132, particularly during severe outbreak years such 

as 2015, 2019, and 2022. In contrast, the lowest 

number of cases observed was 391, which occurred 

during the winter months. This decrease may have 

been influenced by disease control measures, 

particularly during 2020-2021, when COVID-19 

lockdown policies were implemented (Liyanage et al., 

2021). Additionally, the data reflect an epidemic cycle 

occurring every 3-4 years, a distinctive characteristic 

of dengue outbreaks in Thailand. This study utilizes a 

dataset comprising monthly dengue case records in 

Thailand from January 2013 to December 2024, 

revealing that the data exhibit a random or non-

seasonal pattern. The time series of dengue cases 

observed demonstrates a stationary pattern, as 

depicted in Figure 3(a). 

Figure 2. Dengue incidence in Thailand in 2013-2024 
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Figure 3. Dengue incidence from January 2013 to December 2024 in Thailand (a), autocorrelation function (b), partial autocorrelation 

function (c). 

The automatic model selection in Gretl 

identified periodicity of 12 for the selected data. The 

ARIMA (1,0,1) model was identified as the best fitting 

model for the given data, providing predictive values 

for a 12-month forecast from January 2013 to 

December 2024. The difference between the observed 

value and the predictive value for each month was 

referred to as the residual of the model. The 

Autocorrelation factor (ACF) and The Partial 

autocorrelation factor (PACF) were tested for 

residuals to observe the pattern of residuals. Residuals 

should not show any significant pattern, only then will 

the selected model be considered as best fitting model. 

As shown in Figure 3, the auto correlation and 

the Partial auto correlation of predicted cases at 

different lag times are depicted. Two lines in the graph 

indicate the 95% confidence limits of the residual ACF 

and residual PACF. At any lag time, the residual ACF 
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and residual PACF did not exceed the 95% confidence 

limits indicating that there were no significant 

autocorrelation patterns between the residuals across 

different lag times. This suggests that the residuals 

exhibited no significant pattern and were discrete, 

independent and identically distributed following a 

white noise pattern. Table 1 presents the model fit 

statistics and Ljung-Box test for residuals of the 

selected predictive model (seasonal ARIMA (1,0,1)). 

The model yielded a stationary R-squared value of 

0.8576. The Ljung-Box test statistic was 11.271, with 

a p-value of 0.792, indicating that the residuals were 

not significantly autocorrelated and confirming the 

adequacy of the selected model. 

Moreover, the findings of this study reveal a 

seasonal trend that is generally consistent with 

historical dengue incidence, although the projected 

peak month differs, indicating that the model is 

sufficiently suitable for forecasting dengue incidence 

rates for 2025-2026. The ARIMA (1,0,1) model was 

applied to predict the incidence rate of dengue fever 

from January 2025 to December 2026, yielding a 

Mean Absolute Percentage Error (MAPE) of 43.40%. 

The forecasted incidence rates for dengue fever in 

2025-2026 are presented in Figure 4, which illustrates 

that the trend of dengue cases in Thailand from 

January to December 2025-2026 shows periodic 

increases, along with fluctuations in case numbers and 

a 95% confidence interval (95% CI) surrounding the 

projections. 

Figure 4. Observed and predicted dengue incidence from ARIMA model (1, 0, 1) in 2025-2026 in Thailand 

Furthermore, the forecasted incidence of 

dengue fever in Thailand during 2025-2026, as 

presented in Table 2 and Figure 4, indicates clear 

seasonal patterns. The model projects that December 

2026 will record the highest number of cases (7,336 

cases), while January 2025 is expected to have the 

lowest incidence (2,401 cases). These findings were 

generated using the ARIMA (1,0,1) model, which 

successfully captured temporal fluctuations in dengue 

transmission. Notably, the predicted monthly values 

show a consistent upward trend throughout the 

forecast period, with case numbers rising steadily 

across consecutive months. This suggests an 

intensification in disease transmission, warranting 

enhanced vector-control and preparedness efforts. 

4. DISCUSSION

Over the past decade, dengue fever has continued 

to pose a complex public health challenge in Thailand, 

with seasonal outbreaks and varying intensities across 

regions. By employing the ARIMA (1,0,1) model to 

forecast dengue incidence from 2025 to 2026, this study 

offers a valuable analytical lens into future trends based 

on historical disease patterns. The model, built upon 12 

years of surveillance data, captured cyclical fluctuations 

consistent with monsoon-driven mosquito breeding and 

93



Bunprom P et al. / Environment and Natural Resources Journal 2026; 24(1): 88-97

revealed a projected case peak in December 2026, 

suggesting a possible extension of transmission beyond 

the traditional rainy season. These findings align with 

prior work in similar tropical settings, such as Indonesia 

and Vietnam, where ARIMA models have informed 

early detection systems and resource allocation 

strategies (Olowe et al., 2023; Zaw et al., 2023). 

Table 2. Monthly predicted dengue fever cases in Thailand during 

2025-2026 based on the ARIMA (1, 0, 1) model 

Month (2025)  Cases Month (2025)  Cases 

January 2,401 January 7,152 

February 3,570 February 7,198 

March 4,462 March 7,233 

April 5,144 April 7,260 

May 5,665 May 7,280 

June 6,062 June 7,296 

July 6,366 July 7,308 

August 6,598 August 7,317 

September 6,775 September 7,324 

October 6,910 October 7,329 

November 7,013 November 7,333 

December 7,092 December 7,336 

One of the study’s notable contributions lies in 

its integration of long-term national data, which 

enhances forecasting reliability and policy relevance. 

In practical terms, identifying periods of heightened 

risk supports the development of more timely, targeted 

vector-control operations. The potential shift in 

seasonal peaks underscores the need to reevaluate 

current prevention strategies, which have historically 

concentrated on mid-year interventions. Strengthening 

surveillance efforts in the months leading to the 

projected December spike could mitigate the burden 

of outbreaks, particularly in densely populated or 

resource-constrained settings. These insights are not 

merely statistical; they provide actionable guidance 

for operational planning, health worker mobilization, 

and community engagement. 

Despite these contributions, the ARIMA 

model’s simplicity, while a strength in terms of 

transparency and accessibility, also introduces notable 

limitations. The exclusion of exogenous variables 

such as precipitation, temperature, or other socio-

environmental conditions restricts the model’s ability 

to fully capture the multifactorial nature of dengue 

transmission. By applying ARIMA (1, 0, 1), however, 

the model captures cyclical trends that may reflect 

monsoon-driven mosquito dynamics, thereby offering 

partial insights into seasonal patterns despite its 

restricted scope. Moreover, unaccounted factors such 

as vector-control effort, virus serotype shifts, and 

changes in human mobility patterns may influence 

outbreak dynamics in ways not reflected in historical 

case data. While the model’s mean absolute 

percentage error (MAPE) was moderate, the absence 

of external inputs may hinder its responsiveness to 

atypical outbreak scenarios. To address these 

limitations, future research should explore ARIMAX 

or SARIMAX models that integrate climatic variables, 

as well as nonlinear approaches such as long short-

term memory (LSTM) networks and ensemble 

machine learning models for greater precision 

(Ouattara et al., 2022; Wibawa et al., 2024). 

This study’s findings are also situated within the 

broader context of climate-sensitive disease 

surveillance. As climate patterns become more erratic, 

disease forecasting must evolve beyond historical 

extrapolation. The increasing unpredictability of 

dengue trends reinforces the need for adaptive, multi-

sectoral strategies. Framing these results within the 

social-ecological systems (SES) framework helps 

underscore the interdependence between human 

behavior, ecological changes, and vector dynamics 

(Watts et al., 2020). Furthermore, this research 

contributes to global health agendas by aligning with 

Sustainable Development Goal (SDG) 3 on ensuring 

healthy lives, and SDG 13 on climate action. By 

advocating for climate-informed vector control and 

data-driven early warning systems, the study offers 

both scientific and strategic value. 

In summary, while the ARIMA (1,0,1) model 

has clear limitations in isolating the drivers of dengue 

outbreaks, it remains a practical tool for trend 

estimation and risk anticipation. Its utility lies not only 

in what it predicts but in how those predictions can 

shape preparedness. Building upon these results with 

more integrative models will allow public health 

authorities to respond more effectively to a changing 

epidemiological landscape. In the long term, 

embedding predictive analytics into routine disease 

surveillance can serve as a cornerstone of Thailand’s 

broader climate resilience and public health readiness. 

This aligns directly with the study’s objectives, as 

outlined in the introduction, which emphasize 

identifying temporal patterns and predicting future 

trends. By achieving these aims, the research provides 

a foundation for developing an early warning system 

and strengthening mosquito control planning during 

high-risk periods. 
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4.1 Interpretation of key findings 

This study reveals a recurring pattern in dengue 

fever outbreaks in Thailand, with the highest incidence 

observed during the rainy season (May-September), 

driven by climatic conditions such as rainfall and 

temperature fluctuations that favor mosquito breeding. 

The cyclical nature of the outbreaks, with peaks every 

3-4 years, highlights the influence of environmental 

factors on dengue transmission. Notably, the ARIMA 

model identified significant seasonal fluctuations, 

providing a strong foundation for forecasting future 

outbreaks. Furthermore, the ability of the ARIMA 

model to capture recurrent seasonal peaks 

demonstrates its utility as a practical forecasting tool 

for dengue fever in Thailand. Unlike simple trend 

analysis, ARIMA accounts for both short-term 

autocorrelations and long-term seasonal cycles, 

providing reliable short-term forecasts that are critical 

for planning vector control operations. This 

adaptability to historical surveillance data, combined 

with its relatively low data requirements, makes 

ARIMA particularly advantageous in resource-limited 

settings where more sophisticated models may not be 

feasible. For example, Mustaffa and Zahari (2024) 

found that seasonal ARIMA models performed 

competitively against more complex models in 

forecasting dengue incidence in Malaysia, reinforcing 

ARIMA’s practical utility in tropical public health 

contexts. However, while the model performed well in 

capturing the trends, the study’s relatively low 

explanatory power suggests that factors beyond 

climate, such as socio-economic conditions, vector 

control measures, and urbanization, also play 

significant roles in the transmission dynamics. 

4.2 Public health implications 

The study’s findings have important 

implications for public health strategies in Thailand. 

First, the predictable seasonal pattern of dengue 

outbreaks provides an opportunity for targeted 

interventions during peak transmission periods. This 

includes intensified vector-control efforts, such as 

mosquito spraying and habitat elimination, 

particularly during the rainy season. Additionally, 

early warning systems that integrate real-time weather 

data can help health authorities take proactive 

measures before an outbreak reaches its peak, 

potentially reducing the burden on healthcare systems. 

Furthermore, the study's emphasis on the cyclical 

nature of outbreaks calls for sustained and long-term 

planning rather than reactive, short-term responses. 

Strengthening surveillance systems, especially in rural 

and peri-urban areas, will also be crucial in detecting 

and responding to early signs of dengue resurgence. 

4.3 Novel contributions of the study 

This study makes several novel contributions to 

the field of dengue epidemiology. First, it offers a 

detailed, long-term analysis (2013-2024) of dengue 

incidence in Thailand, using a comprehensive dataset 

that includes both climatic and disease data. The 

study’s integration of the ARIMA model for 

forecasting dengue outbreaks based on climatic 

variables provides a robust statistical approach to 

understanding dengue dynamics. The research also 

identifies the specific climatic factors (temperature 

and rainfall) most strongly associated with dengue 

transmission in Thailand, which can inform localized 

prevention strategies. Additionally, the study’s focus 

on seasonal fluctuations in disease incidence 

contributes to understanding how climate variability 

influences the frequency and severity of outbreaks 

across regions. 

Rather than reiterating the results, the 

discussion has been restructured to emphasize the 

insights drawn from the findings. While the ARIMA 

model’s effectiveness is acknowledged, the key 

takeaway is the broader public health implications, 

particularly the importance of integrating climate-

sensitive approaches into dengue control programs. 

More directly, these findings highlight how evidence-

based forecasting can guide targeted interventions and 

shape policy decisions to improve dengue 

preparedness and prevention. The novel contribution 

lies in linking climatic variability with seasonal 

outbreaks, which can now be used to inform early 

warning systems and strengthen disease surveillance. 

The limitations section highlights areas for further 

research, including the need to account for additional 

variables such as socio-economic and environmental 

factors, which will enhance the predictive capacity of 

future models. 

5. CONCLUSION

This study presents an ARIMA model for 

forecasting the incidence of dengue fever in Thailand, 

utilizing monthly confirmed dengue case data from 

2013 to 2024. The analysis indicates that the ARIMA 

(1,0,1) model was identified as the best-fit model, as it 

accurately described the data and demonstrated the 

ability to forecast dengue incidence. The evaluation of 

the forecast revealed a Mean Absolute Percentage 
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Error (MAPE) of 43.40%, indicating that the model 

provided reasonably accurate predictions. The forecast 

for 2025-2026 shows that December 2026 is expected 

to have the highest number of dengue cases, reaching 

7,336, while January 2025 is predicted to have the 

lowest at 2,401 cases. These findings provide valuable 

insights for future dengue control and prevention 

efforts.  

While the findings of this study provide 

valuable insights into the seasonal trends of dengue 

fever in Thailand, further research is needed to address 

the limitations outlined above. Public health 

authorities can benefit from this study by using the 

model's forecast to prepare for expected outbreaks, 

particularly in the high-risk months. However, 

incorporating additional variables and exploring more 

advanced forecasting techniques will allow for more 

accurate predictions, ultimately improving response 

strategies. Future research should focus on the 

integration of diverse data sources, including socio-

economic and environmental factors, and adopting 

machine learning methods to enhance the precision 

and adaptability of dengue forecasting models. 

6. LIMITATIONS

This study has several limitations that must be 

considered when interpreting the findings. First, the 

exclusion of exogenous variables, such as climatic and 

environmental factors beyond temperature, humidity, 

and rainfall, may have impacted the model’s 

predictive power. Factors like urbanization, land use 

changes, and public health interventions (e.g., vector 

control measures) are known to influence dengue 

transmission dynamics and should be incorporated 

into future studies for a more comprehensive 

understanding. Additionally, underreporting or 

misclassification of dengue cases, particularly in rural 

or resource-limited settings, could lead to inaccuracies 

in the data, potentially skewing the results. This issue 

is particularly relevant in regions with limited access 

to healthcare or surveillance infrastructure, where 

dengue cases may not be accurately recorded. 

Furthermore, the reliance solely on the ARIMA 

model presents another limitation. While effective in 

modeling linear trends, the ARIMA model may not 

fully capture the complex, non-linear dynamics of 

dengue outbreaks, particularly during periods of 

sudden surges or atypical conditions. As a result, the 

model’s ability to predict extreme outbreak conditions 

is constrained. Future studies should consider 

integrating climatic data into more robust multivariate 

models, such as ARIMAX or SARIMAX, which can 

incorporate additional exogenous variables for more 

accurate forecasting. Additionally, alternative or 

complementary forecasting methods, such as machine 

learning techniques (e.g., random forests, gradient 

boosting, and Long Short-Term Memory (LSTM) 

neural networks), could offer improved modeling of 

non-linear relationships and better handle complex 

patterns. Hybrid models that combine statistical 

methods with machine learning techniques may also 

enhance forecast accuracy and reliability, particularly 

during atypical outbreak conditions. 
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