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Dengue fever remains a significant public health concern in Thailand, characterized by
recurrent outbreaks and considerable morbidity. Understanding and forecasting temporal
patterns of dengue incidence are essential for effective prevention and control strategies.
This study analyzed monthly dengue fever incidence in Thailand from 2013 to 2024 and
forecasted trends for 2025-2026 using the Autoregressive Integrated Moving Average
(ARIMA) model. Data were obtained from the Bureau of Epidemiology, Department of
Disease Control, and Ministry of Public Health. The optimal ARIMA (1,0,1) model was
selected based on diagnostic criteria including the Autocorrelation Function (ACF),
Partial Autocorrelation Function (PACF), and the Ljung-Box test. Model performance
was evaluated using the Mean Absolute Percentage Error (MAPE), yielding 43.40%, and
indicating moderately accurate predictions for planning purposes. The model successfully
captured seasonal trends, with dengue incidence typically peaking mid-year. Forecasts for
2025-2026 indicate periodic fluctuations, with December 2026 projected to have the
highest incidence (7,336 cases) and January 2025 the lowest (2,401 cases). While the
ARIMA model demonstrated utility in forecasting general trends, its limitations include
the inability to incorporate external variables such as climate, vector control programs,
vector control efforts, or viral serotype shifts. Despite this, the findings provide actionable
insights for public health planning and resource allocation aimed at mitigating future
dengue outbreaks in Thailand.

HIGHLIGHTS

ARIMA (1, 0, 1) was applied to forecast dengue incidence in Thailand. Twelve years of climate and case data enhanced the model
accuracy. Seasonal peaks were detected, with December 2026 as the highest. Forecasts support timely dengue prevention and public

health planning.

1. INTRODUCTION

Climate change has emerged as a critical global
challenge, influencing all aspects of human life,
including public health (Semenza et al., 2022; Wu and
Huang, 2022) One of the most significant health
consequences is the rise in vector-borne diseases,
which have caused recurrent outbreaks across multiple
regions (Delrieu et al., 2023). Among these, dengue
virus (DENV) remains the most prevalent vector-
borne viral infection worldwide, with the majority of
cases concentrated in South America, Southeast Asia,
and the Western Pacific (Guo et al., 2017). According

to the World Health Organization (WHO, 2024), more
than 12.7 million dengue cases were reported globally
between January and September 2024 almost double
the 6.5 million cases recorded in 2023. During this
same period, dengue-related deaths totaled 8,791.
Dengue is transmitted primarily by mosquitoes of the
Aedes genus, notably Aedes aegypti and Aedes
albopictus, which thrive in tropical and subtropical
climates (Russo et al., 2020). These vectors are
capable of spreading the virus even in the absence of
clearly defined outbreak patterns, complicating
control and prevention efforts.
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Thailand is among the countries most affected
by dengue fever in Southeast Asia. Retrospective data
from 2019 to 2024 indicate fluctuating but persistent
disease transmission, with the most severe outbreak
occurring in 2023, during which 158,620 cases and
181 deaths were reported (Thai PBS, 2023). Although
the incidence declined to 105,250 cases and 90 deaths
in 2024, the first quarter of 2025 still recorded 3,550
cases, a 4.8-fold decrease from the same period in
2024. Nevertheless, fatalities continue at an average
rate of one death per week, indicating that dengue
remains a persistent public health threat, particularly
for children, the elderly, and individuals with obesity.
Currently, no specific antiviral treatment or
universally available vaccine exists for dengue
infection. Patient management relies on immune
system response and supportive care (WHO, 2025).
This issue places a significant burden on the national
healthcare system, particularly during epidemic
periods (Wongkoon et al., 2012). Time series analysis
is a critical methodological approach in public health
and infectious disease surveillance, offering valuable
insights into disease trends and outbreak dynamics
(Sutriyawan et al.,, 2024). The Autoregressive
Integrated Moving Average (ARIMA) model (Bayu et
al., 2024) is a widely utilized time series forecasting
technique for seasonal patterns and has been proven
effective in modeling and predicting dengue fever
incidence by identifying temporal patterns and
forecasting future trends. With its high flexibility, the
ARIMA model can be applied in various ways to
prevent and control dengue fever, such as identifying
temporal patterns to determine mosquito control
measures during high-risk periods and aiding in the
development of an early warning system for dengue
outbreaks, thereby enhancing the efficiency and
accuracy of vector control plans. Furthermore, time
series analysis provides insights into dengue
transmission patterns and the impact of environmental
factors on disease incidence (Aung et al., 2024). The
application of the ARIMA model has demonstrated
success in various countries (Sutriyawan et al., 2024;
Riley et al., 2020), underscoring its effectiveness in
strengthening outbreak preparedness and public health
interventions. Thus, this research aims to apply the
Autoregressive Integrated Moving Average (ARIMA)
time series model to forecast the incidence of dengue
fever in Thailand. The ARIMA model was selected
because it can effectively handle non-stationary time
series data while providing transparent and
interpretable results. Its practical applicability makes
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it well suited for public health decision-making, and
previous studies in tropical settings have demonstrated
its effectiveness in forecasting infectious disease
incidence where seasonal patterns are dominant (Aung
et al., 2024; Sutriyawan et al., 2024). The study
focuses on identifying temporal patterns and
predicting future trends, which will aid in the
development of an early warning system and enhance
mosquito control planning during high-risk periods.
Furthermore, the findings will contribute to a deeper
understanding of the transmission dynamics of dengue
fever and the factors influencing disease outbreaks.
The results of this study are expected to provide
valuable insights for more effective prevention and
control strategies for dengue fever in the future.

2. METHODOLOGY
2.1 Study design

This retrospective observational study was
conducted using historical data from 2013 to 2024.
The dataset included monthly time-series data on
rainfall, relative humidity, minimum and maximum
temperatures, and the number of rainy days, obtained
from the Thai Meteorological Department.
Corresponding dengue fever case data for the same
period were sourced from the Bureau of
Epidemiology, Department of Disease Control,
Ministry of Public Health.

2.2 Study area

Thailand covers an area of 513,120 square
kilometers and is located between latitudes 5°37'N and
20°27'N and longitudes 97°22'E and 105°37'E
(Government of Thailand, 2025). It is situated in the
center of Southeast Asia, bordered by the Andaman
Sea and the Gulf of Thailand (Figure 1) (Freepik,
2024). To the east, Thailand shares borders with Laos
and Cambodia; to the north and west, it is bordered by
Myanmar; and to the south, it borders Malaysia. The
country is divided into six regions: Northern,
Northeastern, Central, Eastern, Western, and Southern

Thailand, comprising 77 provinces with a total
population of approximately 69 million people (Thai
Meteorological Department, 2025). Thailand has a
tropical climate, characterized by high temperatures
and humidity. In general, the northern and northeastern
regions experience lower temperatures than Bangkok in
winter and higher temperatures in summer. The hottest
months of the year are April and May. The rainy season
extends from June to late October, while the period
from November to late February is cooler and less
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humid. Thailand’s climate is significantly influenced by
monsoons, including the southwest monsoon, which
brings moisture from the Indian Ocean during the rainy
season, and the northeast monsoon, which carries cold,
dry air from China during the winter season, as reported
by the Digital Government Development Agency
(DGA, 2025).

Figure 1. Map of Thailand

2.3 Statistical analysis
Data analysis was conducted using Gretl
version 2023d, an open-source econometric software.

The temporal pattern of dengue incidence in Thailand
was analyzed using the Autoregressive Integrated
Moving Average (ARIMA) model, following the Box-
Jenkins methodology (Abhinandithe and Vaishnavi,
2019). Monthly dengue incidence data from 2013 to
2024 were used to build the time series model.

To verify stationarity, both the Augmented
Dickey-Fuller (ADF) and KPSS tests were applied to
the original series. The ADF test failed to reject the
null hypothesis of non-stationarity, while the KPSS
test indicated non-stationarity as well. Consequently,
first-order differencing (d=1) was applied, after which
the series achieved stationarity. Candidate
autoregressive (p) and moving average (q) terms were
then identified by examining the autocorrelation
function (ACF) and partial autocorrelation function
(PACF) plots, supplemented by Gretl’s automatic
model selection procedure with a periodicity of 12.

Several ARIMA specifications were estimated
and compared using the Akaike Information Criterion
(AIC), where lower values indicate a superior fit.
Among the candidate models tested, including ARIMA
(1,0,0), ARIMA (1,0,1), and ARIMA (13,0,0) the
ARIMA (1,0,1) model achieved the lowest AIC value,
representing the best balance between explanatory
power and parsimony. Table 1 shows the comparison of
ARIMA model specifications, including log-likelihood
and AIC values. Among the candidate models, ARIMA
(1,0,1) achieved the lowest AIC, confirming its
suitability as the best-fitting model.

Table 1. Comparison of candidate ARIMA models for dengue incidence forecasting in Thailand (2013-2024)

Candidate model p d q Log-lik(L) AIC
ARIMA (1,0,1) (selected) 1 0 1 -1,355.031 2,718.062
ARIMA (1,0,0) 1 0 0 -1,375.651 2,719.727
ARIMA (13,0,0) 13 0 0 -1,375.651 2,757.301
Residual diagnostics confirmed the adequacy of ~ prediction intervals were constructed to reflect

the selected model. The residual ACF and PACF
remained within the 95% confidence bounds, the
Ljung-Box test showed no evidence of serial
correlation, and the stationary R2R"2R2 value
indicated a strong fit. Residuals were normally
distributed, independent, and homoscedastic, thereby
meeting the assumptions of the ARIMA framework.
Finally, the ARIMA (1,0,1) model was used to
generate 24-month forecasts of dengue incidence for
2025-2026. Forecast accuracy was evaluated using the
Mean Absolute Percentage Error (MAPE), and 95%
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forecast uncertainty.

2.4 Ethical consideration

Ethical approval for the study protocol was
obtained from the Ethics Committee of Sirindhorn
College of Public Health, Yala having the approval
number SCPHYLIRB-2567/452 period. All the
information obtained was anonymized, and data
privacy and confidentiality were ensured (IRB/16
Dec/2024).
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3. RESULTS

Figure 2 presents a map of Thailand along with
a spatial representation of the dengue incidence rate
from 2013 to 2024. This map illustrates the spread of
dengue fever across all 77 provinces, revealing a
cyclical pattern of outbreaks. Based on monthly
dengue case data in Thailand from 2013 to 2024 (a
total of 144 months), the findings indicate that dengue
outbreaks exhibit a recurring cycle, with cases
typically peaking in the mid-year period (May-
September) and declining towards the end of the year
(November-February). This pattern aligns with the
rainy season and temperature fluctuations that
influence the breeding of Aedes mosquitoes. The
highest number of monthly cases recorded was
31,132, particularly during severe outbreak years such

as 2015, 2019, and 2022. In contrast, the lowest
number of cases observed was 391, which occurred
during the winter months. This decrease may have
been influenced by disease control measures,
particularly during 2020-2021, when COVID-19
lockdown policies were implemented (Liyanage et al.,
2021). Additionally, the data reflect an epidemic cycle
occurring every 3-4 years, a distinctive characteristic
of dengue outbreaks in Thailand. This study utilizes a
dataset comprising monthly dengue case records in
Thailand from January 2013 to December 2024,
revealing that the data exhibit a random or non-
seasonal pattern. The time series of dengue cases
observed demonstrates a stationary pattern, as
depicted in Figure 3(a).

Figure 2. Dengue incidence in Thailand in 2013-2024
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Figure 3. Dengue incidence from January 2013 to December 2024 in Thailand (a), autocorrelation function (b), partial autocorrelation

function (c).

The automatic model selection in Gretl
identified periodicity of 12 for the selected data. The
ARIMA (1,0,1) model was identified as the best fitting
model for the given data, providing predictive values
for a 12-month forecast from January 2013 to
December 2024. The difference between the observed
value and the predictive value for each month was
referred to as the residual of the model. The
Autocorrelation factor (ACF) and The Partial
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autocorrelation factor (PACF) were tested for
residuals to observe the pattern of residuals. Residuals
should not show any significant pattern, only then will
the selected model be considered as best fitting model.

As shown in Figure 3, the auto correlation and
the Partial auto correlation of predicted cases at
different lag times are depicted. Two lines in the graph
indicate the 95% confidence limits of the residual ACF
and residual PACF. At any lag time, the residual ACF
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and residual PACF did not exceed the 95% confidence
limits indicating that there were no significant
autocorrelation patterns between the residuals across
different lag times. This suggests that the residuals
exhibited no significant pattern and were discrete,
independent and identically distributed following a
white noise pattern. Table 1 presents the model fit
statistics and Ljung-Box test for residuals of the
selected predictive model (seasonal ARIMA (1,0,1)).
The model yielded a stationary R-squared value of
0.8576. The Ljung-Box test statistic was 11.271, with
a p-value of 0.792, indicating that the residuals were
not significantly autocorrelated and confirming the
adequacy of the selected model.

Moreover, the findings of this study reveal a
seasonal trend that is generally consistent with
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historical dengue incidence, although the projected
peak month differs, indicating that the model is
sufficiently suitable for forecasting dengue incidence
rates for 2025-2026. The ARIMA (1,0,1) model was
applied to predict the incidence rate of dengue fever
from January 2025 to December 2026, yielding a
Mean Absolute Percentage Error (MAPE) of 43.40%.
The forecasted incidence rates for dengue fever in
2025-2026 are presented in Figure 4, which illustrates
that the trend of dengue cases in Thailand from
January to December 2025-2026 shows periodic
increases, along with fluctuations in case numbers and
a 95% confidence interval (95% CI) surrounding the
projections.
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Figure 4. Observed and predicted dengue incidence from ARIMA model (1, 0, 1) in 2025-2026 in Thailand

Furthermore, the forecasted incidence of
dengue fever in Thailand during 2025-2026, as
presented in Table 2 and Figure 4, indicates clear
seasonal patterns. The model projects that December
2026 will record the highest number of cases (7,336
cases), while January 2025 is expected to have the
lowest incidence (2,401 cases). These findings were
generated using the ARIMA (1,0,1) model, which
successfully captured temporal fluctuations in dengue
transmission. Notably, the predicted monthly values
show a consistent upward trend throughout the
forecast period, with case numbers rising steadily
across consecutive months. This suggests an
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intensification in disease transmission, warranting
enhanced vector-control and preparedness efforts.

4. DISCUSSION

Over the past decade, dengue fever has continued
to pose a complex public health challenge in Thailand,
with seasonal outbreaks and varying intensities across
regions. By employing the ARIMA (1,0,1) model to
forecast dengue incidence from 2025 to 2026, this study
offers a valuable analytical lens into future trends based
on historical disease patterns. The model, built upon 12
years of surveillance data, captured cyclical fluctuations
consistent with monsoon-driven mosquito breeding and
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revealed a projected case peak in December 2026,
suggesting a possible extension of transmission beyond
the traditional rainy season. These findings align with
prior work in similar tropical settings, such as Indonesia
and Vietnam, where ARIMA models have informed
early detection systems and resource allocation
strategies (Olowe et al., 2023; Zaw et al., 2023).

Table 2. Monthly predicted dengue fever cases in Thailand during
2025-2026 based on the ARIMA (1, 0, 1) model

Month (2025)  Cases Month (2025)  Cases
January 2,401 January 7,152
February 3,570 February 7,198
March 4,462 March 7,233
April 5,144 April 7,260
May 5,665 May 7,280
June 6,062 June 7,296
July 6,366 July 7,308
August 6,598 August 7,317
September 6,775 September 7,324
October 6,910 October 7,329
November 7,013 November 7,333
December 7,092 December 7,336

One of the study’s notable contributions lies in
its integration of long-term national data, which
enhances forecasting reliability and policy relevance.
In practical terms, identifying periods of heightened
risk supports the development of more timely, targeted
vector-control operations. The potential shift in
seasonal peaks underscores the need to reevaluate
current prevention strategies, which have historically
concentrated on mid-year interventions. Strengthening
surveillance efforts in the months leading to the
projected December spike could mitigate the burden
of outbreaks, particularly in densely populated or
resource-constrained settings. These insights are not
merely statistical; they provide actionable guidance
for operational planning, health worker mobilization,
and community engagement.

Despite these contributions, the ARIMA
model’s simplicity, while a strength in terms of
transparency and accessibility, also introduces notable
limitations. The exclusion of exogenous variables
such as precipitation, temperature, or other socio-
environmental conditions restricts the model’s ability
to fully capture the multifactorial nature of dengue
transmission. By applying ARIMA (1, 0, 1), however,
the model captures cyclical trends that may reflect
monsoon-driven mosquito dynamics, thereby offering
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partial insights into seasonal patterns despite its
restricted scope. Moreover, unaccounted factors such
as vector-control effort, virus serotype shifts, and
changes in human mobility patterns may influence
outbreak dynamics in ways not reflected in historical
case data. While the model’s mean absolute
percentage error (MAPE) was moderate, the absence
of external inputs may hinder its responsiveness to
atypical outbreak scenarios. To address these
limitations, future research should explore ARIMAX
or SARIMAX models that integrate climatic variables,
as well as nonlinear approaches such as long short-
term memory (LSTM) networks and ensemble
machine learning models for greater precision
(Ouattara et al., 2022; Wibawa et al., 2024).

This study’s findings are also situated within the
broader context of climate-sensitive disease
surveillance. As climate patterns become more erratic,
disease forecasting must evolve beyond historical
extrapolation. The increasing unpredictability of
dengue trends reinforces the need for adaptive, multi-
sectoral strategies. Framing these results within the
social-ecological systems (SES) framework helps
underscore the interdependence between human
behavior, ecological changes, and vector dynamics
(Watts et al., 2020). Furthermore, this research
contributes to global health agendas by aligning with
Sustainable Development Goal (SDG) 3 on ensuring
healthy lives, and SDG 13 on climate action. By
advocating for climate-informed vector control and
data-driven early warning systems, the study offers
both scientific and strategic value.

In summary, while the ARIMA (1,0,1) model
has clear limitations in isolating the drivers of dengue
outbreaks, it remains a practical tool for trend
estimation and risk anticipation. Its utility lies not only
in what it predicts but in how those predictions can
shape preparedness. Building upon these results with
more integrative models will allow public health
authorities to respond more effectively to a changing
epidemiological landscape. In the long term,
embedding predictive analytics into routine disease
surveillance can serve as a cornerstone of Thailand’s
broader climate resilience and public health readiness.
This aligns directly with the study’s objectives, as
outlined in the introduction, which emphasize
identifying temporal patterns and predicting future
trends. By achieving these aims, the research provides
a foundation for developing an early warning system
and strengthening mosquito control planning during
high-risk periods.
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4.1 Interpretation of key findings

This study reveals a recurring pattern in dengue
fever outbreaks in Thailand, with the highest incidence
observed during the rainy season (May-September),
driven by climatic conditions such as rainfall and
temperature fluctuations that favor mosquito breeding.
The cyclical nature of the outbreaks, with peaks every
3-4 years, highlights the influence of environmental
factors on dengue transmission. Notably, the ARIMA
model identified significant seasonal fluctuations,
providing a strong foundation for forecasting future
outbreaks. Furthermore, the ability of the ARIMA
model to capture recurrent seasonal peaks
demonstrates its utility as a practical forecasting tool
for dengue fever in Thailand. Unlike simple trend
analysis, ARIMA accounts for both short-term
autocorrelations and long-term seasonal cycles,
providing reliable short-term forecasts that are critical
for planning vector control operations. This
adaptability to historical surveillance data, combined
with its relatively low data requirements, makes
ARIMA particularly advantageous in resource-limited
settings where more sophisticated models may not be
feasible. For example, Mustaffa and Zahari (2024)
found that seasonal ARIMA models performed
competitively against more complex models in
forecasting dengue incidence in Malaysia, reinforcing
ARIMA’s practical utility in tropical public health
contexts. However, while the model performed well in
capturing the trends, the study’s relatively low
explanatory power suggests that factors beyond
climate, such as socio-economic conditions, vector
control measures, and urbanization, also play
significant roles in the transmission dynamics.

4.2 Public health implications

The study’s findings have important
implications for public health strategies in Thailand.
First, the predictable seasonal pattern of dengue
outbreaks provides an opportunity for targeted
interventions during peak transmission periods. This
includes intensified vector-control efforts, such as
mosquito  spraying and habitat elimination,
particularly during the rainy season. Additionally,
early warning systems that integrate real-time weather
data can help health authorities take proactive
measures before an outbreak reaches its peak,
potentially reducing the burden on healthcare systems.
Furthermore, the study's emphasis on the cyclical
nature of outbreaks calls for sustained and long-term
planning rather than reactive, short-term responses.
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Strengthening surveillance systems, especially in rural
and peri-urban areas, will also be crucial in detecting
and responding to early signs of dengue resurgence.

4.3 Novel contributions of the study

This study makes several novel contributions to
the field of dengue epidemiology. First, it offers a
detailed, long-term analysis (2013-2024) of dengue
incidence in Thailand, using a comprehensive dataset
that includes both climatic and disease data. The
study’s integration of the ARIMA model for
forecasting dengue outbreaks based on climatic
variables provides a robust statistical approach to
understanding dengue dynamics. The research also
identifies the specific climatic factors (temperature
and rainfall) most strongly associated with dengue
transmission in Thailand, which can inform localized
prevention strategies. Additionally, the study’s focus
on seasonal fluctuations in disease incidence
contributes to understanding how climate variability
influences the frequency and severity of outbreaks
across regions.

Rather than reiterating the results, the
discussion has been restructured to emphasize the
insights drawn from the findings. While the ARIMA
model’s effectiveness is acknowledged, the key
takeaway is the broader public health implications,
particularly the importance of integrating climate-
sensitive approaches into dengue control programs.
More directly, these findings highlight how evidence-
based forecasting can guide targeted interventions and
shape policy decisions to improve dengue
preparedness and prevention. The novel contribution
lies in linking climatic variability with seasonal
outbreaks, which can now be used to inform early
warning systems and strengthen disease surveillance.
The limitations section highlights areas for further
research, including the need to account for additional
variables such as socio-economic and environmental
factors, which will enhance the predictive capacity of
future models.

5. CONCLUSION

This study presents an ARIMA model for
forecasting the incidence of dengue fever in Thailand,
utilizing monthly confirmed dengue case data from
2013 to 2024. The analysis indicates that the ARIMA
(1,0,1) model was identified as the best-fit model, as it
accurately described the data and demonstrated the
ability to forecast dengue incidence. The evaluation of
the forecast revealed a Mean Absolute Percentage
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Error (MAPE) of 43.40%, indicating that the model
provided reasonably accurate predictions. The forecast
for 2025-2026 shows that December 2026 is expected
to have the highest number of dengue cases, reaching
7,336, while January 2025 is predicted to have the
lowest at 2,401 cases. These findings provide valuable
insights for future dengue control and prevention
efforts.

While the findings of this study provide
valuable insights into the seasonal trends of dengue
fever in Thailand, further research is needed to address
the limitations outlined above. Public health
authorities can benefit from this study by using the
model's forecast to prepare for expected outbreaks,
particularly in the high-risk months. However,
incorporating additional variables and exploring more
advanced forecasting techniques will allow for more
accurate predictions, ultimately improving response
strategies. Future research should focus on the
integration of diverse data sources, including socio-
economic and environmental factors, and adopting
machine learning methods to enhance the precision
and adaptability of dengue forecasting models.

6. LIMITATIONS

This study has several limitations that must be
considered when interpreting the findings. First, the
exclusion of exogenous variables, such as climatic and
environmental factors beyond temperature, humidity,
and rainfall, may have impacted the model’s
predictive power. Factors like urbanization, land use
changes, and public health interventions (e.g., vector
control measures) are known to influence dengue
transmission dynamics and should be incorporated
into future studies for a more comprehensive
understanding.  Additionally, underreporting or
misclassification of dengue cases, particularly in rural
or resource-limited settings, could lead to inaccuracies
in the data, potentially skewing the results. This issue
is particularly relevant in regions with limited access
to healthcare or surveillance infrastructure, where
dengue cases may not be accurately recorded.

Furthermore, the reliance solely on the ARIMA
model presents another limitation. While effective in
modeling linear trends, the ARIMA model may not
fully capture the complex, non-linear dynamics of
dengue outbreaks, particularly during periods of
sudden surges or atypical conditions. As a result, the
model’s ability to predict extreme outbreak conditions
is constrained. Future studies should consider
integrating climatic data into more robust multivariate
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models, such as ARIMAX or SARIMAX, which can
incorporate additional exogenous variables for more
accurate forecasting. Additionally, alternative or
complementary forecasting methods, such as machine
learning techniques (e.g., random forests, gradient
boosting, and Long Short-Term Memory (LSTM)
neural networks), could offer improved modeling of
non-linear relationships and better handle complex
patterns. Hybrid models that combine statistical
methods with machine learning techniques may also
enhance forecast accuracy and reliability, particularly
during atypical outbreak conditions.
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