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declined by 22.3% and 31.5%, respectively for all scenarios compared with 2021. The
CON scenario outperformed BAU/DEV because strict no-conversion constraints in
protected forests and restricted area effectively prevent ongoing deforestation, offering a
practical simulation-based tool to support and implement land-use policies at local and
regional scales. These findings provide a validated, transferable framework that isolates
policy effects and supports evidence-based land-use planning in tropical headwatersheds.

HIGHLIGHTS

o Headwatershed-specific LCM-MLP integrates local drivers and Constraint/Incentive (CI) layers.

o Deciduous forest fell 23.3% (-249 km?) from 1989 to 2021, while evergreen forest remained stable.
e Concerningly, deciduous forests decline while agriculture expands across all future scenarios.

e CON outperformed BAU/DEV via no-conversion constraints in protected areas.

e The model offers a practical tool for land-use policy implementation.

1. INTRODUCTION

Land use and land cover (LULC) change
(LULCC) is a key factor driving global biodiversity
loss and influencing processes that impact ecosystem
services (Tscharntke et al., 2012). Direct and indirect
human activities have triggered processes leading to

land degradation, impacting the ecological integrity of
affected areas (IPCC, 2019). Since 1970, this situation
has caused the greatest negative effects on both
terrestrial and freshwater ecosystems (IPBES, 2019),
with LULCC affecting almost 32% of the global land
area between 1960 and 2019 (Winkler et al., 2021).
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Extensive changes in land conditions are expected to
continue due to ongoing land use changes, leading to
substantial declines in net primary productivity,
reductions in soil carbon levels, and losses of
biodiversity (Van der Esch et al., 2017). Quantifying
LULCC is therefore essential to address
environmental challenges (Winkler et al., 2021). In
Southeast Asia, a global biodiversity hotspot, LULCC
drivers such as deforestation, increased agricultural
intensification, urbanization, mining activity, dam
construction, and wetland reduction are already
threatening ecosystems (Hughes, 2017), and these
losses are projected to persist through to 2050 (Van
der Esch et al., 2017). Thailand is one of countries in
the region most affected by land conversion (Hughes,
2017) and has experienced rapid economic growth
since the 1980s, primarily fueled by agriculture for
export (Wang et al., 2022). While this development
has been concentrated in urban centers and lowland
regions, it has also extended into mountainous areas

(Schreinemachers et al., 2013), particularly in
Northern Thailand.
According to the Land Development

Department of Thailand (LDD) (2023), the forest area
in Northern Thailand decreased by 9.66%, from
57.69% to 52.12%, between 2006/2007 and
2019/2021, respectively, while the agricultural area
increased by 16.94%, from 34.65% to 40.52%, during
the same period, especially in perennial and field
crops. The five northern provinces with the greatest
relative forest reduction from 2007 to 2018 are Chiang
Rai (-19.51%), Nan (-16.03%), Phayao (-8.83%),
Lampang (-8.81%), and Phrae (-6.94%). Nevertheless,
in northern Thailand, protected areas (PAs) managed
by the Department of National Parks Wildlife and
Plant Conservation (DNP) more effectively controlled
deforestation than in non-protected areas (Lee et al.,
2022; Liu et al., 2022), while national reserved forest
which is located adjacent and outside PAs, operated by
Royal Forest Department (RFD), tend to be severely
encroached.

Therefore, to address environmental problems
related to LULCC, future LULC should be projected
in terms of location and quantity using scenario-based
models such as CA, CLUE-S, MCDA, LCM, FLUS,
and agent-based models (Alcamo et al., 2006; Gomes
etal., 2021).

The Land Change Modeler (LCM) is a tool used
to simulate future land use and land cover (LULC)
based on past changes. It employs various methods,
e.g.,, the Multi-Layer Perceptron (MLP) Neural
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Network (NN), Logistic Regression (LR), and
SimWeight (SW) (Eastman and Toledano, 2018). The
most favorable method is MLP-NN Markov Chain
(MC) or MLP-MC due to its effectiveness
(Aghababaei et al., 2024; Entahabu et al., 2023) and
higher accuracy (Dey etal., 2021; Mishraetal., 2018).
Studies in Thailand have also applied the LCM model
for prediction. Several studies focused on general
simulations or comparative analyses based on
historical land use changes and key driving factors,
distributed across all regions of the country, both
through administrative boundaries and watershed
scales (Paiboonvorachat and Oyana, 2011,
Suwanlertcharoen et al., 2013; Losiri et al., 2016;
Ongsomwang and Boonchoo, 2016;
Chuankamnerdkarn, 2020; Hormwichian et al., 2023;
lamchuen et al., 2023; Phonphan et al., 2024). For the
northern Thailand context, a study in the Chiang Mai-
Lamphun Basin demonstrated the land use projection
model’s potential for integrating constraint and
incentive (CI) factors to produce realistic scenarios,
simulating three future scenarios for 2030 and 2050—
the business-as-usual (BaU), the ecological protection
scenario (EPS), and the baseline development scenario
(BDS)—using LCM Markov-CA-MLP (Arunsurat et
al., 2023). The results showed that, under strict
constraints, the EPS could maintain forest cover at
61.65% in 2021, 2030, and 2050.

The Mae Chang Watershed is located in
Lampang Province, Northern Thailand. The watershed
is a tributary catchment of the main watershed, Wang,
the uppermost part of the Chao Phraya River
Watershed. Most of the area is covered by forest,
primarily protected by the Royal Forest Department
(RFD) of Thailand and the Department of National
Parks, Wildlife, and Plant Conservation (DNP) of
Thailand (Office of the National Water Resources,
2020). In addition, there are several anthropogenic
activities in this watershed, such as forest plantations
managed by the Forest Industry Organization (FIO) of
Thailand and agricultural areas, such as paddy fields
and field crops, and there is some agriculture located
in agricultural land reform areas managed by
Agricultural Land Reform Office (ALRO) of
Thailand. In addition, extractive activity such as coal
lignite mining for electricity generation operated by
the Electricity Generating Authority of Thailand
(EGAT) is found in this watershed, along with some
other types of mines. This highlights the importance of
the socio-economic dimension of timber, food, energy
and ecological aspect. Deforestation and agricultural
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expansion has occurred in this watershed (Office of
the National Water Resources, 2020), which may
continue. These activities in the watershed might act
as threats, causing environmental issues related to land
use practices, such as soil erosion from agricultural
areas (Marine Department, 2023). Therefore,
understanding the historical changes in the Mae Chang
Watershed, as well as future LULUC and its scenarios
through the application of geoinformatics, might lead
to more effective spatial planning for decision-makers
and governors. The main objectives of the present
study are as follows: (1) To quantify LULC changes
for the years 1989, 2005, 2013, and 2021 and (2) to
predict changes for 2029 and 2037 under three
scenarios—business-as-usual (BAU), conservation
(CON), and development (DEV)—using GIS-based
MLP-MC and incorporating Cl layers for scenarios
construction, which reflect the real-world situation of
the Mae Chang watershed to understand past and
future changes for further sustainable planning.

2. METHODOLOGY
2.1 Study area

The Mae Chang watershed is a sub-watershed of
the Wang watershed, the main watershed. It is located
between latitudes 17°56'3.89" N - 18°33'50.15" N and
longitudes 99°22'56.57" E - 99°57'9.43" E (Figure 1)
and it covers an area of 1,636.8 km? (Office of the
National Water Resources, 2021). The topography of
the Mae Chang watershed consists of a mountain range
in the western part, followed by hills, valleys, and
plains. The elevation ranges from 126 to 1,305 meters
above mean sea level (MSL). The main channel is the
Nam Mae Chang, which flows from the northeastern
part of the watershed through the Mae Chang Reservoir
and other barrages in the lower part of watershed,
before merging with the Wang River at the outlet
located in Koh Kha District, Lampang Province. Most
of the area falls under the political boundary of
Lampang Province, and mostly in Mae Moh and Mae
Ta Districts.

2.2 Material

Geospatial software, including the ArcGIS
platform (ArcMap and ArcGIS Pro) (ESRI, Inc.,
Redlands, CA), QGIS 3.22.10 (QGIS Development
Team, 2022), Google Earth Pro, TerrSet (formerly
IDRISI) 18.31 (Eastman, 2016), and TerrSet
liberaGIS Version 20.0.0 (Eastman, 2024), were
utilized to perform the LULC analysis and LULCC
prediction. All geospatial data utilized was in the
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WGS 1984 UTM Zone 47N projected coordinate
system. Rasterization was conducted and the
resampling method was applied to convert the
geospatial data to a 30-meter spatial resolution to
harmonize it before further processing in modeling
LULCC (Kimario et al., 2024; Kayitesi et al., 2024).
The data used in this study is presented in Table S1.

2.3 Land use land cover (LULC) preparation and
change analysis

LULC data for the years 1989, 2005, and 2021
was visually interpreted using on-screen digitization
based on satellite imagery and supported information
provided in Table S1. Only LULC in 2013 retrieved
from LDD was directly utilized with some
modification. Image interpretation elements, including
tone, texture, pattern, shape, association, and site
(Campbell et al., 2022), were applied during manual
interpretation using the digitizing tools. The LULC
nomenclature consists of 14 classes, following LDD’s
system with some modifications, including: (1) Paddy
Field (APAD); (2) Field Crop (AFLD); (3) Perennial
(APER); (4) Orchard (AORC); (5) Other Crop
(AOTH); (6) Aquaculture (AAQC); (7) Evergreen
Forest (FEVG); (8) Deciduous Forest (FDCD); (9)
Rangeland and Scrub (MRNS); (10) Swamp (MMSW);
(11) Mine and Pit (MINE); (12) Other Miscellaneous
(MOTH); (13) Urban and Built-up (URBA); and (14)
Water body (WATR).

The verification points in 2021 were collected
through a combination of field surveys (during early
winter) and very high-resolution imagery via the
Google Earth Pro platform (Raja Shekar and Mathew,
2023), using an image zoom level sufficient to
distinguish land use types in accordance with the
defined nomenclature and through accurate
interpretation. The other truthing points were collected
from aerial imagery (the main source) as well as from
Google Earth Pro imagery, with the reference year
selected as close as possible to coincide with the
interpreted LULC for 1989 and 2005. The sample size
was determined using the cumulative binomial
probability distribution (Fitzpatrick-Lins, 1981), as
shown in Formula 1.

_ Z%pq
=2,

N

Z =2 (is generalized from 1.96) Q)

Where; N is the minimum sample size, Z is the
Z value of 2, which is an approximation of the standard
normal deviate of 1.96, corresponding to a 95% two-
tailed confidence level, p is the expected percent
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accuracy, g = 100 — p, and E is the allowable error. In Finally, the accuracy assessment was performed
this study, more than 204 points were gathered to determine the overall accuracy (Story and
(Ongsomwang, 2011) based on accuracy and  Congalton, 1986; Congalton and Green, 2019). The

allowable error equal to 85% and 5%, respectively.

accepted accuracy value was set to 85% (Anderson et
al., 1976) for the final LULC maps.
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Figure 1. Mae Chang Watershed, Thailand
Data sources:

1) Thailand boundary, Royal Thai Survey Department (RTSD), OCHA HDX, ITOS, CC BY-IGO
2) River basin and watershed boundary, Office of the National Water Resources (ONWR), Thailand
3) Digital Elevation Model (DEM), Land Development Department (LDD), Thailand

4) River and reservoir, NOSTRA
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2.4 Scenario construction concept

The theoretical concept and design of the
scenario were based on the activation of constraint and
incentive layers (Proswitz et al., 2021; Arunsurat,
2022; Gandharum et al., 2024), representing policy or
intervention measures. The scenarios are divided into
three alternatives as follows:

(1) Business-as-Usual (BAU): This scenario is
based on historical LULCC trends without any
interventions (Lin et al., 2022; Broquet et al., 2024;
Saluja et al., 2024; Gandharum et al., 2024). No
enforcement will be applied. No CI layers are

activated (Table S2: “X” for all layers). BAU is used
as the policy-neutral baseline.

(2) Conservation (CON): This scenario is based
on past LULCC trends, assuming no human activities
in protected areas (Proswitz et al., 2021). This design
aligns with northern Thai evidence that protected-area
enforcement curbs encroachment and limits
fragmentation (Lee et al., 2022). The national reserved
forest areas, particularly conservation zones (Zone C),
and national park will be employed. Additionally,
watershed classification class 1 (WSC1), which
restricts land use to preserve headwater sources
(Tongdeenok, 2023), will also be applied.
Operationally, these protected units are enforced as
absolute constraints (CI=0) in Table S2, prohibiting
land-use conversion within Zone C, National Parks,
and WSCL.

(3) Development (DEV): This scenario is
similar to BAU, however socio-economic
development in the watershed is primarily based on
agricultural activities. The agricultural land reform
areas managed by the Agricultural Land Reform
Office (ALRO) of Thailand will be included, which
promotes land use for farmers’ livelihoods
(Chansawang, 1984; Sreejan, 2024). Furthermore,
mining activities, such as coal mining, limestone
guarry, and other mineral production, will be
implemented in this scenario based on current and
future activities. These development fronts are
stimulated by incentives (Cl=1.1) in ALRO
agricultural-reform areas and in recent/future mining
footprints, while protected-area constraints remain

inactive (“X”) (Table S2).

2.5 LULC change prediction and future scenarios
projections

To predict future LULC change (LULCC), the
Land Change Modeler (LCM) in TerrSet software was
applied following five steps: (1) change analysis; (2)

46

transition potential step and driving variables
selection; (3) change prediction; (4) model validation;
and (5) future scenarios projections.

2.5.1 Change analysis

Changes between the years 2005 and 2013 were
calculated in this panel. The minimum change was set
at 600 ha to specify significant changes in the
watershed. The LULCC from one category to another
was considered and prepared to be selected in the
transition potential step.

2.5.2 Transition potential step and driving
variables selection

LULC transitions from the change analysis step
can be grouped into sub-models based on the same
related explanatory drivers of change (Eastman,
2016). A large number of variables may decrease the
model's accuracy, while too few variables fail to
adequately explain the LULCC (Chen and Yao, 2023).

The initial driving variables (Figure 2) included
elevation, slope (degree), distance to roads, distance to
streams, distance to agricultural land reform areas,
distance to mining (2021), distance to urban and built-
up areas (2021), population distribution (2020), and
evidence likelihood of LULCC. For the topographic
factors, steeper slopes and higher elevations are
consistently associated with forest persistence, while
low, gentle terrain favors agriculture and settlements
(Trisurat et al., 2019). Road expansion increases
accessibility, accelerating forest conversion to
agricultural and urban and built-up land (Arunsurat et
al., 2023). Greater distance from streams stabilizes
forest coverage (Trisurat et al., 2019). The ALRO has
permitted the area for agricultural activity by the Royal
Forest Department, which is responsible for forest zone
boundaries in Thailand. Moreover, the ALRO has
redistributed state land—Ilargely forest zones—to be
used for farming and residential uses (Gine, 2005;
Pansak et al., 2024), thus proximity serves as a proxy
for policy-driven expansion potential. Additionally,
mining activities are the causes of direct LULC change
due to the clearing of areas for mining operations.
Mining activities induce direct and indirect LULC
change and deforestation beyond the immediate site,
with those deforestation impacts declining with greater
distance from the mining site (Giljum et al., 2022).
Urban growth is concentrated near the urban core and
along major corridors, with expansion into adjacent
zones (Anucharn et al., 2025). The proximity to built-
up areas increases conversion likelihood (Arunsurat et
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al., 2023). Population factors reflect demographic
pressure on land conversion (Trisurat et al., 2019) and
are the key driving factors of Thailand’s LUCC (Wang
et al., 2022). Finally, evidence likelihood (Eastman,
2016) was selected, which is the observed probability
of land use and land cover (LULC) category changes
occurring between an earlier map and a subsequent one.

The Cramer’s V coefficients (CVC), a statistical
indicator of the degree of relationship or
interdependence between variables, was considered as
a guideline for selecting these variables, with a CVC
greater than 0.15 indicating usefulness (Eastman,
2016). In this study, the selected variables must have
an overall CVC above 0.15.
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Figure 2. Initial driving variables, and final constraint/incentive layers

The transition potential maps were generated
using the multilayer perceptron (MLP) neural
network; a feed-forward network with input, hidden,
and output layers, trained by back-propagation to learn
non-linear relationships between drivers and observed
transitions (Hasan et al., 2020; Christensen and Jokar
Arsanjani, 2020). In this study, the MLP neural
network parameters were set to their default values,
utilizing the automatic training and dynamic learning
rate. The accuracy rate of each sub-model was set at a
minimum of 50%, based on modifications from
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previous studies (Mishraet al., 2014; VVasanthawada et
al., 2023). The skill measure ranges from -1 to 1, with
1 indicating a perfect prediction and -1 indicating
worse-than-chance performance (Gharaibeh et al.,
2020), with a value between 0 and 1 suggesting the
model performed better than random (Christensen and
Jokar Arsanjani, 2020).

2.5.3 Change prediction
The predicted 2021 LULC was simulated based
on the changes between the actual 2005 and 2013
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LULC, using a Markov chain coupled with transition
potential maps (Hasan et al., 2020). This step
generated two types of predictions: hard and soft
prediction models (Eastman, 2016; Gandharum et al.,
2024). The hard one refers to predicted LULC where
each pixel is assigned to a specific LULC category,
which was the approach utilized in this study.

2.5.4 Model validation

The VALIDATE module in TerrSet, which
utilizes Kappa statistics was chosen (Saluja et al.,
2024). The actual 2021 LULC was selected as the
reference source and compared with the projected 2021
LULC, and the results were reported using Kappa
indices (Pontius, 2000; Pontius, 2002), such as Kappa
Standard (Kstandard), Kappa for No Ability (Kno), and
Kappa for Location (Klocation). The Kappa Standard
was set at a minimum of 70% (Zadbagher et al., 2018;
Leta et al., 2021) for successful validation.

2.5.5 Future scenario projections

After successful calibration and validation, the
future scenarios for 2029 and 2037 were predicted. In
this step, three scenarios of each future simulation
were defined based on the status and value of
constraint and incentive layers (CI layer). Values of 0
indicate the area is absolutely constrained (indicating
a ‘no-change’ =zone), while values of 1 are
unconstrainted and values greater than 1 are treated as
incentive (Eastman, 2016). The constraint and
incentive values in this study were defined based on
Arunsurat (2022). For each scenario, only one CI
layer—processed from multiple geospatial datasets—
was applied. Table S2 shows the CI layer activation in
each scenario.

The overall LULCC modeling based on Land
Change Modeler (LCM) is summarized and shown as
a flow diagram (Figure 3).
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Figure 3. The overall methodology regarding scenario based LULCC prediction
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3. RESULTS AND DISCUSSION

After interpretation and classification, the final
data yielded overall accuracy of LULC in 1989, 2005,
and 2021 of 85.05%, 93.64%, and 91.61%,
respectively.

3.1 LULC and change situations in Mae Chang
Watershed

The Mae Chang Watershed was primarily
covered by forest land, particularly deciduous forest,
which covered more than 50% of the total watershed
area in 1989 to 2021. Table S3 summarizes the
changes in LULC across 1989, 2005, 2013, and 2021.
The analysis indicates significant transformations in
land use patterns over the 32-year period, driven by a
variety of factors such as agricultural expansion,
deforestation, and urbanization, as shown in Table S4
and Figure 4.

3.1.1 Agricultural areas

Agriculture represents one of the most dynamic
LULC classes. Paddy fields, while starting as one of
the largest classes in 1989 at 165.73 km? (10.13%),
experienced a gradual decline to 160.09 km? (9.78%)
by 2021. Field crops showed positive trends,
increasing slightly from 84.11 km? in 1989 to 111.46
km? in 2005 (6.81%) and then to 152.65 km? in 2013
(9.33%) and 172.21 km? (10.52%) in 2021, suggesting

a shift toward more intensive agricultural production,
mostly consisting of economic crops such as cassava
and maize. (Land Development Department, 2015).
Similarly, perennial land showed steady growth from
75.47 km? (4.61%) in 1989 to 148.93 km? (9.10%) in
2021. Orchard areas also saw considerable changes,
with an initial small increase from 14.37 km? in 1989
to 24.55 km? in 2005, followed by a slight decline to
22.34 km? by 2021. Other crops remained a minor
category throughout the period, with only a modest
increase in 2021 to 6.73 km? (0.41%). Aquaculture
saw a small area of 0.38 km? in 2021.

3.1.2 Forest and natural areas

The most significant transformation occurred in
deciduous forest, which exhibited a stark decline over
time. Starting at 1,070.41 km? (65.40%) in 1989,
deciduous forests shrank to 821.40 km? (50.18%) by
2021. This 15.2% reduction in forest area points to
substantial deforestation, likely driven by the
expansion of agricultural land, urbanization, and
mining activities (Table S4). The evergreen forest
class remained relatively stable, covering around 4%
of the total area throughout the study period. This
might be because the topography and road network are
unsuitable for human use, as most of the area belongs
to restricted zones such as protected forest areas.

A A A

A) 1989 B) 2005

1) Paddy field

2) Field crop
- 3) Perennial
- 4) Orchard

5) Other crop

6) Aquaculture
- 7) Evergreen forest

C) 2013 D) 2021

8) Deciduous forest

9) Rangeland and scrub

10) Swamp
I 1) Mine and pit
By 12) Other miscellaneous
- 13) Urban and built-up
I 14) Water body

Figure 4. LULC in Mae Chang watershed: A) 1989, B) 2005, C) 2013, and D) 2021
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Other natural areas, such as rangeland and
scrub, saw a slight decrease from 36.94 km? in 1989 to
19.29 km? in 2021. Swamp areas, although a very
minor component, increased slightly from 0.82 km? in
1989 to 2.04 km? in 2021.

3.1.3 Mine and pits, and urban areas

Some of the most significant gains were seen in
mine and pit areas, which grew from 26.26 km?
(1.60%) in 1989 to 89.49 km? (5.47%) by 2021. This
represents a notable expansion in mining and
extractive activities, likely contributing to the
reduction in forest cover.

Urban and built-up areas also expanded
steadily, increasing from 71.95 km? (4.40%) in 1989
to 92.67 km? (5.66%) in 2021, reflecting the ongoing
trend of urbanization. Meanwhile, community
relocation is driven by mining companies requiring
more space, resulting in new urban areas due to
continued mining activities (EGAT, 2022).

3.1.4 Water body

Water bodies also saw a noticeable increase,
from 23.00 km? (1.41%) in 1989 to 34.90 km? (2.13%)
in 2021. This is attributed to human activities such as
the construction of reservoirs.

3.2 LULCC modeling, calibration, and validation

According to the calibration step, the final five
exploratory variables were added to each sub-model,
including (1) distance to roads, (2) distance to
agricultural land reform areas, (3) distance to mining
(2021), (4) distance to urban and built-up areas (2021),
and 5) evidence likelihood of LULCC, with the overall
CVC more than 0.15 (Table S5).

The four sub-models based on the transition
from significant change in the change analysis step
were determined, as shown in Table S6. The sub-
models were grouped primarily based on the situation
occurring in the Mae Chang watershed.

The final sub-model, skill measure, and the
accuracy rate of the transition potential process are
shown in Table S7. The accuracy rate ranged from
52.87 to 92.40, while the skill measure ranged from
0.3300 to 0.8860. These values coincide with studies
in Asia and North America, such as the city of Surat,
India (Vasanthawada et al., 2023) and Alabama,
United States (Shrestha et al., 2022). The DEF_03 is
the highest performing sub-model.

The validation results showed all Kappa
variations were greater than 0.8 or 80%. The
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Kstandard, Kno, and Klocation were 0.8237, 0.8609,
and 0.8934, respectively.

3.3 Future scenarios prediction

The LULCC nprojections reveal significant
variations across different future scenarios, Business
as usual (BAU), Conservation (CON), and
Development (DEV), when compared to the actual
LULC in 2021 (Table S8 and Figure 5).

For the BAU scenario, paddy fields increased
from 160.09 km? (2021) to 173.69 km? (2029) and
180.42 km? (2037). Field crops expanded to 200.70
km? (2029) and 207.19 km? (2037). Perennial crops
showed the strongest growth, rising from 148.93 km?
(2021) to 271.13 km? (2029) and 319.06 km? (2037).
Evergreen forest remained stable, while deciduous
forest declined from 821.40 km? (2021) to 637.87 km?
(2029) and 562.46 km2 (2037). Mines and pits
increased to 102.04 km2 (2029) and 107.98 km?
(2037). Urban and built-up areas rose to 104.57 km?
(2029) and 112.45 km? (2037).

For the CON scenario, paddy fields increased to
173.71 km? (2029) and 180.43 km? (2037). Field crops
reached 200.68 km? (2029) and 207.19 km? (2037).
Perennial land grew to 271.10 km? (2029) and 319.02
km? (2037). Evergreen forest was stable while
deciduous forest fell to 637.87 km?2 (2029) and 562.49
km2 (2037). Mines and pits increased to 102.07 km?
(2029) and 107.94 km2 (2037). Urban and built-up
areas increased to 104.58 kmz2 (2029) and 112.49 km?
(2037).

For the DEV scenario, paddy field rose to
173.71 km? (2029) and 180.43 km? (2037). Field crop
expanded to 200.68 km? (2029) and 207.19 km?
(2037). Perennial reached 271.10 km? (2029) and
319.02 km? (2037). Evergreen forest was still stable
while deciduous forest decreased to 637.87 km?
(2029) and 562.49 km? (2037). Mines and pits
increased 102.07 km? (2029) and 107.94 km? (2037).
Urban and built-up areas increased to 104.58 km?
(2029) and 112.49 km? (2037).

Across all scenarios, the largest transitions are
from deciduous forest to perennial land and from
deciduous forest to field crop, increasing from 2029
(=79-81 km? and ~78-79 km?) to 2037 (=115-116 km?
and ~95-96 km?) (Figure 6). Field crop to perennial
also rose (=~44-45 to =56 km?). Conversions of
deciduous forest to paddy field, urban and built-up
areas, and mines and pits increased modestly by 2037
(to =17, =23, and ~18-20 km?, respectively). Some
small areas of field crops are transformed to deciduous
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forest areas (=8-11 km?). The projected situations
coincide with the studies of Arunsurat et al. (2023) and
Saluja et al. (2024), conducted in the northern and

northeastern parts of Thailand, whose results show
deforestation and agricultural expansion, particularly
in the BAU scenarios.
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Arunsurat et al. (2023), which studied in Chiang
Mai-Lamphun basin in Chiang Mai and Lamphun
Provinces, located near the Mae Chang Watershed,
demonstrates  scenario-dependent quantities  of
change. Under the Ecological Protection Scenario
(EPS), forest cover is maintained at approximately
61.65% in both periods, whereas the Business-as-
Usual (BaU) and Baseline Development Scenario
(BDS) pathways decline to about 54% by 2050, with
greater allocation to agricultural and built-up uses. In
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the Mae Chang watershed projections, the dominant
transitions are likewise from deciduous forest to
perennial land and to field crops; however, total areas
by class are essentially indistinguishable across BAU,
CON, and DEV in 2029 and 2037 (Table S8),
indicating that scenario effects are negligible in
quantity and act primarily by spatially reallocating
change rather than altering overall amounts. This
might happen because this study did not adjust the
Markov demand but mainly relied on CI layers, so the
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total area can be similar across all scenarios. The

Abbasnezhad et al. (2023), which used the same

results from this study also coincide with  Markov matrix for several scenarios.
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Figure 6. LULCC primary transition from actual LULC 2021 of each scenario

Even though the results in terms of the quantity
of change showed a similar pattern across all scenarios
(Table S8 and Figure 6), there are significant
differences when considering the spatial distribution
of the projected LULCC (Figure 7). In the BAU and
DEV scenarios, where constraints (protected and
restricted areas) are not enforced, deforestation may
continue in those areas.

The LULCC, particularly forest loss and
agricultural expansion, can exacerbate soil erosion
(Paiboonvorachat and Oyana, 2011), increasing
sediment yield and nutrient export, which in turn
degrade  water quality  (Chotpantarat  and
Boonkaewwan, 2018). Mining activities similarly
contribute to water quality deterioration (Woon et al.,
2021). While such developments may enhance human
well-being, they also  impose  significant
environmental costs.

Under the CON scenario, the predominance of
evergreen and deciduous forests in the headwatershed
supports preservation. Evidence from Northern
Thailand indicates that protected areas mitigate forest
loss and fragmentation, whereas unprotected
landscapes near urban-agricultural frontiers are more
susceptible to degradation—reinforcing the role of the
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CON scenario in safeguarding core habitats (Lee et al.,
2022). This underscores the importance of protected
and restricted zones, which not only conserve
headwater sources but also sustain ecosystem services
such as water provision (Chotikasathira, 1988).

3.4 Uncertainties and limitations

LULCC modeling is constrained by the inherent
complexity of environmental systems, uncertainties in
data, and the difficulty of anticipating human decision-
making that shapes land transformation (Bachri et al.,
2024). Our results may carry uncertainty from both
data and modeling factors. First, although the land use
nomenclature was defined with more detail, satellite
imagery alone cannot always capture this level of
precision. Therefore, we incorporated very high-
resolution imagery from both aerial and satellite
sources to ensure the highest possible accuracy of the
LULC data input into the model. Second, by analyzing
only the dominant transitions for this watershed, some
minor or dispersed LULC changes were omitted and
may underestimate localized impacts while leaving
landscape-scale totals broadly unchanged. Third,
scenario construction relied on activating constraint
and incentive layers; we did not vary land-demand
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(class quantities) by scenario. Consequently,
BAU/CON/DEV differences should be interpreted
primarily as spatial reallocation of change rather than
as large shifts in total area by class. Finally, some
drivers (e.g., gridded population distribution) were
sourced from global products with an effective
resolution coarser than 30 m, which can misalign with
local patterns and misallocate future changes near
settlements. Mining also induces rapid, localized
changes in topography (elevation/slope). However,

these driving variables were excluded because their
Cramer’s V values did not meet our selection
threshold, which may result in underrepresentation of
future LULC change. Therefore, given the inevitable
uncertainties in land-use change modeling, outputs
from the Land Change Modeler must be treated as
approximations and interpreted alongside local
context and variations in land-use processes (Bachri et
al., 2024).
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Figure 7. Primary LULC changes from 2021 for each scenario: a) BAU 2029, b) BAU 2037, ¢) CON 2029, d) CON 2037, e) DEV 2029,

and f) DEV 2037.
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4. CONCLUSION

The data highlights significant trends in land
use change over the period from 1989 to 2021, with
the deciduous forest cover in the watershed having
declined substantially by 23.3%. Over the same
period, field crops expanded by 104.7%, perennial
crops by 97.3%, mines and pits by 240.8%, and urban
areas by 28.8%, reflecting significant shifts in land use
dynamics. Meanwhile, the stability of evergreen
forests points to some level of environmental
conservation. These LULC changes suggest both
development-driven land conversions and efforts to
sustain agricultural productivity.

Moreover, this study employed Multilayer
Perceptron (MLP) Neural Network, Markov Chain
modeling, coupled with transition potential maps and
Cl layers establishment, to simulate future LULC
scenarios for 2029 and 2037 under Business-As-Usual
(BAU), Conservation (CON), and Development
(DEV). The findings underscore the importance of
sustainable land management policies to mitigate the
impact of human activities on natural ecosystems,
particularly with the growing demand for land
resources, with CON able to constrain deforestation,
particularly in protected, conserved, and restricted
area. This is crucial to ensure the well-being of both
human and ecological systems in the future. Since
Thailand has also has the National Biodiversity Action
Plan 2023-2027, the targeted and recommended
actions are to expand and strengthen protected areas
and OECMs (Other Effective Area-Based
Conservation Measures), prioritize high-biodiversity
and ecosystem-service sites, ensure effective, resource
management and monitoring, connect areas via
ecological corridors, uphold participatory governance
and rights, implement continuous, outcome-tracked
restoration, and focus management on ecosystem
integrity, connectivity, and sustainable benefits
(Office of Natural Resources and Environmental
Policy and Planning, 2024). It is crucial that these
actions are followed.

Due to the unavoidable uncertainties in land-use
change modeling, the results from the Land Change
Modeler are best treated as approximations. Future
studies should integrate finer-resolution datasets and
local socio-environmental factors to improve
predictive reliability, for example, population income,
agricultural land suitability, local bias correction from
global to local correct climatic factors (historical and
future scenarios).
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