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The Mae Chang watershed is part of the headwaters of the Wang River, located in 

Lampang Province in Northern Thailand. Resource pressures at forest-agriculture-

extractive frontiers make this landscape crucial for studying land-habitat conversion and 

guiding sustainable land-use planning. Thus, this study interpreted LULC (1989, 2005, 

2013, 2021) and projected LULC for 2029 and 2037 under BAU, conservation (CON), 

and development (DEV) scenarios using TerrSet’s LCM-MLP with local drivers, isolating 

intervention effects by contrasting CON/DEV (with constraint and incentive (CI) layers) 

against BAU (no CI). From 1989 to 2021, deciduous forest declined 23.3% (-249.01 km²), 

from 1,070.41 to 821.40 km² (65.40→50.18% of the watershed; -15.2 percentage points), 

while field crops increased by 104.7%, perennial crops by 97.3%, mines/pits by 240.8%, 

and urban areas by 28.8% based on human activity. Sub-model accuracies ranged 53-92%, 

and validation achieved Kstandard 0.824, Kno 0.861, Klocation 0.893, exceeding the 

success threshold. The three future scenarios yielded similar projected areas in both 2029 

and 2037 but there were location differences. The deciduous forest area in 2029 and 2037 

declined by 22.3% and 31.5%, respectively for all scenarios compared with 2021. The 

CON scenario outperformed BAU/DEV because strict no-conversion constraints in 

protected forests and restricted area effectively prevent ongoing deforestation, offering a 

practical simulation-based tool to support and implement land-use policies at local and 

regional scales. These findings provide a validated, transferable framework that isolates 

policy effects and supports evidence-based land-use planning in tropical headwatersheds. 

Keywords: 

Land use and land cover change/ 

Land change modeler/ Scenario 

modeling/ Geoinformatics  

* Corresponding author:

E-mail:

thamarat.phu@mahidol.ac.th

HIGHLIGHTS

 Headwatershed-specific LCM-MLP integrates local drivers and Constraint/Incentive (CI) layers.

 Deciduous forest fell 23.3% (-249 km²) from 1989 to 2021, while evergreen forest remained stable.

 Concerningly, deciduous forests decline while agriculture expands across all future scenarios.

 CON outperformed BAU/DEV via no-conversion constraints in protected areas.

 The model offers a practical tool for land-use policy implementation.

1. INTRODUCTION

Land use and land cover (LULC) change 

(LULCC) is a key factor driving global biodiversity 

loss and influencing processes that impact ecosystem 

services (Tscharntke et al., 2012). Direct and indirect 

human activities have triggered processes leading to 

land degradation, impacting the ecological integrity of 

affected areas (IPCC, 2019). Since 1970, this situation 

has caused the greatest negative effects on both 

terrestrial and freshwater ecosystems (IPBES, 2019), 

with LULCC affecting almost 32% of the global land 

area between 1960 and 2019 (Winkler et al., 2021). 
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Extensive changes in land conditions are expected to 

continue due to ongoing land use changes, leading to 

substantial declines in net primary productivity, 

reductions in soil carbon levels, and losses of 

biodiversity (Van der Esch et al., 2017). Quantifying 

LULCC is therefore essential to address 

environmental challenges (Winkler et al., 2021). In 

Southeast Asia, a global biodiversity hotspot, LULCC 

drivers such as deforestation, increased agricultural 

intensification, urbanization, mining activity, dam 

construction, and wetland reduction are already 

threatening ecosystems (Hughes, 2017), and these 

losses are projected to persist through to 2050 (Van 

der Esch et al., 2017). Thailand is one of countries in 

the region most affected by land conversion (Hughes, 

2017) and has experienced rapid economic growth 

since the 1980s, primarily fueled by agriculture for 

export (Wang et al., 2022). While this development 

has been concentrated in urban centers and lowland 

regions, it has also extended into mountainous areas 

(Schreinemachers et al., 2013), particularly in 

Northern Thailand. 

According to the Land Development 

Department of Thailand (LDD) (2023), the forest area 

in Northern Thailand decreased by 9.66%, from 

57.69% to 52.12%, between 2006/2007 and 

2019/2021, respectively, while the agricultural area 

increased by 16.94%, from 34.65% to 40.52%, during 

the same period, especially in perennial and field 

crops. The five northern provinces with the greatest 

relative forest reduction from 2007 to 2018 are Chiang 

Rai (-19.51%), Nan (-16.03%), Phayao (-8.83%), 

Lampang (-8.81%), and Phrae (-6.94%). Nevertheless, 

in northern Thailand, protected areas (PAs) managed 

by the Department of National Parks Wildlife and 

Plant Conservation (DNP) more effectively controlled 

deforestation than in non-protected areas (Lee et al., 

2022; Liu et al., 2022), while national reserved forest 

which is located adjacent and outside PAs, operated by 

Royal Forest Department (RFD), tend to be severely 

encroached.  

Therefore, to address environmental problems 

related to LULCC, future LULC should be projected 

in terms of location and quantity using scenario-based 

models such as CA, CLUE-S, MCDA, LCM, FLUS, 

and agent-based models (Alcamo et al., 2006; Gomes 

et al., 2021).  

The Land Change Modeler (LCM) is a tool used 

to simulate future land use and land cover (LULC) 

based on past changes. It employs various methods, 

e.g., the Multi-Layer Perceptron (MLP) Neural

Network (NN), Logistic Regression (LR), and 

SimWeight (SW) (Eastman and Toledano, 2018). The 

most favorable method is MLP-NN Markov Chain 

(MC) or MLP-MC due to its effectiveness

(Aghababaei et al., 2024; Entahabu et al., 2023) and

higher accuracy (Dey et al., 2021; Mishra et al., 2018).

Studies in Thailand have also applied the LCM model

for prediction. Several studies focused on general

simulations or comparative analyses based on

historical land use changes and key driving factors,

distributed across all regions of the country, both

through administrative boundaries and watershed

scales (Paiboonvorachat and Oyana, 2011;

Suwanlertcharoen et al., 2013; Losiri et al., 2016;

Ongsomwang and Boonchoo, 2016;

Chuankamnerdkarn, 2020; Hormwichian et al., 2023;

Iamchuen et al., 2023; Phonphan et al., 2024). For the

northern Thailand context, a study in the Chiang Mai-

Lamphun Basin demonstrated the land use projection

model’s potential for integrating constraint and

incentive (CI) factors to produce realistic scenarios,

simulating three future scenarios for 2030 and 2050—

the business-as-usual (BaU), the ecological protection

scenario (EPS), and the baseline development scenario

(BDS)—using LCM Markov-CA-MLP (Arunsurat et

al., 2023). The results showed that, under strict

constraints, the EPS could maintain forest cover at

61.65% in 2021, 2030, and 2050.

The Mae Chang Watershed is located in 

Lampang Province, Northern Thailand. The watershed 

is a tributary catchment of the main watershed, Wang, 

the uppermost part of the Chao Phraya River 

Watershed. Most of the area is covered by forest, 

primarily protected by the Royal Forest Department 

(RFD) of Thailand and the Department of National 

Parks, Wildlife, and Plant Conservation (DNP) of 

Thailand (Office of the National Water Resources, 

2020). In addition, there are several anthropogenic 

activities in this watershed, such as forest plantations 

managed by the Forest Industry Organization (FIO) of 

Thailand and agricultural areas, such as paddy fields 

and field crops, and there is some agriculture located 

in agricultural land reform areas managed by 

Agricultural Land Reform Office (ALRO) of 

Thailand. In addition, extractive activity such as coal 

lignite mining for electricity generation operated by 

the Electricity Generating Authority of Thailand 

(EGAT) is found in this watershed, along with some 

other types of mines. This highlights the importance of 

the socio-economic dimension of timber, food, energy 

and ecological aspect. Deforestation and agricultural 

43



Vongvassana S et al. / Environment and Natural Resources Journal 2026; 24(1): 42-57

expansion has occurred in this watershed (Office of 

the National Water Resources, 2020), which may 

continue. These activities in the watershed might act 

as threats, causing environmental issues related to land 

use practices, such as soil erosion from agricultural 

areas (Marine Department, 2023). Therefore, 

understanding the historical changes in the Mae Chang 

Watershed, as well as future LULUC and its scenarios 

through the application of geoinformatics, might lead 

to more effective spatial planning for decision-makers 

and governors. The main objectives of the present 

study are as follows: (1) To quantify LULC changes 

for the years 1989, 2005, 2013, and 2021 and (2) to 

predict changes for 2029 and 2037 under three 

scenarios—business-as-usual (BAU), conservation 

(CON), and development (DEV)—using GIS-based 

MLP-MC and incorporating CI layers for scenarios 

construction, which reflect the real-world situation of 

the Mae Chang watershed to understand past and 

future changes for further sustainable planning.  

2. METHODOLOGY

2.1 Study area

The Mae Chang watershed is a sub-watershed of 

the Wang watershed, the main watershed. It is located 

between latitudes 17°56'3.89'' N - 18°33'50.15'' N and 

longitudes 99°22'56.57'' E - 99°57'9.43'' E (Figure 1) 

and it covers an area of 1,636.8 km² (Office of the 

National Water Resources, 2021). The topography of 

the Mae Chang watershed consists of a mountain range 

in the western part, followed by hills, valleys, and 

plains. The elevation ranges from 126 to 1,305 meters 

above mean sea level (MSL). The main channel is the 

Nam Mae Chang, which flows from the northeastern 

part of the watershed through the Mae Chang Reservoir 

and other barrages in the lower part of watershed, 

before merging with the Wang River at the outlet 

located in Koh Kha District, Lampang Province. Most 

of the area falls under the political boundary of 

Lampang Province, and mostly in Mae Moh and Mae 

Ta Districts. 

2.2 Material 

Geospatial software, including the ArcGIS 

platform (ArcMap and ArcGIS Pro) (ESRI, Inc., 

Redlands, CA), QGIS 3.22.10 (QGIS Development 

Team,  2022),  Google  Earth  Pro,  TerrSet  (formerly 

IDRISI) 18.31 (Eastman, 2016), and TerrSet 

liberaGIS Version 20.0.0 (Eastman, 2024), were 

utilized to perform the LULC analysis and LULCC 

prediction. All geospatial data utilized was in the 

WGS 1984 UTM Zone 47N projected coordinate 

system. Rasterization was conducted and the 

resampling method was applied to convert the 

geospatial data to a 30-meter spatial resolution to 

harmonize it before further processing in modeling 

LULCC (Kimario et al., 2024; Kayitesi et al., 2024). 

The data used in this study is presented in Table S1. 

2.3 Land use land cover (LULC) preparation and 

change analysis 

LULC data for the years 1989, 2005, and 2021 

was visually interpreted using on-screen digitization 

based on satellite imagery and supported information 

provided in Table S1. Only LULC in 2013 retrieved 

from LDD was directly utilized with some 

modification. Image interpretation elements, including 

tone, texture, pattern, shape, association, and site 

(Campbell et al., 2022), were applied during manual 

interpretation using the digitizing tools. The LULC 

nomenclature consists of 14 classes, following LDD’s 

system with some modifications, including: (1) Paddy 

Field (APAD); (2) Field Crop (AFLD); (3) Perennial 

(APER); (4) Orchard (AORC); (5) Other Crop 

(AOTH); (6) Aquaculture (AAQC); (7) Evergreen 

Forest (FEVG); (8) Deciduous Forest (FDCD); (9) 

Rangeland and Scrub (MRNS); (10) Swamp (MMSW); 

(11) Mine and Pit (MINE); (12) Other Miscellaneous

(MOTH); (13) Urban and Built-up (URBA); and (14)

Water body (WATR).

The verification points in 2021 were collected 

through a combination of field surveys (during early 

winter) and very high-resolution imagery via the 

Google Earth Pro platform (Raja Shekar and Mathew, 

2023), using an image zoom level sufficient to 

distinguish land use types in accordance with the 

defined nomenclature and through accurate 

interpretation. The other truthing points were collected 

from aerial imagery (the main source) as well as from 

Google Earth Pro imagery, with the reference year 

selected as close as possible to coincide with the 

interpreted LULC for 1989 and 2005. The sample size 

was determined using the cumulative binomial 

probability distribution (Fitzpatrick-Lins, 1981), as 

shown in Formula 1. 

N =
Z2pq

E2
 , Z = 2 (is generalized from 1.96)    (1) 

Where; N is the minimum sample size, Z is the 

Z value of 2, which is an approximation of the standard 

normal deviate of 1.96, corresponding to a 95% two-

tailed confidence level, p is the expected percent 
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accuracy, q = 100 − p, and E is the allowable error. In 

this study, more than 204 points were gathered 

(Ongsomwang, 2011) based on accuracy and 

allowable error equal to 85% and 5%, respectively.  

Finally, the accuracy assessment was performed 

to determine the overall accuracy (Story and 

Congalton, 1986; Congalton and Green, 2019). The 

accepted accuracy value was set to 85% (Anderson et 

al., 1976) for the final LULC maps.

Figure 1. Mae Chang Watershed, Thailand 

Data sources: 

1) Thailand boundary, Royal Thai Survey Department (RTSD), OCHA HDX, ITOS, CC BY-IGO

2) River basin and watershed boundary, Office of the National Water Resources (ONWR), Thailand

3) Digital Elevation Model (DEM), Land Development Department (LDD), Thailand

4) River and reservoir, NOSTRA
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2.4 Scenario construction concept 

The theoretical concept and design of the 

scenario were based on the activation of constraint and 

incentive layers (Proswitz et al., 2021; Arunsurat, 

2022; Gandharum et al., 2024), representing policy or 

intervention measures. The scenarios are divided into 

three alternatives as follows: 

(1) Business-as-Usual (BAU): This scenario is

based on historical LULCC trends without any 

interventions (Lin et al., 2022; Broquet et al., 2024; 

Saluja et al., 2024; Gandharum et al., 2024). No 

enforcement will be applied. No CI layers are 

activated (Table S2: “✕” for all layers). BAU is used 

as the policy-neutral baseline. 

(2) Conservation (CON): This scenario is based

on past LULCC trends, assuming no human activities 

in protected areas (Proswitz et al., 2021). This design 

aligns with northern Thai evidence that protected-area 

enforcement curbs encroachment and limits 

fragmentation (Lee et al., 2022). The national reserved 

forest areas, particularly conservation zones (Zone C), 

and national park will be employed. Additionally, 

watershed classification class 1 (WSC1), which 

restricts land use to preserve headwater sources 

(Tongdeenok, 2023), will also be applied. 

Operationally, these protected units are enforced as 

absolute constraints (CI=0) in Table S2, prohibiting 

land-use conversion within Zone C, National Parks, 

and WSC1.  

(3) Development (DEV): This scenario is

similar to BAU, however socio-economic

development in the watershed is primarily based on

agricultural activities. The agricultural land reform

areas managed by the Agricultural Land Reform

Office (ALRO) of Thailand will be included, which

promotes land use for farmers’ livelihoods

(Chansawang, 1984; Sreejan, 2024). Furthermore,

mining activities, such as coal mining, limestone

quarry, and other mineral production, will be

implemented in this scenario based on current and

future activities. These development fronts are

stimulated by incentives (CI=1.1) in ALRO

agricultural-reform areas and in recent/future mining

footprints, while protected-area constraints remain

inactive (“✕”) (Table S2).

2.5 LULC change prediction and future scenarios 

projections 

To predict future LULC change (LULCC), the 

Land Change Modeler (LCM) in TerrSet software was 

applied following five steps: (1) change analysis; (2) 

transition potential step and driving variables 

selection; (3) change prediction; (4) model validation; 

and (5) future scenarios projections. 

2.5.1 Change analysis 

Changes between the years 2005 and 2013 were 

calculated in this panel. The minimum change was set 

at 600 ha to specify significant changes in the 

watershed. The LULCC from one category to another 

was considered and prepared to be selected in the 

transition potential step. 

2.5.2 Transition potential step and driving 

variables selection 

LULC transitions from the change analysis step 

can be grouped into sub-models based on the same 

related explanatory drivers of change (Eastman, 

2016). A large number of variables may decrease the 

model's accuracy, while too few variables fail to 

adequately explain the LULCC (Chen and Yao, 2023). 

The initial driving variables (Figure 2) included 

elevation, slope (degree), distance to roads, distance to 

streams, distance to agricultural land reform areas, 

distance to mining (2021), distance to urban and built-

up areas (2021), population distribution (2020), and 

evidence likelihood of LULCC. For the topographic 

factors, steeper slopes and higher elevations are 

consistently associated with forest persistence, while 

low, gentle terrain favors agriculture and settlements 

(Trisurat et al., 2019). Road expansion increases 

accessibility, accelerating forest conversion to 

agricultural and urban and built-up land (Arunsurat et 

al., 2023). Greater distance from streams stabilizes 

forest coverage (Trisurat et al., 2019). The ALRO has 

permitted the area for agricultural activity by the Royal 

Forest Department, which is responsible for forest zone 

boundaries in Thailand. Moreover, the ALRO has 

redistributed state land—largely forest zones—to be 

used for farming and residential uses (Gine, 2005; 

Pansak et al., 2024), thus proximity serves as a proxy 

for policy-driven expansion potential. Additionally, 

mining activities are the causes of direct LULC change 

due to the clearing of areas for mining operations. 

Mining activities induce direct and indirect LULC 

change and deforestation beyond the immediate site, 

with those deforestation impacts declining with greater 

distance from the mining site (Giljum et al., 2022). 

Urban growth is concentrated near the urban core and 

along major corridors, with expansion into adjacent 

zones (Anucharn et al., 2025). The proximity to built-

up areas increases conversion likelihood (Arunsurat et 
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al., 2023). Population factors reflect demographic 

pressure on land conversion (Trisurat et al., 2019) and 

are the key driving factors of Thailand’s LUCC (Wang 

et al., 2022). Finally, evidence likelihood (Eastman, 

2016) was selected, which is the observed probability 

of land use and land cover (LULC) category changes 

occurring between an earlier map and a subsequent one. 

The Cramer’s V coefficients (CVC), a statistical 

indicator of the degree of relationship or 

interdependence between variables, was considered as 

a guideline for selecting these variables, with a CVC 

greater than 0.15 indicating usefulness (Eastman, 

2016). In this study, the selected variables must have 

an overall CVC above 0.15.

Figure 2. Initial driving variables, and final constraint/incentive layers 

The transition potential maps were generated 

using the multilayer perceptron (MLP) neural 

network; a feed-forward network with input, hidden, 

and output layers, trained by back-propagation to learn 

non-linear relationships between drivers and observed 

transitions (Hasan et al., 2020; Christensen and Jokar 

Arsanjani, 2020). In this study, the MLP neural 

network parameters were set to their default values, 

utilizing the automatic training and dynamic learning 

rate. The accuracy rate of each sub-model was set at a 

minimum   of   50%,   based  on   modifications  from 

previous studies (Mishra et al., 2014; Vasanthawada et 

al., 2023). The skill measure ranges from -1 to 1, with 

1 indicating a perfect prediction and -1 indicating 

worse-than-chance performance (Gharaibeh et al., 

2020), with a value between 0 and 1 suggesting the 

model performed better than random (Christensen and 

Jokar Arsanjani, 2020). 

2.5.3 Change prediction 

The predicted 2021 LULC was simulated based 

on  the  changes  between  the  actual  2005  and  2013 
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LULC, using a Markov chain coupled with transition 

potential maps (Hasan et al., 2020). This step 

generated two types of predictions: hard and soft 

prediction models (Eastman, 2016; Gandharum et al., 

2024). The hard one refers to predicted LULC where 

each pixel is assigned to a specific LULC category, 

which was the approach utilized in this study. 

2.5.4 Model validation 

The VALIDATE module in TerrSet, which 

utilizes Kappa statistics was chosen (Saluja et al., 

2024). The actual 2021 LULC was selected as the 

reference source and compared with the projected 2021 

LULC, and the results were reported using Kappa 

indices (Pontius, 2000; Pontius, 2002), such as Kappa 

Standard (Kstandard), Kappa for No Ability (Kno), and 

Kappa for Location (Klocation). The Kappa Standard 

was set at a minimum of 70% (Zadbagher et al., 2018; 

Leta et al., 2021) for successful validation. 

2.5.5 Future scenario projections 

After successful calibration and validation, the 

future scenarios for 2029 and 2037 were predicted. In 

this step, three scenarios of each future simulation 

were defined based on the status and value of 

constraint and incentive layers (CI layer). Values of 0 

indicate the area is absolutely constrained (indicating 

a ‘no-change’ zone), while values of 1 are 

unconstrainted and values greater than 1 are treated as 

incentive (Eastman, 2016). The constraint and 

incentive values in this study were defined based on 

Arunsurat (2022). For each scenario, only one CI 

layer—processed from multiple geospatial datasets—

was applied. Table S2 shows the CI layer activation in 

each scenario. 

The overall LULCC modeling based on Land 

Change Modeler (LCM) is summarized and shown as 

a flow diagram (Figure 3). 

Figure 3. The overall methodology regarding scenario based LULCC prediction 

48

https://ph02.tci-thaijo.org/index.php/ennrj/article/view/259140/172849


Vongvassana S et al. / Environment and Natural Resources Journal 2026; 24(1): 42-57

3. RESULTS AND DISCUSSION

After interpretation and classification, the final 

data yielded overall accuracy of LULC in 1989, 2005, 

and 2021 of 85.05%, 93.64%, and 91.61%, 

respectively. 

3.1 LULC and change situations in Mae Chang 

Watershed 

The Mae Chang Watershed was primarily 

covered by forest land, particularly deciduous forest, 

which covered more than 50% of the total watershed 

area in 1989 to 2021. Table S3 summarizes the 

changes in LULC across 1989, 2005, 2013, and 2021. 

The analysis indicates significant transformations in 

land use patterns over the 32-year period, driven by a 

variety of factors such as agricultural expansion, 

deforestation, and urbanization, as shown in Table S4 

and Figure 4. 

3.1.1 Agricultural areas 

Agriculture represents one of the most dynamic 

LULC classes. Paddy fields, while starting as one of 

the largest classes in 1989 at 165.73 km2 (10.13%), 

experienced a gradual decline to 160.09 km2 (9.78%) 

by 2021. Field crops showed positive trends, 

increasing slightly from 84.11 km2 in 1989 to 111.46 

km2 in 2005 (6.81%) and then to 152.65 km2 in 2013 

(9.33%) and 172.21 km2 (10.52%) in 2021, suggesting 

a shift toward more intensive agricultural production, 

mostly consisting of economic crops such as cassava 

and maize. (Land Development Department, 2015). 

Similarly, perennial land showed steady growth from 

75.47 km2 (4.61%) in 1989 to 148.93 km2 (9.10%) in 

2021. Orchard areas also saw considerable changes, 

with an initial small increase from 14.37 km2 in 1989 

to 24.55 km2 in 2005, followed by a slight decline to 

22.34 km2 by 2021. Other crops remained a minor 

category throughout the period, with only a modest 

increase in 2021 to 6.73 km2 (0.41%). Aquaculture 

saw a small area of 0.38 km2 in 2021. 

3.1.2 Forest and natural areas 

The most significant transformation occurred in 

deciduous forest, which exhibited a stark decline over 

time. Starting at 1,070.41 km2 (65.40%) in 1989, 

deciduous forests shrank to 821.40 km2 (50.18%) by 

2021. This 15.2% reduction in forest area points to 

substantial deforestation, likely driven by the 

expansion of agricultural land, urbanization, and 

mining activities (Table S4). The evergreen forest 

class remained relatively stable, covering around 4% 

of the total area throughout the study period. This 

might be because the topography and road network are 

unsuitable for human use, as most of the area belongs 

to restricted zones such as protected forest areas. 

Figure 4. LULC in Mae Chang watershed: A) 1989, B) 2005, C) 2013, and D) 2021 
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Other natural areas, such as rangeland and 

scrub, saw a slight decrease from 36.94 km2 in 1989 to 

19.29 km2 in 2021. Swamp areas, although a very 

minor component, increased slightly from 0.82 km2 in 

1989 to 2.04 km2 in 2021. 

3.1.3 Mine and pits, and urban areas 

Some of the most significant gains were seen in 

mine and pit areas, which grew from 26.26 km2 

(1.60%) in 1989 to 89.49 km2 (5.47%) by 2021. This 

represents a notable expansion in mining and 

extractive activities, likely contributing to the 

reduction in forest cover. 

Urban and built-up areas also expanded 

steadily, increasing from 71.95 km2 (4.40%) in 1989 

to 92.67 km2 (5.66%) in 2021, reflecting the ongoing 

trend of urbanization. Meanwhile, community 

relocation is driven by mining companies requiring 

more space, resulting in new urban areas due to 

continued mining activities (EGAT, 2022). 

3.1.4 Water body 

Water bodies also saw a noticeable increase, 

from 23.00 km2 (1.41%) in 1989 to 34.90 km2 (2.13%) 

in 2021. This is attributed to human activities such as 

the construction of reservoirs. 

3.2 LULCC modeling, calibration, and validation 

According to the calibration step, the final five 

exploratory variables were added to each sub-model, 

including (1) distance to roads, (2) distance to 

agricultural land reform areas, (3) distance to mining 

(2021), (4) distance to urban and built-up areas (2021), 

and 5) evidence likelihood of LULCC, with the overall 

CVC more than 0.15 (Table S5). 

The four sub-models based on the transition 

from significant change in the change analysis step 

were determined, as shown in Table S6. The sub-

models were grouped primarily based on the situation 

occurring in the Mae Chang watershed. 

The final sub-model, skill measure, and the 

accuracy rate of the transition potential process are 

shown in Table S7. The accuracy rate ranged from 

52.87 to 92.40, while the skill measure ranged from 

0.3300 to 0.8860. These values coincide with studies 

in Asia and North America, such as the city of Surat, 

India (Vasanthawada et al., 2023) and Alabama, 

United States (Shrestha et al., 2022). The DEF_03 is 

the highest performing sub-model. 

The validation results showed all Kappa 

variations were greater than 0.8 or 80%. The 

Kstandard, Kno, and Klocation were 0.8237, 0.8609, 

and 0.8934, respectively. 

3.3 Future scenarios prediction 

The LULCC projections reveal significant 

variations across different future scenarios, Business 

as usual (BAU), Conservation (CON), and 

Development (DEV), when compared to the actual 

LULC in 2021 (Table S8 and Figure 5). 

For the BAU scenario, paddy fields increased 

from 160.09 km² (2021) to 173.69 km² (2029) and 

180.42 km² (2037). Field crops expanded to 200.70 

km² (2029) and 207.19 km² (2037). Perennial crops 

showed the strongest growth, rising from 148.93 km² 

(2021) to 271.13 km² (2029) and 319.06 km² (2037). 

Evergreen forest remained stable, while deciduous 

forest declined from 821.40 km² (2021) to 637.87 km² 

(2029) and 562.46 km² (2037). Mines and pits 

increased to 102.04 km² (2029) and 107.98 km² 

(2037). Urban and built-up areas rose to 104.57 km² 

(2029) and 112.45 km² (2037). 

For the CON scenario, paddy fields increased to 

173.71 km² (2029) and 180.43 km² (2037). Field crops 

reached 200.68 km² (2029) and 207.19 km² (2037). 

Perennial land grew to 271.10 km² (2029) and 319.02 

km² (2037). Evergreen forest was stable while 

deciduous forest fell to 637.87 km² (2029) and 562.49 

km² (2037). Mines and pits increased to 102.07 km² 

(2029) and 107.94 km² (2037). Urban and built-up 

areas increased to 104.58 km² (2029) and 112.49 km² 

(2037). 

For the DEV scenario, paddy field rose to 

173.71 km² (2029) and 180.43 km² (2037). Field crop 

expanded to 200.68 km2 (2029) and 207.19 km² 

(2037). Perennial reached 271.10 km2 (2029) and 

319.02 km²  (2037). Evergreen forest was still stable 

while deciduous forest decreased to 637.87 km² 

(2029) and 562.49 km2 (2037). Mines and pits 

increased 102.07 km² (2029) and 107.94 km² (2037). 

Urban and built-up areas increased to 104.58 km² 

(2029) and 112.49 km² (2037). 

Across all scenarios, the largest transitions are 

from deciduous forest to perennial land and from 

deciduous forest to field crop, increasing from 2029 

(≈79-81 km² and ≈78-79 km²) to 2037 (≈115-116 km² 

and ≈95-96 km²) (Figure 6). Field crop to perennial 

also rose (≈44-45 to ≈56 km²). Conversions of 

deciduous forest to paddy field, urban and built-up 

areas, and mines and pits increased modestly by 2037 

(to ≈17, ≈23, and ≈18-20 km², respectively). Some 

small areas of field crops are transformed to deciduous 
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forest areas (≈8-11 km²). The projected situations 

coincide with the studies of Arunsurat et al. (2023) and 

Saluja et al. (2024), conducted in the northern and 

northeastern parts of Thailand, whose results show 

deforestation and agricultural expansion, particularly 

in the BAU scenarios. 

Figure 5. Future scenarios for 2029 and 2037: a), b) BAU scenarios; c), d) CON scenarios; e), f) DEV scenarios 

Arunsurat et al. (2023), which studied in Chiang 

Mai-Lamphun basin in Chiang Mai and Lamphun 

Provinces, located near the Mae Chang Watershed, 

demonstrates scenario‐dependent quantities of 

change. Under the Ecological Protection Scenario 

(EPS), forest cover is maintained at approximately 

61.65% in both periods, whereas the Business-as-

Usual (BaU) and Baseline Development Scenario 

(BDS) pathways decline to about 54% by 2050, with 

greater allocation to agricultural and built-up uses. In 

the Mae Chang watershed projections, the dominant 

transitions are likewise from deciduous forest to 

perennial land and to field crops; however, total areas 

by class are essentially indistinguishable across BAU, 

CON, and DEV in 2029 and 2037 (Table S8), 

indicating that scenario effects are negligible in 

quantity and act primarily by spatially reallocating 

change rather than altering overall amounts. This 

might happen because this study did not adjust the 

Markov demand but mainly relied on CI layers, so the 
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total area can be similar across all scenarios. The 

results from this study also coincide with 

Abbasnezhad et al. (2023), which used the same 

Markov matrix for several scenarios. 

Figure 6. LULCC primary transition from actual LULC 2021 of each scenario 

Even though the results in terms of the quantity 

of change showed a similar pattern across all scenarios 

(Table S8 and Figure 6), there are significant 

differences when considering the spatial distribution 

of the projected LULCC (Figure 7). In the BAU and 

DEV scenarios, where constraints (protected and 

restricted areas) are not enforced, deforestation may 

continue in those areas.  

The LULCC, particularly forest loss and 

agricultural expansion, can exacerbate soil erosion 

(Paiboonvorachat and Oyana, 2011), increasing 

sediment yield and nutrient export, which in turn 

degrade water quality (Chotpantarat and 

Boonkaewwan, 2018). Mining activities similarly 

contribute to water quality deterioration (Woon et al., 

2021). While such developments may enhance human 

well-being, they also impose significant 

environmental costs. 

Under the CON scenario, the predominance of 

evergreen and deciduous forests in the headwatershed 

supports preservation. Evidence from Northern 

Thailand indicates that protected areas mitigate forest 

loss and fragmentation, whereas unprotected 

landscapes near urban-agricultural frontiers are more 

susceptible to degradation—reinforcing the role of the 

CON scenario in safeguarding core habitats (Lee et al., 

2022). This underscores the importance of protected 

and restricted zones, which not only conserve 

headwater sources but also sustain ecosystem services 

such as water provision (Chotikasathira, 1988). 

3.4 Uncertainties and limitations 

LULCC modeling is constrained by the inherent 

complexity of environmental systems, uncertainties in 

data, and the difficulty of anticipating human decision-

making that shapes land transformation (Bachri et al., 

2024). Our results may carry uncertainty from both 

data and modeling factors. First, although the land use 

nomenclature was defined with more detail, satellite 

imagery alone cannot always capture this level of 

precision. Therefore, we incorporated very high-

resolution imagery from both aerial and satellite 

sources to ensure the highest possible accuracy of the 

LULC data input into the model. Second, by analyzing 

only the dominant transitions for this watershed, some 

minor or dispersed LULC changes were omitted and 

may underestimate localized impacts while leaving 

landscape-scale totals broadly unchanged. Third, 

scenario construction relied on activating constraint 

and incentive layers; we did not vary land-demand 
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(class quantities) by scenario. Consequently, 

BAU/CON/DEV differences should be interpreted 

primarily as spatial reallocation of change rather than 

as large shifts in total area by class. Finally, some 

drivers (e.g., gridded population distribution) were 

sourced from global products with an effective 

resolution coarser than 30 m, which can misalign with 

local patterns and misallocate future changes near 

settlements. Mining also induces rapid, localized 

changes in topography (elevation/slope). However, 

these driving variables were excluded because their 

Cramer’s V values did not meet our selection 

threshold, which may result in underrepresentation of 

future LULC change. Therefore, given the inevitable 

uncertainties in land-use change modeling, outputs 

from the Land Change Modeler must be treated as 

approximations and interpreted alongside local 

context and variations in land-use processes (Bachri et 

al., 2024). 

Figure 7. Primary LULC changes from 2021 for each scenario: a) BAU 2029, b) BAU 2037, c) CON 2029, d) CON 2037, e) DEV 2029, 

and f) DEV 2037. 
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4. CONCLUSION

The data highlights significant trends in land 

use change over the period from 1989 to 2021, with 

the deciduous forest cover in the watershed having 

declined substantially by 23.3%. Over the same 

period, field crops expanded by 104.7%, perennial 

crops by 97.3%, mines and pits by 240.8%, and urban 

areas by 28.8%, reflecting significant shifts in land use 

dynamics. Meanwhile, the stability of evergreen 

forests points to some level of environmental 

conservation. These LULC changes suggest both 

development-driven land conversions and efforts to 

sustain agricultural productivity. 

Moreover, this study employed Multilayer 

Perceptron (MLP) Neural Network, Markov Chain 

modeling, coupled with transition potential maps and 

CI layers establishment, to simulate future LULC 

scenarios for 2029 and 2037 under Business-As-Usual 

(BAU), Conservation (CON), and Development 

(DEV). The findings underscore the importance of 

sustainable land management policies to mitigate the 

impact of human activities on natural ecosystems, 

particularly with the growing demand for land 

resources, with CON able to constrain deforestation, 

particularly in protected, conserved, and restricted 

area. This is crucial to ensure the well-being of both 

human and ecological systems in the future. Since 

Thailand has also has the National Biodiversity Action 

Plan 2023-2027, the targeted and recommended 

actions are to expand and strengthen protected areas 

and OECMs (Other Effective Area-Based 

Conservation Measures), prioritize high-biodiversity 

and ecosystem-service sites, ensure effective, resource 

management and monitoring, connect areas via 

ecological corridors, uphold participatory governance 

and rights, implement continuous, outcome-tracked 

restoration, and focus management on ecosystem 

integrity, connectivity, and sustainable benefits 

(Office of Natural Resources and Environmental 

Policy and Planning, 2024). It is crucial that these 

actions are followed. 

Due to the unavoidable uncertainties in land-use 

change modeling, the results from the Land Change 

Modeler are best treated as approximations. Future 

studies should integrate finer-resolution datasets and 

local socio-environmental factors to improve 

predictive reliability, for example, population income, 

agricultural land suitability, local bias correction from 

global to local correct climatic factors (historical and 

future scenarios). 
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