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Many developing countries still predominantly rely on conventional monitoring of
groundwater quality parameters. Emerging technologies have shown significant potential
for advancing automated water quality monitoring in recent years. This study developed
the Groundwater Live Observation for Water-quality (GLOW) system, which leverages
Internet of Things (1oT) technologies combined with water quality sensors. In future
applications, this remote sensing-based groundwater monitoring system holds strong
potential for detecting pollutant intrusion in water bodies. The GLOW system was tested
during two periods, namely from June 2023 to November 2023 and from January 2024 to
March 2024, in Bojong District, Sukabumi Regency, Indonesia. The system employed
Aqua TROLL 500 sensors capable of measuring water temperature, electrical conductivity
(EC), pH, salinity, and total dissolved solids (TDS). The data generated by the GLOW
system were transmitted to a website server and subsequently evaluated against
laboratory-based data using statistical analyses. The Wilcoxon Signed-Rank Test was
applied to assess differences between the two approaches. Most parameters showed no
statistically significant differences (p>0.05), except for TDS and salinity (p=0.02). The
Bland-Altman analysis confirmed good overall agreement between the two methods, with
small mean differences for pH (0.19), EC (8.45 uS/cm), water temperature (-0.34°C),
salinity (0.02 PSU), and TDS (0.01 ppm). Future research should expand monitoring by
including nitrogen and phosphorus compounds.

HIGHLIGHTS

+ Developed loT-based sensors for continuous groundwater quality monitoring
+ Findings support sustainable groundwater management and monitoring assessment
» Autonomous monitoring system validated using real field observations

1. INTRODUCTION

Groundwater is a widely utilized source of
drinking water, with approximately 2.5 billion people
globally relying on it (Gronwall and Danert, 2020).
Consequently,  groundwater = management s
considered one of the key strategies for addressing
water scarcity (Carrard et al., 2019). In recent years,
an alarming decline in groundwater quality has been
reported in several Asian countries, particularly China,
India, and Pakistan (Yin et al., 2020; Li et al., 2022,

Ullah et al., 2022; Thakur et al., 2024). Groundwater
contamination is commonly attributed to industrial
pollution, domestic waste, agricultural runoff, and
saltwater intrusion, and this widespread issue raises
growing concerns as it poses significant health risks,
contributes to environmental degradation, and
exacerbates water scarcity. Providing early
assessments of groundwater contamination and
establishing strategic frameworks to address these
issues are crucial first steps toward achieving resilient
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groundwater quality. Traditionally, groundwater
quality monitoring has relied on field sampling and
laboratory analysis, methods that have been well
established and validated over decades, and whose
results are widely accepted for regulatory and
legislative purposes (Madrid and Zayas, 2007).
However, this conventional monitoring approach is
time-consuming, labor-intensive, and cost-inefficient
(Abdulkadir et al., 2023; Jayaraman et al., 2024).
Moreover, extensive and careful sample handling is
required to prevent measurement errors and biases
introduced by external factors such as exposure to
sunlight or high air temperatures (Sani et al., 2023),
which may cause deviations from the actual condition
of the samples at the time of collection.

Fortunately, the limitations of conventional
groundwater quality monitoring can be addressed
through remote monitoring. By utilizing sensors to
measure water-quality parameters directly in the field,
there is no need to transport samples to a laboratory.
This approach helps prevent exposure-related changes
that could alter the chemical composition of
groundwater. Sensors have been well developed to
measure physicochemical parameters, such as pH,
temperature, electrical conductivity (EC), and
dissolved oxygen (DO). Further developments have
broadened to even wider water quality parameters,
such as total organic carbon (TOC), dissolved organic
carbon (DOC), biological oxygen demand (BOD),
chemical oxygen demand (COD), bacteria,
agricultural pollutants, ions, and heavy metals (Park et
al.,, 2020; Kumar et al.,, 2024). Besides single-
parameter sensors, several configurable multi-
parameter sensors are also available for long-term
monitoring (Danielson, 2020). Nevertheless, the
sensors must still be calibrated regularly to ensure that
their accuracy is maintained. Another recent approach
involves the use of Internet of Things (loT) (Akrout et
al., 2024), virtual sensing (Grisez et al., 2025), a cyber-
physicochemical system (CPS) (Yoon et al., 2024),
and optical techniques (Zainurin et al., 2022). As a
result of ombining the sensors with the capacity of the
current cloud system (hence the loT services),
groundwater monitoring is now capable of storing,
transmitting, and analyzing real-time water quality
data at almost real-time temporal scale. Such a
platform is developed on IP-enabled devices and
applications through wired (Ethernet) or wireless (Wi-
Fi) interfaces (Wong and Kerkez, 2016).

One example of a monitoring system
application was demonstrated in a study by Yoon et al.

(2024), which utilized an loT-integrated groundwater
monitoring system to measure physicochemical
parameters related to organic decomposition from
livestock carcasses at a burial site. Four parameters
were monitored: EC, chloride (CI"), nitrate nitrogen
(NOs-N), and ammonium nitrogen (NH4-N). The
monitoring system achieved high levels of accuracy
and precision, ranging from 93.3% to 100.0% and
0.1% to 5.0%, respectively. EC was identified as the
most reliable indicator among these parameters, as
sensor readings differed by only 1.1 times compared
with laboratory measurements. In contrast, the other
parameters showed larger variations, with differences
ranging from 1.6 to 2.5 times higher. On the other
hand, real-time groundwater monitoring has not been
widely implemented in Indonesia. Existing studies
(Lubis et al., 2008; Hutabarat and llyas, 2017) are
limited to single-parameter observations, such as
groundwater table elevation or depth-temperature
profiles. The studies conducted by Fakhrurroja et al.
(2023) and Andayani et al. (2021) also assessed the
feasibility of using sensors to measure groundwater
quality parameters. However, both investigations were
limited to laboratory-scale experiments, and to date,
no field-based, real-time groundwater quality
monitoring system has been implemented in
Indonesia. The limited monitoring network restricts
efforts to relate groundwater quality to spatial factors
such as abstraction, land cover, and industrial
pollution. A practical solution is installing multi-
parameter monitoring systems, which allow real-time
data collection and more accurate interpretations of
groundwater characteristics, particularly in data-
scarce regions.

Therefore, this study aims not only to develop
but also to evaluate the application of the Groundwater
Live Observation for the Water Quality (GLOW)
system in Indonesia. The GLOW system was deployed
in Bojong District, Sukabumi Regency, where a web-
based platform continuously monitored groundwater
quality parameters. Building on the success of
previous studies (Yoon et al., 2024), which indicated
that EC showed the closest agreement with field
measurements among monitored parameters, this
study focused on five other parameters: temperature,
pH, EC, salinity, and total dissolved solids (TDS).
These parameters were simultaneously measured in
the laboratory through conventional sampling for
comparison. Once the core parameters have been
established, additional physicochemical parameters
(CI, NOs-N, and NH4-N) will be incorporated into the
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monitoring framework. Sensor-laboratory agreement
is evaluated using uni-variate statistical metrics to
validate the reliability of the GLOW system. Although
no new sensor hardware is introduced, this study
provides novel field-based evidence on the
performance of real-time groundwater monitoring in
data-scarce regions such as Indonesia. In future
applications, the GLOW system may also be used to
detect potential pollutant intrusion into water bodies.

2. METHODOLOGY
2.1 Study location

The monitoring well, equipped with the
aforementioned sensors, is located in the Sukabumi
Regency, near the south coast of West Java Province,
Indonesia. Figure 1 shows the Sukabumi Regency’s
relative position and the exact position. Geologically,

the northern part of the Sukabumi area is dominated
by alluvium deposits and young volcanic deposits of
the Quaternary Age. Considering their alluvial nature,
the geologically young and unconsolidated soils
should support productive aquifer potential in these
areas. On the other hand, a high-water table might also
leave the area prone to flooding without proper
stormwater management. As the Sukabumi Regency is
situated in a tectonically active region between the
Indo-Australian and Eurasian plates, fractured tertiary
rocks and volcanic structures may lead to amplified
risk of seismic potential. The groundwater hydraulic
head especially that from confined aquifers, is harder
to qualitatively predict, as the fragility to seismic
activities could coerce the aquifers to karsting and
perching exposure.
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Figure 1. The monitoring well in Bojong District, Sukabumi Regency, Indonesia

The geographical coordinates of the Bojong
monitoring well are 106.82°E and 6.96°S. The
planned design of the well is shown in Figure 2(a),
where the borehole was drilled to a depth of 120 m. As
illustrated, two types of PVC casing were installed.
From the surface to a depth of 6 m, a non-perforated
PVC pipe was used and reinforced with cement
grouting. From 6 m down to 120 m, a perforated PVC
pipe was installed to allow groundwater to enter the
well. The perforated section was surrounded by
gravel, sized 0.50-1.00 cm, to ensure the pipe
remained stable and properly positioned within the

borehole. During the drilling process, geophysical
logging was conducted to determine the resistivity
profile and classify subsurface lithology down to 120
m. Based on resistivity values, the subsurface
materials can be categorized as tuff (1-10 Q.m),
tuffaceous sand (10-50 Q.m), and gravel (50-100 Q.m)
(Palacky, 1998; Telford et al., 1990). The resulting
lithological classification is presented in Figure 2(b),
which shows that the subsurface is predominantly
composed of tuff layers. Geo-electric measurements
further indicate that the monitoring well intersects a
shallow aquifer between depths of 3 and 30 m.
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Figure 2. (a) Well construction design plan and (b) the soil stratigraphy of the Bojong Site

2.2 The GLOW system

The Aqua TROLL 500 sensor was selected for
its proven effectiveness in monitoring water quality
parameters (Acrohm, 2020; Snow et al., 2020). It
comes in two main sondes, vented and non-
pressurized, whose specifications for measuring water
quality parameters are presented in Table 1. Both
sondes were installed at a depth of 30 meters, situated
in the tuff layer in the well. The soil layer is
characterized by soft, porous volcanic rock (Asniar et
al., 2019), facilitating groundwater flow around the
sondes. Nevertheless, the tuff layer is less permeable
than the gravel layer (Siegesmund et al., 2023),
resulting in more stable concentrations of water-

Table 1. The Aqua Troll 500 sensor specifications (Acrohm, 2020)

quality parameters within the well compared to those
in the gravel layer. This consideration formed the
primary basis for selecting a depth of 30 m as the
installation level for both sondes. A gateway panel
was also installed with a protective box, which
safeguards the internal components from external
elements such as extreme weather conditions and
insects. A weather sensor is also integrated into the
GLOW system to monitor ambient air temperature.
The system is programmed to record all parameters at
10-minute intervals. It has been maintained and
calibrated monthly from June 2023 to March 2024.

Parameter Accuracy Range Methodology

EC +0.5% of reading plus 1 puS/cm* 0 to 350,000 puS/cm Std. Methods 2510, EPA 120.1
TDS - 0 to 350 ppm -

Salinity - 0 to 350 PSU Std. Methods 2520A

pH 0.1 pH units 0 to 14 pH units Std. Methods 4500-H+, EPA 150.2
Temperature +0.1°C -51t0 50°C EPA 170.1

Within the box of the gateway panel, several
components are installed to enable data visualization,
sensor calibration, and automated data uploading to
the website server. During the initial testing period, the
system was powered by the state electricity grid (220V
AC). This power was stored in an uninterruptible

power supply (UPS) and then converted to 12V DC to
meet the system’s operational requirements. A
supporting 18 V DC solar panel was integrated, with
its output regulated to 12 V DC via a 0.50. A solar
charge controller (SCC). Unstable power supply may
cause sudden spikes in the sensor readings. Therefore,
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all sensor outputs must be verified manually before
being accepted as valid final data. Wi-Fi connectivity
is established to facilitate real-time data transmission.
As a contingency measure, flash drives are employed

for local data storage in the event of transmission
failures. A complete schematic diagram of the GLOW
system is presented in Figure 3, while the installed
system is shown in Figure 4.
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Figure 3. The schematic diagram of the GLOW system

Figure 4. The installed GLOW system at the Bojong Site
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2.3 Conventional monitoring of water quality
parameters

In conventional monitoring, water samples are
assessed using in-situ tools based on established
physical principles (YSI Inc, 2021). The groundwater
level within the well fluctuated between depths of 7
and 10 m; therefore, water sampling was conducted
within this interval. As shown in Figure 2(b), the
groundwater is hosted within the tuff and tuffaceous
sand layers. Although the water sampling depth and
the sensor installation depth differ, the surrounding
lithological units at these elevations are comparable.
This approach was adopted to minimize variations in
groundwater quality concentrations, as discussed in
the previous section. pH is measured using an ion-
selective electrode (ISE), with an accuracy of +0.2.
Water temperature is monitored using a thermistor,
typically covering a range from -5°C to 70°C, with an
accuracy of +0.2°C. EC is determined via a
conductivity electrode sensor (conductometry),
operating within a range of 0 to 200 uS/cm and with
an accuracy of +0.5%. Salinity and TDS are not
measured directly but are calculated from EC values
using the Practical Salinity Scale 1978 (PSS-78) and
an empirical conversion factor, respectively.

2.4 Statistical methods

This study employed three methods to assess
the performance of the GLOW system: normality
tests, non-parametric statistical methods, and Bland-
Altman plots. The normality test was used to evaluate
the sensor’s data distribution. One commonly used
normality test is the Kolmogorov-Smirnov test, which
is suitable for large sample sizes (n>5,000) (Ghasemi
and Zahediasl, 2012). The characteristics of the
Kolmogorov-Smirnov statistical test are well suited to
this study, as the dataset analyzed can comprise tens
of thousands of observations for a single parameter. If
the p-value generated by the Kolmogorov-Smirnov
test is less than 0.05, the data are considered not
normally distributed.

When data are not normally distributed, non-
parametric statistical methods are more appropriate for
evaluating accuracy (Holmes, 2020). One such
method is the Wilcoxon Signed-Rank Test, which
assesses whether the differences between paired
observations are statistically significant. The

Wilcoxon Signed-Rank Test is specifically designed
for paired observations collected at corresponding
time points. Moreover, since it is based on median
differences rather than means, this method is more
robust to outliers and non-normal data distributions.
Like the normality test, the Wilcoxon Signed-Rank
Test evaluates its difference using p-values. If the p-
value in the Wilcoxon Signed-Rank Test is greater
than 0.05, the parameter does not differ significantly.
Since this study aims to evaluate the performance of
the GLOW  system, the laboratory-based
measurements are considered the reference or “true”
values.

Finally, Bland-Altman plots were employed to
visually examine the agreement between the sensor-
based and laboratory-based data at corresponding time
points. These plots help identify the number of data
points within an acceptable range, commonly defined
as within 95% of the reference range (Mansournia et
al., 2021). This analysis provides insight into the
extent to which the sensor-based data either
underestimates or overestimates the laboratory-based
data. This method is highly relevant for
instrumentation and sensor studies, as sensors may
exhibit small but consistent differences that can be
statistically significant yet remain acceptable from an
operational perspective.

3. RESULTS
3.1 The GLOW’s reading

The 10-minute interval sensor data were
aggregated into daily averages before being plotted
with the laboratory-based data. Sensor readings and
laboratory analyses are divided into two periods. The
first period, covering both sites, spans from 27 June
2023 to 14 November 2023, as presented in Figure 5.
The second period extends from 29 January 2024 to 15
March 2024, as illustrated in Figure 6. As previously
mentioned, this separation was necessitated by a
maintenance interval caused by power fluctuations in
late November 2023. Another distinguishing factor
between the two periods is that the GLOW system
operated solely on the state electricity grid during the
first period. In contrast, it was powered by combining
a solar panel system and the state electricity grid in the
second period.
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Figure 6. Time series of water quality parameters during the second monitoring period

During the first period, a three-day data loss
occurred in early October 2023. The data loss could
not be recovered due to a complete shutdown of the
GLOW system. As shown in Figure 5, the sensor
readings for the five water quality parameters appear
to be sufficiently accurate, although pH, salinity, and
EC tend to be slightly overestimated. This discrepancy
may also be attributed to the fact that the water

samples were taken from a shallower depth,
potentially resulting in higher laboratory-based values
than sensor readings. Notably, the TDS parameter
exhibited the most accurate agreement between the
two data sources. In the second period, a one-day data
loss still occurred at the beginning, as shown in
Figure 6. Although data loss persisted, the duration of
sensor data unavailability was significantly reduced.
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The percentage of system uptime during both
monitoring periods was quantified by calculating the
difference between the total monitoring duration and
the system downtime, divided by the total monitoring
period. During the first monitoring period, the system
experienced three days of downtime over 140 days of
observation, while during the second monitoring
period, one day of downtime occurred over 46 days of
monitoring. Based on these values, the system uptime
for the first and second monitoring periods was
97.86% and 97.83%, respectively. Nevertheless, the
GLOW system can still be further improved to ensure
a more stable and continuous power supply.

Based on the visual inspection of the time-series
results from both monitoring periods, the sensor-
generated data can be considered sufficiently reliable.
One or two parameters exhibited noticeable
fluctuations, which posed challenges for data
validation; however, highly fluctuating readings were
carefully filtered prior to analysis to ensure data
quality.  Several field improvements  were
implemented, including the installation of a solar
panel to supplement electricity demand and the use of
an uninterruptible power supply (UPS) to stabilize
grid-supplied power. Despite these efforts, power

mitigate this issue, flash drives were employed for
local data storage, as described in the previous section.

3.2 Outcomes of statistical analysis

A Kolmogorov-Smirnov test for normality was
applied to the sensor-based data with a temporal
resolution of 10 minutes, and the results are presented
in Table 2. Since all water quality parameters have a
p-value of 0, the parameters are stated as not normally
distributed. These findings indicate the Wilcoxon
Signed-Rank Test is a suitable method for subsequent
analysis. The results of the Wilcoxson Signed-Rank
Test are shown in Table 3. Most parameters show no
significant difference between the GLOW system and
the laboratory-based data. The parameters with
significant differences are TDS and salinity. However,
one thing that might be considered is that our
method’s precision in measuring the salinity is
relatively low. The salinity value can only be detected
with one significant number, either 0.20 or 0.30. This
condition is undoubtedly affecting the Wilcoxson
Signed-Rank Test results.

Table 2. The Kolmogorov-Smirnov test results

instability was not fully resolved, as the addition of ~_Parameter KS Statistic p-value
only one solar panel during the second monitoring pH 0.23 0
period was insufficient to meet the system’s energy Salinity 0.19 0
requirements. Another limitation of this study relates ~ TPS 0.46 0
to its location in relatively underdeveloped areas with ~ EC 0.20 0
limited internet connectivity, which occasionally Water Temp. 0.47 0
disrupted data transmission to the web server. To
Table 3. The Wilcoxson Signed-Rank test results
Parameter Number of data used p-value Remarks
EC 8 0.25 There is no significant difference
pH 8 0.08
Water Temp. 8 0.20
TDS 8 0.02 There is a significant difference
Salinity 8 0.02

Next, the differences between the two types of
data were visualized using the Bland-Altman Plot, as
presented in Figure 7. The outcomes of these plots are
consistent with those obtained from the Wilcoxon
Signed-Rank Test. In the study location, as shown in
Figure 7, the pH, EC, water temperature, salinity, and
TDS parameters exhibited mean differences of 0.19,
8.45 uS/cm, -0.34°C, 0.02 PSU, and 0.01 ppm,
respectively. Despite being identified as having

significant differences, the Bland-Altman plots of
salinity and TDS parameters are still acceptable.
Furthermore, all the sensor-based data remained
within a safe reference range. These small differences
suggest that, despite some inconsistencies, the GLOW
system remains reliable for real-time groundwater
quality monitoring purposes.

Despite the operational challenges encountered
in the field, the sensor-based data demonstrated
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sufficient accuracy in providing reliable real-time
measurements of groundwater quality parameters. The
results of the Wilcoxon Signed-Rank Test for all
parameters were statistically promising, except TDS
and salinity. Furthermore, the Bland-Altman plots
provided a complementary assessment, showing that
all paired sensor and laboratory measurements for
each water quality parameter fell within the 95% limits
of agreement, indicating acceptable agreement
between the two methods. In addition, this study was
limited to eight water sampling events conducted over

the eight-month system testing period. With such a
small sample size, hypothesis-testing methods may
place excessive emphasis on statistical significance
and may not fully reflect practical sensor performance.
Consequently, agreement-based approaches, such as
the Bland-Altman limits of agreement, provide a more
appropriate  framework for evaluating sensor
reliability. To strengthen future validations, more
frequent or extensive laboratory measurements are
recommended to better support the assessment of
sensor-based data.
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Figure 7. Bland-Altman Plots for each water quality parameter

4. DISCUSSION

The addition of one solar panel during the
second monitoring period did not result in a significant
improvement in the stability of the electricity supply.
During this period, the system employed a 0.5 A SCC,
for which the calculated power generation was only
approximately 30 Wh per day. In contrast, the GLOW
system requires 54.72 Wh per day to operate reliably.
In evaluating the net energy balance between power
consumption and power generation, state electricity
was excluded from the analysis because frequent
power outages rendered it unreliable. As the SCC
capacity remained at 0.5 A, the addition of an extra
solar panel did not increase the effective power output.
Instead, increasing the SCC current rating represents a
more viable solution. Therefore, an energy budget
analysis comparing power consumption and power
generation was conducted, as presented in Table 4. In

026 027 028 029 030
Mean Mean

Salinity

this analysis, the solar panel was assumed to charge
the battery for an effective duration of 5 hours per day.
Power generation was estimated for SCC capacities of
1.0 A, 1.5 A, and 2.0 A. The results indicate that the
system’s energy demand can be met when an SCC
with a capacity of at least 1.0 A is employed. However,
as a precautionary measure, an SCC capacity of 1.5-
2.0 A is recommended to account for external factors
such as prolonged cloudy or rainy conditions. This
configuration is expected to provide a stable 12 VV DC
output to sustain continuous system operation.

The results demonstrate that real-time
groundwater quality monitoring using loT-based
systems is technically feasible and potentially scalable
to other developing regions. However, a careful
assessment of site-specific conditions is essential to
ensure that the data produced is sufficiently reliable
for decision-making. Collaborations with local
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stakeholders could support such systems’ long-term
sustainability and scalability. This study provides a
foundational case for developing a nationwide
groundwater monitoring network, which could inform
both short-term groundwater pollution alerts and long-
term aquifer management strategies. Future efforts
should focus on developing sensors capable of
measuring  additional ~ chemical = parameters,
particularly nitrogen and phosphorus compounds.

These parameters serve as direct indicators of water
quality degradation, as their concentrations are strictly
regulated to ensure the safety of human consumption.
Including such indicators would significantly enhance
the comprehensiveness of the monitoring system and
support early detection of nutrient pollution,
particularly in areas influenced by agricultural runoff
or domestic wastewater discharge.

Table 4. Energy budget comparing power consumption and power generation

Parameter Power Power generation
consumption SCC with capacity

05A 10A 15A 20A
Voltage (V) 12
Electricity Current (I) [A] 0.19 0.50 1.00 1.50 2.00
Power (P) [W] 2.28 6.00 12.00 18.00 24.00
Time [hour] 24.00 5.00
Energy [Wh] 54.72 30.00 60.00 90.00 120.00
Net energy [Wh] -24.72 5.28 35.28 65.28
Suffice? Not Sufficient Sufficient Sufficient Sufficient

One of the parameters that can be directly
compared with the previous study by Yoon et al.
(2024) is EC. As mentioned earlier, sensor-based EC
values in the prior study were 1.1 times higher than
those obtained from laboratory measurements, with a
reported correlation coefficient of 0.3834. However,
this result alone does not provide sufficient evidence
regarding whether the recorded values fall within a
statistically acceptable confidence interval. In the
present study, as shown in Figure 7, all paired
comparisons between sensor- and laboratory-based
EC measurements fall within the 95% confidence
interval, with an average error of only 8.45 puS/cm.
These finding underscores progress in the
implementation of groundwater monitoring systems.
Furthermore, other parameters showed a similar trend,
with consistently small mean error values.

5. CONCLUSION

The groundwater live observation for water-
quality (GLOW) system was  successfully
implemented in the Bojong study area to continuously
monitor five groundwater quality parameters: pH, EC,
temperature, salinity, and TDS. Comparative analysis
between  sensor-based and  laboratory-based
measurements demonstrated acceptable agreement,
with most parameters showing no statistically
significant differences based on the Wilcoxon Signed-

Rank Test. The Bland-Altman plots further confirmed
the small magnitude of discrepancies, with mean
differences of 0.19 for pH, 8.45 puS/cm for EC, -0.34°C
for temperature, 0.02 PSU for salinity, and 0.01 ppm
for TDS, underscoring the reliability of the system in
capturing key physicochemical dynamics of
groundwater. Nonetheless, data loss persisted even
after solar panel installation, indicating insufficient
power availability and the need for a more robust
solution, such as increasing the SCC capacity to 1.5-
2.0 A. Despite this limitation, the GLOW system
proved to be an effective tool for real-time
groundwater monitoring and holds promising
potential for early detection and management of water
quality degradation in Indonesia.
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