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Many developing countries still predominantly rely on conventional monitoring of 

groundwater quality parameters. Emerging technologies have shown significant potential 

for advancing automated water quality monitoring in recent years. This study developed 

the Groundwater Live Observation for Water-quality (GLOW) system, which leverages 

Internet of Things (IoT) technologies combined with water quality sensors. In future 

applications, this remote sensing-based groundwater monitoring system holds strong 

potential for detecting pollutant intrusion in water bodies. The GLOW system was tested 

during two periods, namely from June 2023 to November 2023 and from January 2024 to 

March 2024, in Bojong District, Sukabumi Regency, Indonesia. The system employed 

Aqua TROLL 500 sensors capable of measuring water temperature, electrical conductivity 

(EC), pH, salinity, and total dissolved solids (TDS). The data generated by the GLOW 

system were transmitted to a website server and subsequently evaluated against 

laboratory-based data using statistical analyses. The Wilcoxon Signed-Rank Test was 

applied to assess differences between the two approaches. Most parameters showed no 

statistically significant differences (p>0.05), except for TDS and salinity (p=0.02). The 

Bland-Altman analysis confirmed good overall agreement between the two methods, with 

small mean differences for pH (0.19), EC (8.45 μS/cm), water temperature (-0.34°C), 

salinity (0.02 PSU), and TDS (0.01 ppm). Future research should expand monitoring by 

including nitrogen and phosphorus compounds. 
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HIGHLIGHTS 

• Developed IoT-based sensors for continuous groundwater quality monitoring

• Findings support sustainable groundwater management and monitoring assessment

• Autonomous monitoring system validated using real field observations

1. INTRODUCTION

Groundwater is a widely utilized source of 

drinking water, with approximately 2.5 billion people 

globally relying on it (Grönwall and Danert, 2020). 

Consequently, groundwater management is 

considered one of the key strategies for addressing 

water scarcity (Carrard et al., 2019). In recent years, 

an alarming decline in groundwater quality has been 

reported in several Asian countries, particularly China, 

India, and Pakistan (Yin et al., 2020; Li et al., 2022, 

Ullah et al., 2022; Thakur et al., 2024). Groundwater 

contamination is commonly attributed to industrial 

pollution, domestic waste, agricultural runoff, and 

saltwater intrusion, and this widespread issue raises 

growing concerns as it poses significant health risks, 

contributes to environmental degradation, and 

exacerbates water scarcity. Providing early 

assessments of groundwater contamination and 

establishing strategic frameworks to address these 

issues are crucial first steps toward achieving resilient 
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groundwater quality. Traditionally, groundwater 

quality monitoring has relied on field sampling and 

laboratory analysis, methods that have been well 

established and validated over decades, and whose 

results are widely accepted for regulatory and 

legislative purposes (Madrid and Zayas, 2007). 

However, this conventional monitoring approach is 

time-consuming, labor-intensive, and cost-inefficient 

(Abdulkadir et al., 2023; Jayaraman et al., 2024). 

Moreover, extensive and careful sample handling is 

required to prevent measurement errors and biases 

introduced by external factors such as exposure to 

sunlight or high air temperatures (Sani et al., 2023), 

which may cause deviations from the actual condition 

of the samples at the time of collection. 

Fortunately, the limitations of conventional 

groundwater quality monitoring can be addressed 

through remote monitoring. By utilizing sensors to 

measure water-quality parameters directly in the field, 

there is no need to transport samples to a laboratory. 

This approach helps prevent exposure-related changes 

that could alter the chemical composition of 

groundwater. Sensors have been well developed to 

measure physicochemical parameters, such as pH, 

temperature, electrical conductivity (EC), and 

dissolved oxygen (DO). Further developments have 

broadened to even wider water quality parameters, 

such as total organic carbon (TOC), dissolved organic 

carbon (DOC), biological oxygen demand (BOD), 

chemical oxygen demand (COD), bacteria, 

agricultural pollutants, ions, and heavy metals (Park et 

al., 2020; Kumar et al., 2024). Besides single-

parameter sensors, several configurable multi-

parameter sensors are also available for long-term 

monitoring (Danielson, 2020). Nevertheless, the 

sensors must still be calibrated regularly to ensure that 

their accuracy is maintained. Another recent approach 

involves the use of Internet of Things (IoT) (Akrout et 

al., 2024), virtual sensing (Grisez et al., 2025), a cyber-

physicochemical system (CPS) (Yoon et al., 2024), 

and optical techniques (Zainurin et al., 2022).  As a 

result of ombining the sensors with the capacity of the 

current cloud system (hence the IoT services), 

groundwater monitoring is now capable of storing, 

transmitting, and analyzing real-time water quality 

data at almost real-time temporal scale. Such a 

platform is developed on IP-enabled devices and 

applications through wired (Ethernet) or wireless (Wi-

Fi) interfaces (Wong and Kerkez, 2016).  

One example of a monitoring system 

application was demonstrated in a study by Yoon et al. 

(2024), which utilized an IoT-integrated groundwater 

monitoring system to measure physicochemical 

parameters related to organic decomposition from 

livestock carcasses at a burial site. Four parameters 

were monitored: EC, chloride (Cl-), nitrate nitrogen 

(NO3-N), and ammonium nitrogen (NH4-N). The 

monitoring system achieved high levels of accuracy 

and precision, ranging from 93.3% to 100.0% and 

0.1% to 5.0%, respectively. EC was identified as the 

most reliable indicator among these parameters, as 

sensor readings differed by only 1.1 times compared 

with laboratory measurements. In contrast, the other 

parameters showed larger variations, with differences 

ranging from 1.6 to 2.5 times higher. On the other 

hand, real-time groundwater monitoring has not been 

widely implemented in Indonesia. Existing studies 

(Lubis et al., 2008; Hutabarat and Ilyas, 2017) are 

limited to single-parameter observations, such as 

groundwater table elevation or depth-temperature 

profiles. The studies conducted by Fakhrurroja et al. 

(2023) and Andayani et al. (2021) also assessed the 

feasibility of using sensors to measure groundwater 

quality parameters. However, both investigations were 

limited to laboratory-scale experiments, and to date, 

no field-based, real-time groundwater quality 

monitoring system has been implemented in 

Indonesia. The limited monitoring network restricts 

efforts to relate groundwater quality to spatial factors 

such as abstraction, land cover, and industrial 

pollution. A practical solution is installing multi-

parameter monitoring systems, which allow real-time 

data collection and more accurate interpretations of 

groundwater characteristics, particularly in data-

scarce regions. 

Therefore, this study aims not only to develop 

but also to evaluate the application of the Groundwater 

Live Observation for the Water Quality (GLOW) 

system in Indonesia. The GLOW system was deployed 

in Bojong District, Sukabumi Regency, where a web-

based platform continuously monitored groundwater 

quality parameters. Building on the success of 

previous studies (Yoon et al., 2024), which indicated 

that EC showed the closest agreement with field 

measurements among monitored parameters, this 

study focused on five other parameters: temperature, 

pH, EC, salinity, and total dissolved solids (TDS). 

These parameters were simultaneously measured in 

the laboratory through conventional sampling for 

comparison. Once the core parameters have been 

established, additional physicochemical parameters 

(Cl-, NO3-N, and NH4-N) will be incorporated into the 
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monitoring framework. Sensor-laboratory agreement 

is evaluated using uni-variate statistical metrics to 

validate the reliability of the GLOW system. Although 

no new sensor hardware is introduced, this study 

provides novel field-based evidence on the 

performance of real-time groundwater monitoring in 

data-scarce regions such as Indonesia. In future 

applications, the GLOW system may also be used to 

detect potential pollutant intrusion into water bodies. 

  

2. METHODOLOGY  
2.1 Study location 

The monitoring well, equipped with the 

aforementioned sensors, is located in the Sukabumi 

Regency, near the south coast of West Java Province, 

Indonesia. Figure 1 shows the Sukabumi Regency’s 

relative position and the exact position. Geologically, 

the northern part of the Sukabumi area is dominated 

by alluvium deposits and young volcanic deposits of 

the Quaternary Age. Considering their alluvial nature, 

the geologically young and unconsolidated soils 

should support productive aquifer potential in these 

areas. On the other hand, a high-water table might also 

leave the area prone to flooding without proper 

stormwater management. As the Sukabumi Regency is 

situated in a tectonically active region between the 

Indo-Australian and Eurasian plates, fractured tertiary 

rocks and volcanic structures may lead to amplified 

risk of seismic potential. The groundwater hydraulic 

head especially that from confined aquifers, is harder 

to qualitatively predict, as the fragility to seismic 

activities could coerce the aquifers to karsting and 

perching exposure. 

 

 
 

Figure 1. The monitoring well in Bojong District, Sukabumi Regency, Indonesia 

 

The geographical coordinates of the Bojong 

monitoring well are 106.82°E and 6.96°S. The 

planned design of the well is shown in Figure 2(a), 

where the borehole was drilled to a depth of 120 m. As 

illustrated, two types of PVC casing were installed. 

From the surface to a depth of 6 m, a non-perforated 

PVC pipe was used and reinforced with cement 

grouting. From 6 m down to 120 m, a perforated PVC 

pipe was installed to allow groundwater to enter the 

well. The perforated section was surrounded by 

gravel, sized 0.50-1.00 cm, to ensure the pipe 

remained stable and properly positioned within the 

borehole. During the drilling process, geophysical 

logging was conducted to determine the resistivity 

profile and classify subsurface lithology down to 120 

m. Based on resistivity values, the subsurface 

materials can be categorized as tuff (1-10 Ω.m), 

tuffaceous sand (10-50 Ω.m), and gravel (50-100 Ω.m) 

(Palacky, 1998; Telford et al., 1990). The resulting 

lithological classification is presented in Figure 2(b), 

which shows that the subsurface is predominantly 

composed of tuff layers. Geo-electric measurements 

further indicate that the monitoring well intersects a 

shallow aquifer between depths of 3 and 30 m.
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Figure 2. (a) Well construction design plan and (b) the soil stratigraphy of the Bojong Site 

 

2.2 The GLOW system 

The Aqua TROLL 500 sensor was selected for 

its proven effectiveness in monitoring water quality 

parameters (Acrohm, 2020; Snow et al., 2020). It 

comes in two main sondes, vented and non-

pressurized, whose specifications for measuring water 

quality parameters are presented in Table 1. Both 

sondes were installed at a depth of 30 meters, situated 

in the tuff layer in the well. The soil layer is 

characterized by soft, porous volcanic rock (Asniar et 

al., 2019), facilitating groundwater flow around the 

sondes. Nevertheless, the tuff layer is less permeable 

than the gravel layer (Siegesmund et al., 2023), 

resulting in more stable concentrations of water-

quality parameters within the well compared to those 

in the gravel layer. This consideration formed the 

primary basis for selecting a depth of 30 m as the 

installation level for both sondes. A gateway panel 

was also installed with a protective box, which 

safeguards the internal components from external 

elements such as extreme weather conditions and 

insects. A weather sensor is also integrated into the 

GLOW system to monitor ambient air temperature. 

The system is programmed to record all parameters at 

10-minute intervals. It has been maintained and 

calibrated monthly from June 2023 to March 2024. 

 
Table 1. The Aqua Troll 500 sensor specifications (Acrohm, 2020) 

 

Parameter Accuracy Range Methodology 

EC ±0.5% of reading plus 1 μS/cm* 0 to 350,000 µS/cm Std. Methods 2510, EPA 120.1 

TDS - 0 to 350 ppm - 

Salinity - 0 to 350 PSU Std. Methods 2520A 

pH ±0.1 pH units 0 to 14 pH units Std. Methods 4500-H+, EPA 150.2 

Temperature ±0.1ºC -5 to 50ºC EPA 170.1 

 

Within the box of the gateway panel, several 

components are installed to enable data visualization, 

sensor calibration, and automated data uploading to 

the website server. During the initial testing period, the 

system was powered by the state electricity grid (220V 

AC). This power was stored in an uninterruptible 

power supply (UPS) and then converted to 12V DC to 

meet the system’s operational requirements. A 

supporting 18 V DC solar panel was integrated, with 

its output regulated to 12 V DC via a 0.50. A solar 

charge controller (SCC). Unstable power supply may 

cause sudden spikes in the sensor readings. Therefore, 

(a) (b) 
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all sensor outputs must be verified manually before 

being accepted as valid final data. Wi-Fi connectivity 

is established to facilitate real-time data transmission. 

As a contingency measure, flash drives are employed 

for local data storage in the event of transmission 

failures. A complete schematic diagram of the GLOW 

system is presented in Figure 3, while the installed 

system is shown in Figure 4. 
 

 
 

Figure 3. The schematic diagram of the GLOW system 

 

  

  
 

Figure 4. The installed GLOW system at the Bojong Site 
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2.3 Conventional monitoring of water quality 

parameters 

In conventional monitoring, water samples are 

assessed using in-situ tools based on established 

physical principles (YSI Inc, 2021). The groundwater 

level within the well fluctuated between depths of 7 

and 10 m; therefore, water sampling was conducted 

within this interval. As shown in Figure 2(b), the 

groundwater is hosted within the tuff and tuffaceous 

sand layers. Although the water sampling depth and 

the sensor installation depth differ, the surrounding 

lithological units at these elevations are comparable. 

This approach was adopted to minimize variations in 

groundwater quality concentrations, as discussed in 

the previous section. pH is measured using an ion-

selective electrode (ISE), with an accuracy of ±0.2. 

Water temperature is monitored using a thermistor, 

typically covering a range from -5°C to 70°C, with an 

accuracy of ±0.2°C. EC is determined via a 

conductivity electrode sensor (conductometry), 

operating within a range of 0 to 200 μS/cm and with 

an accuracy of ±0.5%. Salinity and TDS are not 

measured directly but are calculated from EC values 

using the Practical Salinity Scale 1978 (PSS-78) and 

an empirical conversion factor, respectively. 

 

2.4 Statistical methods 

This study employed three methods to assess 

the performance of the GLOW system: normality 

tests, non-parametric statistical methods, and Bland-

Altman plots. The normality test was used to evaluate 

the sensor’s data distribution. One commonly used 

normality test is the Kolmogorov-Smirnov test, which 

is suitable for large sample sizes (n>5,000) (Ghasemi 

and Zahediasl, 2012). The characteristics of the 

Kolmogorov-Smirnov statistical test are well suited to 

this study, as the dataset analyzed can comprise tens 

of thousands of observations for a single parameter. If 

the p-value generated by the Kolmogorov-Smirnov 

test is less than 0.05, the data are considered not 

normally distributed. 

When data are not normally distributed, non-

parametric statistical methods are more appropriate for 

evaluating accuracy (Holmes, 2020). One such 

method is the Wilcoxon Signed-Rank Test, which 

assesses whether the differences between paired 

observations are statistically significant. The 

Wilcoxon Signed-Rank Test is specifically designed 

for paired observations collected at corresponding 

time points. Moreover, since it is based on median 

differences rather than means, this method is more 

robust to outliers and non-normal data distributions. 

Like the normality test, the Wilcoxon Signed-Rank 

Test evaluates its difference using p-values. If the p-

value in the Wilcoxon Signed-Rank Test is greater 

than 0.05, the parameter does not differ significantly. 

Since this study aims to evaluate the performance of 

the GLOW system, the laboratory-based 

measurements are considered the reference or “true” 

values. 

Finally, Bland-Altman plots were employed to 

visually examine the agreement between the sensor-

based and laboratory-based data at corresponding time 

points. These plots help identify the number of data 

points within an acceptable range, commonly defined 

as within 95% of the reference range (Mansournia et 

al., 2021). This analysis provides insight into the 

extent to which the sensor-based data either 

underestimates or overestimates the laboratory-based 

data. This method is highly relevant for 

instrumentation and sensor studies, as sensors may 

exhibit small but consistent differences that can be 

statistically significant yet remain acceptable from an 

operational perspective. 

 

3. RESULTS  

3.1 The GLOW’s reading 

The 10-minute interval sensor data were 

aggregated into daily averages before being plotted 

with the laboratory-based data. Sensor readings and 

laboratory analyses are divided into two periods. The 

first period, covering both sites, spans from 27 June 

2023 to 14 November 2023, as presented in Figure 5. 

The second period extends from 29 January 2024 to 15 

March 2024, as illustrated in Figure 6. As previously 

mentioned, this separation was necessitated by a 

maintenance interval caused by power fluctuations in 

late November 2023. Another distinguishing factor 

between the two periods is that the GLOW system 

operated solely on the state electricity grid during the 

first period. In contrast, it was powered by combining 

a solar panel system and the state electricity grid in the 

second period. 
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Figure 5. Time series of water quality parameters during the first monitoring period 

 

 
 
Figure 6. Time series of water quality parameters during the second monitoring period 

 

During the first period, a three-day data loss 

occurred in early October 2023. The data loss could 

not be recovered due to a complete shutdown of the 

GLOW system. As shown in Figure 5, the sensor 

readings for the five water quality parameters appear 

to be sufficiently accurate, although pH, salinity, and 

EC tend to be slightly overestimated. This discrepancy 

may also be attributed to the fact that the water 

samples were taken from a shallower depth, 

potentially resulting in higher laboratory-based values 

than sensor readings. Notably, the TDS parameter 

exhibited the most accurate agreement between the 

two data sources. In the second period, a one-day data 

loss still occurred at the beginning, as shown in   

Figure 6. Although data loss persisted, the duration of 

sensor data unavailability was significantly reduced. 
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The percentage of system uptime during both 

monitoring periods was quantified by calculating the 

difference between the total monitoring duration and 

the system downtime, divided by the total monitoring 

period. During the first monitoring period, the system 

experienced three days of downtime over 140 days of 

observation, while during the second monitoring 

period, one day of downtime occurred over 46 days of 

monitoring. Based on these values, the system uptime 

for the first and second monitoring periods was 

97.86% and 97.83%, respectively. Nevertheless, the 

GLOW system can still be further improved to ensure 

a more stable and continuous power supply. 

Based on the visual inspection of the time-series 

results from both monitoring periods, the sensor-

generated data can be considered sufficiently reliable. 

One or two parameters exhibited noticeable 

fluctuations, which posed challenges for data 

validation; however, highly fluctuating readings were 

carefully filtered prior to analysis to ensure data 

quality. Several field improvements were 

implemented, including the installation of a solar 

panel to supplement electricity demand and the use of 

an uninterruptible power supply (UPS) to stabilize 

grid-supplied power. Despite these efforts, power 

instability was not fully resolved, as the addition of 

only one solar panel during the second monitoring 

period was insufficient to meet the system’s energy 

requirements. Another limitation of this study relates 

to its location in relatively underdeveloped areas with 

limited internet connectivity, which occasionally 

disrupted data transmission to the web server. To 

mitigate this issue, flash drives were employed for 

local data storage, as described in the previous section.  

 

3.2 Outcomes of statistical analysis 

A Kolmogorov-Smirnov test for normality was 

applied to the sensor-based data with a temporal 

resolution of 10 minutes, and the results are presented 

in Table 2. Since all water quality parameters have a 

p-value of 0, the parameters are stated as not normally 

distributed. These findings indicate the Wilcoxon 

Signed-Rank Test is a suitable method for subsequent 

analysis. The results of the Wilcoxson Signed-Rank 

Test are shown in Table 3. Most parameters show no 

significant difference between the GLOW system and 

the laboratory-based data. The parameters with 

significant differences are TDS and salinity. However, 

one thing that might be considered is that our  

method’s precision in measuring the salinity is 

relatively low. The salinity value can only be detected 

with one significant number, either 0.20 or 0.30. This 

condition is undoubtedly affecting the Wilcoxson 

Signed-Rank Test results. 

 
Table 2. The Kolmogorov-Smirnov test results 

 

Parameter KS Statistic p-value 

pH 0.23 0 

Salinity 0.19 0 

TDS 0.46 0 

EC 0.20 0 

Water Temp. 0.47 0 

 
Table 3. The Wilcoxson Signed-Rank test results 

 

Parameter Number of data used p-value Remarks 

EC 8 0.25 There is no significant difference 

pH 8 0.08 

Water Temp. 8 0.20 

TDS 8 0.02 There is a significant difference 

Salinity 8 0.02 

 

Next, the differences between the two types of 

data were visualized using the Bland-Altman Plot, as 

presented in Figure 7. The outcomes of these plots are 

consistent with those obtained from the Wilcoxon 

Signed-Rank Test. In the study location, as shown in 

Figure 7, the pH, EC, water temperature, salinity, and 

TDS parameters exhibited mean differences of 0.19, 

8.45 μS/cm, -0.34°C, 0.02 PSU, and 0.01 ppm, 

respectively. Despite being identified as having 

significant differences, the Bland-Altman plots of 

salinity and TDS parameters are still acceptable. 

Furthermore, all the sensor-based data remained 

within a safe reference range. These small differences 

suggest that, despite some inconsistencies, the GLOW 

system remains reliable for real-time groundwater 

quality monitoring purposes. 

Despite the operational challenges encountered 

in the field, the sensor-based data demonstrated 
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sufficient accuracy in providing reliable real-time 

measurements of groundwater quality parameters. The 

results of the Wilcoxon Signed-Rank Test for all 

parameters were statistically promising, except TDS 

and salinity. Furthermore, the Bland-Altman plots 

provided a complementary assessment, showing that 

all paired sensor and laboratory measurements for 

each water quality parameter fell within the 95% limits 

of agreement, indicating acceptable agreement 

between the two methods. In addition, this study was 

limited to eight water sampling events conducted over 

the eight-month system testing period. With such a 

small sample size, hypothesis-testing methods may 

place excessive emphasis on statistical significance 

and may not fully reflect practical sensor performance. 

Consequently, agreement-based approaches, such as 

the Bland-Altman limits of agreement, provide a more 

appropriate framework for evaluating sensor 

reliability. To strengthen future validations, more 

frequent or extensive laboratory measurements are 

recommended to better support the assessment of 

sensor-based data.  

 

 
 
Figure 7. Bland-Altman Plots for each water quality parameter 

 

4. DISCUSSION 

The addition of one solar panel during the 

second monitoring period did not result in a significant 

improvement in the stability of the electricity supply. 

During this period, the system employed a 0.5 A SCC, 

for which the calculated power generation was only 

approximately 30 Wh per day. In contrast, the GLOW 

system requires 54.72 Wh per day to operate reliably. 

In evaluating the net energy balance between power 

consumption and power generation, state electricity 

was excluded from the analysis because frequent 

power outages rendered it unreliable. As the SCC 

capacity remained at 0.5 A, the addition of an extra 

solar panel did not increase the effective power output. 

Instead, increasing the SCC current rating represents a 

more viable solution. Therefore, an energy budget 

analysis comparing power consumption and power 

generation was conducted, as presented in Table 4. In 

this analysis, the solar panel was assumed to charge 

the battery for an effective duration of 5 hours per day. 

Power generation was estimated for SCC capacities of 

1.0 A, 1.5 A, and 2.0 A. The results indicate that the 

system’s energy demand can be met when an SCC 

with a capacity of at least 1.0 A is employed. However, 

as a precautionary measure, an SCC capacity of 1.5-

2.0 A is recommended to account for external factors 

such as prolonged cloudy or rainy conditions. This 

configuration is expected to provide a stable 12 V DC 

output to sustain continuous system operation. 

The results demonstrate that real-time 

groundwater quality monitoring using IoT-based 

systems is technically feasible and potentially scalable 

to other developing regions. However, a careful 

assessment of site-specific conditions is essential to 

ensure that the data produced is sufficiently reliable 

for decision-making. Collaborations with local 
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stakeholders could support such systems’ long-term 

sustainability and scalability. This study provides a 

foundational case for developing a nationwide 

groundwater monitoring network, which could inform 

both short-term groundwater pollution alerts and long-

term aquifer management strategies. Future efforts 

should focus on developing sensors capable of 

measuring additional chemical parameters, 

particularly nitrogen and phosphorus compounds. 

These parameters serve as direct indicators of water 

quality degradation, as their concentrations are strictly 

regulated to ensure the safety of human consumption. 

Including such indicators would significantly enhance 

the comprehensiveness of the monitoring system and 

support early detection of nutrient pollution, 

particularly in areas influenced by agricultural runoff 

or domestic wastewater discharge. 

 
Table 4. Energy budget comparing power consumption and power generation 

 

Parameter Power 

consumption 

Power generation 

SCC with capacity 

0.5 A 1.0 A 1.5 A 2.0 A 

Voltage (V) 12 

Electricity Current (I) [A] 0.19 0.50 1.00 1.50 2.00 

Power (P) [W] 2.28 6.00 12.00 18.00 24.00 

Time [hour] 24.00 5.00 

Energy [Wh] 54.72 30.00 60.00 90.00 120.00 

Net energy [Wh] -24.72 5.28 35.28 65.28 

Suffice? Not Sufficient Sufficient Sufficient Sufficient 

 

One of the parameters that can be directly 

compared with the previous study by Yoon et al. 

(2024) is EC. As mentioned earlier, sensor-based EC 

values in the prior study were 1.1 times higher than 

those obtained from laboratory measurements, with a 

reported correlation coefficient of 0.3834. However, 

this result alone does not provide sufficient evidence 

regarding whether the recorded values fall within a 

statistically acceptable confidence interval. In the 

present study, as shown in Figure 7, all paired 

comparisons between sensor- and laboratory-based 

EC measurements fall within the 95% confidence 

interval, with an average error of only 8.45 μS/cm. 

These finding underscores progress in the 

implementation of groundwater monitoring systems. 

Furthermore, other parameters showed a similar trend, 

with consistently small mean error values. 

 

5. CONCLUSION  

The groundwater live observation for water-

quality (GLOW) system was successfully 

implemented in the Bojong study area to continuously 

monitor five groundwater quality parameters: pH, EC, 

temperature, salinity, and TDS. Comparative analysis 

between sensor-based and laboratory-based 

measurements demonstrated acceptable agreement, 

with most parameters showing no statistically 

significant differences based on the Wilcoxon Signed-

Rank Test. The Bland-Altman plots further confirmed 

the small magnitude of discrepancies, with mean 

differences of 0.19 for pH, 8.45 μS/cm for EC, -0.34°C 

for temperature, 0.02 PSU for salinity, and 0.01 ppm 

for TDS, underscoring the reliability of the system in 

capturing key physicochemical dynamics of 

groundwater. Nonetheless, data loss persisted even 

after solar panel installation, indicating insufficient 

power availability and the need for a more robust 

solution, such as increasing the SCC capacity to 1.5-

2.0 A. Despite this limitation, the GLOW system 

proved to be an effective tool for real-time 

groundwater monitoring and holds promising 

potential for early detection and management of water 

quality degradation in Indonesia. 
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