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Abstract 
In this paper, a Synchronous Motor position control system using a Discrete Sliding mode Model 
Following Control or DSMFC is presented to achieve accurate tracking in the presence of external load 
disturbances and plant parameter variations. The DSMFC algorithm uses the combination of model 
following control and sliding mode control to improve the dynamics response for command tracking. 
A design procedure is developed for determining the control function, the coefficients of the switching 
plane and the integral control gain. The control function is derived to guarantee the existence of a 
sliding mode. The chattering phenomenon is significantly reduced adopting the switching gain with 
the know parameters of the system. A DSP-based synchronous motor position control system using 
the DSMFC approach is illustrated. Experimental results indicated that DSMFC system performance 
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 with respect to the sensitivity to parameter variations is greatly reduced. Also, its can achieve a rather 

accurate tracking and is fairly robust to load disturbances.  
Keyword: Synchronous Motor: Robust Control: Sliding Mode Control: Model Following Control 
_______________________________________ 
* Corresponding author e-mail: pp2552@hotmail.com, phongsak.pha@rmutr.ac.th 
 

1. Introduction 
Recently, synchronous motors have been 

widely used as actuators for motion control and 
direct-drive applications especially in hostile 
environments. They have many advantages 
include higher torque/weight ratio, high torque 
capability, freedom of brush maintenance, lower 
rotor moment of inertia, better heat dissipation, 
long life operation, compact structure and lower 
weight as compared with DC motors and 
permanent magnet stator DC commutator motors 
having same output capacity[1]. The 
synchronous motor is preferable for certain high 
performance servo applications such as machine 
tools, industrial robots and aerospace actuators. 
The proposed scheme for a synchronous position 
control system, as shown in Fig. 1, consists of an 
inner loop for inverter switching and an outer loop 
for generating the command input. However, The 
dynamic position control of servo systems with 
unknown external load disturbances, and plant 
parameter variations are very complex and highly 
nonlinear. Moreover, the machine parameters 
(resistance and inductance) and load 
characteristics are not exactly known, which may 

vary during motor operation or processes with 
parametric uncertainty, where the conventional 
linear controller design may not assure 
satisfactory performances.  

Variable Structure Control (VSC) or Sliding 
Mode Control (SMC) is invariant to system 
parameter variations and disturbances when the 
sliding mode occurs. Although the conventional 
VSC approach has been applied successfully in 
many applications [2-5], it cannot perform well in 
servo applications where the system is designed  
to track a command input. In order to improve 
tracking performance, the Integral Variable 
Structure Control or IVSC approach, presented in 
[6-7], combines an integral controller with the 
conventional VSC. The IVSC approach can 
eliminate the steady tracking error due to a step 
command input. However, IVSC yields the error 
when the system has to follow a changing 
command input, e.g., a ramp and sinusoidal 
inputs. Note that, this kind of input is generally 
encountered in servo applications. The Modified 
Integral Variable Structure Control or MIVSC 
approach, proposed in [8-9], uses a double 
integral action to solve this problem. Although, 
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 the MIVSC method can give a better tracking 

performance than the IVSC method does at 
steady state, its performance during transient 
period needs to be improved. 

 
 

 
 
 
 
 

Figure 1  Block diagram of DSMFC synchronous 
motor position control systems. 

 
The design and implementation of a 

synchronous motor position control systems 
using DSMFC approach is described. This 
approach, which is the extension of MIVSC 
approach and uses the feedforward path to 
improve the tracking performance, incorporates 
a model reference to improve the dynamics 
response for sinusoidal command tracking. The 
advantage of this approach is that the error 
trajectory in the sliding motion can be prescribed 
by the design. Also, it can achieve a rather 
accurate servo tracking and is fairly robust to 
plant parameter variations and external load 
disturbances. As a results, the tracking 
performance can be remarkably improved. 

 

2. Design of DSMFC System 
The structure of DSMFC system is shown in 

Fig. 2. It combines the conventional VSC with a 
double-integral compensator, a feedforward path 
from the input command, a reference model and 
a comparator.  

 

 
 
 
 
 
 

Figure 2  The structure of DSMFC system. 
 

Let the plant be described by the following 
equation: 

)1( += ippi xx ;i=1,,n-1, )(
1

tfUbxax pppi

n

i
pipn −+−= 

=

   (1)                         

                       

where api  and  bp  are the plant parameters; f(t) 

are disturbances; Up is the control input of the 
plant.  

The reference model is represented by 

)1( += immi xx  ;i=1,,n-1, 
mmmi

n

i
mimn Ubxax +−= 

=1

        (2)     
                                                                                                                

where Um is the input command of the system. 
Defining    mipii xxe −=  ;(i=1,,n) and subtracting 

(2) from (1), the error differential equation is 
 

          
1+= ii ee  ;i=1,,n-1,  

)()(
11

tfUbUbxaaeae ppmmmipi

n

i
mii

n

i
pin −−+−−−= 

==

 .              (3)                               
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 Using the SMFC approach [9, 14] to the error 

dynamics in order to synthesize the control 
signal, Up and assuming the asymptotic 
divergence of the error to zero, the DSMFC  
system in Fig. 2 can be described as   
 

       
1ez −= ,

1+= ii ee ;i=1,,n-1,  

)()(
11

tfUbUbxaaeae ppmmmipi

n

i
mii

n

i
pin −−+−−−= 

==

       (4)     

                                                                                                                                                                                                     

where Up is the control function.    
Consider the discretization of the system given 

in (4). If the derivative is approximated by the 
forward difference as [10]      

  
T

teTte
te ii

i

)()(
)(

−+
=       (5) 

where T  is the sampling interval, then the 
discretized version of the system (4) can be 
represented as: 
 

 )()()1( 1 kTekzkz −=+                                        (5a) 

)()()1( 1 kTekeke iii ++=+  ;i=1,,n-1                     (5b) 

)()()()()()()1(
11

kTfkUTbkUTbkxaaTeaTkeke ppmmmipi

n

i

mii

n

i

pinn −−+−−−=+ 
==



(5c)             
 

The switching function,   is given by 

 

)()]()()()([)(
2

2111 keckrkzKkzKkeck i

n

i

i
=

+−−−=       (6) 

                            ;Ci>0=constant, Cn=1.       

In the discrete variable structure control 
system, the control input is computed at discrete 
instants and applied to the system during the 
sampling interval so that an ideal sliding motion 

cannot be obtained [11-12]. The conditions 
ensuring the existence and reachability of a 
nonideal sliding motion are: 

0  )1()( + kk                         (7a) 

2
  )1(


 + k                          (7b) 

 

where )1( )1( +=+ kk  ; )(k  and ξ is a 
small positive number. The control function can 
be chosen to guarantee that the inequalities (7) 
are satisfied, so a sliding mode motion control 
within the range of ξ will appear or  )(k . 

Design of such a system involves (1) the choice 
of the control function Up(k) to guarantee the 
existence of a sliding mode control, (2) the 
determination of the switching function )(k and 
the integral control gain KI such that the system 

has the desired properties and (3) the elimination 
of chattering phenomena of the control input by 
using the smoothing function. 

A. Choice of control function 
The control signal can be determined as 

follows. From (5) and (6) [13], we have 
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           (8) 

 

Let     api = api
0 + api    ;i =1,,n   

and     bp = bp
0  + bp    ;bp

0 > 0,   bp > - bp
0 

where   api
0  and  bp

0  are nominal values; 
api and  bp  are the associated variations.  
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 Let the control function Up(k) be decomposed 

into  
     )()()( kUkUkU seqp +=                       (9) 

 

where the so called equivalent control Ueq(k) is 
defined as the solution of (9) under the condition 
where there is no disturbances and no parameter 
variations, that is 0 )1( =+ k , f(k)=0, api=api

0,  

bp=bp
0 and Up(k)= Ueq(k).  

 

This condition results in  
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In the sliding motion, 0 )( =k , one can obtain 
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Substitution of (11) into (10) yields 



0
1

2

2111

0

1

1

1

1

0
1

2

1211

/)](

))()()()(()(

)()()(

)()())( )( ()(

pi

n

i

i

mpni

mmmipi

n

i

mi

n

i

ipii

n

i

ieq

bkec

kUkzKkzKkecac

kUbkxaaT

keaTkecTkzKkzKckU





+

−+−−+

+−−





+−+−=







−

=

−

=

−

=

−

−

−





           

(12) 
The function Us(k), is employed to eliminate the 

influence due to api, bp and f(k) so as to 
guarantee the existence of a sliding mode 
control, is constructed as 
 It is required to guarantee the existence of the 
sliding mode. This function is constructed as 

1

2
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                                                                       (13)                
 Where : 
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Substitute (7) and (9) into (6), to obtain  
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In order for (7) to be satisfied, the following 
conditions must be met, 
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where       i=1,,n-1,   c0 =  0 
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 For satisfying (7), if the sampling interval T is 

enough small, one can be obtain: 
 

111 ML  ,    
iii ML    ;i = 2,,n-1                (16a) 
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in  which   γi  ;i=1,,n+1,  are positive constants   
and   

2/11  ++ +n . 

From (15) and (16), if the T is enough small, 
one can obtain the bound of 

i  and 
i  as : 
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From (17), the upper and low bounds of the 
i , 

can be obtain 

iii ML ˆˆˆ    ,i=1,,n+1                       (19) 
Where ),max(ˆ
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B. Determination of switching plane and 
integral control gain 

In the above subsection it has been proved that 
if the solution of the ideal sliding motion is 
asymptotically stable, it will close to the solution 
of the non-ideal sliding within the range of ξ. Thus 
one can choose the switching plane and integral 
control gain of the basis of the ideal sliding 
motion. While in the ideal sliding motion, the 
system can described by (4) can be reduced to 
[14-15]: 
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The characteristic equation when the system 
is on the sliding surface can be shown as 
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The characteristic equation of the system (21) 
is 
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 Since this characteristic equation is 

independent of the plant parameter, the DSMFC 
approach is robust to plant parameter variations. 
Further, one can choose the coefficients of the 
switching function and the integral control gain by 
the pole assignment technique such that this 
sliding motion has desirable properties [13]. 
Let z-1/T = η. Then (22) can be rewritten as 
 

ηn + Cn-1ηn-1 + … + C1K1η+ C2K2 = 0           (23) 
 

The transient response of the system can be 
determined by suitably selecting the poles of the 
transfer function (21). 
 

     Let     ηn + 1ηn-1  + … + n-1η+ n = 0                (24) 
 

be the desired characteristic equation (closed-
loop poles), the coefficient C1,C2 and K1, K2 can 
be obtained  by  
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C. Chattering Considerations 
Normally, the sign function sign () given by 

(18), will give rise to chattering in the control 
signal. In order to reduce the chattering, the sign 
function can be replaced by the continuous 
function [13], given by 
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where )(10 kz += ; 0 and 1 are positive 

constants. 

3. Dynamics modeling of synchronous motor   
The synchronous motor considered is a 3-

phase permanent magnet synchronous motor 
with sinusoidal back electromotive force (EMF) as 
shown in Fig. 3. The stator windings are identical, 
displaced by 120 degrees and sinusoidally 
distributed. The voltage equation for the stator 
windings can be expressed as  
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(26) 
where 

  vas, vbs, vcs is the applied stator voltage; 
  ias, ibs, ics is the applied stator currents; 
       Rs is the resistance of each stator winding; 
       Ls is the inductance of the stator winding; 
       r is the electrical motor angular velocity; 
       r is the electrical rotor angular 

displacement and   

       ke   is the voltage constant. 
 

The electromagnetic torque can be expressed 
as 
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(27) 
 

where    kt     is the current constant and  
  P    is number of pole. 
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 The torque, velocity and position may be 

related by 

Lrm
r

me T
P

B
dt

d

P
JT +








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






= 

 22              (28a) 

dtrr =                                                 (28b) 









=

P
rm

2
                                               (28c) 

 

where   Jm is the inertia of the rotor; 
   Bm is the damping coefficient; 
   TL is the load torque and 
   m is the mechanical angular 
position of rotor. 
 

 

 

 
 
 
 
 
 

Figure 3  The synchronous motor modeling. 
 

A motor driver is a sinusoidal current controlled 
pulse width modulation (PWM) voltage source 
inverter (VSI) as shown in Fig. 4, consisting of the 
DC-SIN transform, current compensator and 
PWM-VSI circuits. The mode of the PWM-VSI 
circuit can be simplified as a constant gain 
KA=Vdc/2Ed where Vdc is the DC supply voltage in 
the VSI and Ed are the triangular peak values in 
the PWM. 

The current loop is designed to achieve fast 
and accurate current tracking. In this condition, 
the mode of the current-controlled loop can be 

simplified to a single- input single-output (SISO) 
system as shown in Fig. 5, where KA and gI are 
the constants relating to the inverter and the 
current control loop.  
 

 

 
 
 
 
 

Figure 4  The current-controlled PWM-VSI. 
 
 

 

 

 

Figure 5  Dynamic SISO model of the 
synchronous motor. 

 

4. The design of DSMFC system for position 
control of synchronous motor 

 The implementation of DSMFC system is 
shown in Fig. 6 and its block diagram is shown in 
Fig. 7. The system contains a synchronous motor, 
a power circuit driver and the DSMFC. The 
parameters of the synchronous motor and the 
DSMFC controller are shown in Table 1 and  
Table 2, respectively. 

 
 
 



76 

 

FEAT JOURNAL 
July – December 2024; 10(2) : 68 - 80 
  

 
 
 
 
 
 
 
Figure 6  The synchronous motor with DSMFC. 

 
 

 
 
 
 
 
Figure 7  The DSMFC for the synchronous motor 

system. 
The simplified dynamic model of the 

synchronous motor for position control can be 
described as 

21 pp xx = , 
32 pp xx = , )(3322113 tfUbxaxaxax ppppppppp −+−−−=   

(29)                                           
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mpx =1

  is the mechanical angular angle of 
the rotor; 
      

cmU =   is desired position and 
            UP  is the control input of the plant. 

The reference model is chosen as 
 

21 mm xx = ,
32 mm xx = ,

mmmmmmmmm Ubxaxaxax +−−−= 3322113
 .  

(30) 
 

Defining    mipii xxe −= ;(i= 1,2,3), the DSMFC 
system can be represented as 
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Following the design procedure we have the 

control law to implement as  
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(32) 
The switching function, (k) from (6), is given 

by 
)()())()()()(()( 3222111 kekeckrkzKkzKkeck ++−−−=     

(33) 
Table 1.  
Parameter of the synchronous motor 

Parameter Value Dimension 

P 4 pole 

Rs 0.8  

Ls 0.005 H 

KA 6 dimensionless 

gI 4.5 dimensionless 

Bm 0.000 N-m/s 

Jm 0.00016 Kg-m2 

Ke 0.178 V-s/rad 

Kt 0.182 N-m/A 
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 Table 2.  

Parameters of the DSMFC controller 

 Parameter Value 

1, 2 -20.1432.78i 

3, 4 -32.58, -18.95 

C1, C2 1,895.48, 125.27 

K1, K2 42.38, 84.63 

1, 2 -1, -0.1 

3, 4 -0.0005, -0.001 

am1, am2 15,000, 1,320 

am3, bm 52, 15,000 

ap2
0, ap3

0 13,725.26, 2,684 

bp
0 63,426.97 

0, 1 1, 150 

 

 
5. Experimental results and discussion 

The experimental results of the dynamic 
response are plotted in Fig. 8 and Fig. 9. In order 
to evaluate the tracking performance of the 
DSMFC approach for both steady and transient 
periods, a sinusoidal command is first introduced 
for certain period of time before it is changed 
abruptly to a constant value. In addition the 
results are compared with those obtained from 
MIVSC and IVSC approaches under the same 
testing conditions. It is clear from the figures that 
the DSMFC can follow the command input 
extremely well during steady state as well as 
transient periods. That is, it converges very fast 
to zero but the other give rise to steady state 
errors. Although MIVSC seems to track well 
during the steady state of the sinusoidal 
command input, it gives a noticeable overshoot 

an tracking error during the input change. Among 
them, IVSC performs poorly, it gives a 
substantially sustained tracking error. 
Furthermore, experimental results demonstrate 
that the developed DSMFC scheme has a much 
better performance related to reduction in steady 
state error, faster settling time, smaller overshoot 
in the position response and much better 
disturbance rejection capabilities.  
 
6. Conclusions 

In this paper, the DSMFC approach is 
explained and presented. It exhibits good feature 
of the conventional IVSC and MIVSC controller, 
such as better performance to reduction in 
steady state error, faster settling time, smaller 
overshoot in the position response, robustness in 
the face of model error and parameter variations. 
The application of DSMFC to the synchronous 
motor position control system has illustrated that 
the DSMFC method can improve the tracking 
performance by 72% and 86% when compared 
to the MIVSC and IVSC approaches, respectively. 
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Figure 8  Comparison of ramp position tracking 
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Figure 9  Comparison of position tracking errors 
and control signal. 
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