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Abstract 

This study employs a single-objective differential evolution optimizer for surrogate-assisted 
optimization. A separator plant is modeled using five surrogate approaches for process optimization. 
The optimization objective is defined as minimizing starch loss relative to the Baume output of starch 
milk, while adhering to the lower and upper bounds of design parameters, including pulp input, Baume 
input, and regulated valve flow control. These bounds also support the plant controller's original design 
parameters. The optimal parameters were implemented and their real and numerical performances 
compared to validate the proposed method. The results demonstrate that the suitable surrogate model 
for the separator plant can be identified and that the optimal characteristics can be achieved, 
providing practical benefits to the process. 
Keywords: Tapioca starch washing process: surrogate model   
_______________________________________ 
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1. INTRODUCTION 
Air and water pollution are common 

consequences of processing agricultural 
products, particularly in the tapioca starch 
industry. Wastewater from tapioca starch 
producers, which often seeps into public canals 
and rivers, has become a significant contributor 
to Thailand's pollution problem. During large 
volume of wastewater treatment, carbon dioxide 
(CO₂) and methane (CH₄) are released, further 
harming the environment. Consequently, it is 
crucial to reduce and regulate the volume of 
these wastewater and harmful gases to mitigate 
their impact effectively.  

In this instance, light starch milk spills during 
the process are the primary source of 
wastewater. One of the main points of significant 
leakage in the tapioca starch production process 
is the separator. This study aims to minimize the 
amount of starch released into wastewater, 
thereby reducing pollution caused by starch loss 
and improving production efficiency in the starch 
industry. The separator process is illustrated in 
Fig. 1.  

In the Signal Control and Data Acquisition 
(SCADA) system, process data is controllable, 
observable, and recordable. A mass flow meter, 
located at position 1, measures the density of 
starch loss. Position 2 features a control panel for 

setting parameters, including starch milk input 
flow rate and output starch density. At position 3, 
a proportional valve is installed, equipped with an 
adaptive PID flow controller. This controller 
adjusts its gain dynamically in response to 
changes in the setting input parameters and the 
target output density. 
 

 
 
Figure 1  A separator SCADA and the tapioca 

starch production process 
 
The separation mechanism is highly intricate, 

making the cost of direct mathematical modeling 
prohibitively high. To address this, the surrogate 
technique is employed to assist in the 
optimization process, enabling the determination 
of ideal design parameters to reduce starch loss 
and increase starch density output. This 
technique is commonly used in research to 
enhance industrial production efficiency. 
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 Jin, W. et al. (2022) [10], while optimizing a 

high-temperature reservoir thermal energy 
storage (HT-RTES) system, developed a machine 
learning model comprising a Bayesian search 
algorithm and two deep-layer artificial neural 
network (ANN) models. This approach, which 
accounted for operational scenarios and site-
specific variables, produced more reliable and 
efficient energy storage solutions. 

Chen, X. et al. (2021) [4] enhanced the 
operational performance of fluidized catalytic 
crackers in real-time refinery applications. By 
estimating the load in real time and reducing the 
order of the cracker model, they improved the 
trust region filter optimization process. 

Franzoi, R. E. et al. (2021) [5] integrated 
sequential linear programming techniques, trust 
region methods, and adaptive sampling 
strategies into an optimizer to reduce lag time 
and convergence issues. The performance of the 
adaptive sampling iteration was evaluated using 
a surrogate model of the response system. 

Surrogate models are particularly vital for 
modeling extremely nonlinear plants or machines 
that are prohibitively expensive to simulate. For 
example, Ali, W. et al. (2018) [2] employed an 
RBF-thin plate spline to model the mixed 
refrigerant liquefaction process. Additionally, 
surrogate models can be applied to adaptive 
controller tuning of brushless direct current 

motors for speed regulation using the response 
surface approach (Rojas-López, A. G. et al., 2024 
[7]). 

In numerical simulations for plant modeling, 
high-order spatio-temporal discretization is often 
necessary for highly nonlinear models, such as 
those employed in complex thermo-mechanical 
structure analysis using the finite element method 
(FEM), material characterization, tribological 
contact, significant deformation, or damage 
scenarios. Bagheri, S. et al. (2021) [3] used RBF 
meta-modeling for these nonlinear FEM 
problems, avoiding the need for direct FEM 
calculations. 

In our work, we utilized five popular surrogate 
models to simulate a real-world plant, aiming to 
optimize the reference parameters of the PLC 
controller. A summary of the five surrogate 
modeling techniques is presented in Section 2. 
Sections 3 and 4 focus on the problem 
formulation and the numerical setup. Section 5 
provides a comparison of the optimization results 
and surrogate modeling outcomes for each 
method. Finally, the conclusions are outlined in 
Section 6. 
 
2. SURROGATE MODELLING  

A separator machine is employed in the starch 
washing process to enhance starch 
concentration and purify starch milk. This phase 
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 of the operation is referred to as the concentration 

stage (see Fig. 3). A nozzle, which uses counter 
wash water for starch purification, is fed with 
heavy starch particles that were casted via 
centrifugal force generated by a series of discs 
attached to a shaft. Once cleaned, the starch 
particles are collected and discharged through 
an outlet pipe. However, the wash water feed 
pressure can lead to contamination and cause 
some starch particles to overflow from the top of 
the separator. 

While computationally expensive 
Computational Fluid Dynamics (CFD) modeling 
can be used to simulate the combined gravity-
centrifugal and washing phenomena, real-time 
testing remains impractical. This is true even 
under conditions where the machine rotates at a 
constant speed with a fixed wash water flow rate. 
Surrogate modeling offers a more efficient 
alternative to state-space or other system 
identification techniques, as it significantly 
reduces the computational effort required during 
the optimization process. 

As noted by Wahid Ali et al. (2018) [2], 
surrogate models transform complex processes 
into reduced-order models, making them an 
attractive choice. This study explored a suitable 
model capable of representing the intricate 
dynamics of the starch washing process. The 
following modeling techniques were applied, with 

much of the detailed methodology and algorithms 
drawn from the work of Alexander I. J. Forrester, 
András Sóbester, and Andy J. Keane (2008) [1]. 
The following is a synopsis of each technique. 

2.1. Through RSM modelling  
Given [𝑋] =  [𝒙1, … , 𝒙𝑛]T    is a matrix of desig

n vector for n sampling points and [𝐹] =

[f1, … , 𝑓𝑛]𝑇 represents a function value correspo
nding to X. The polynomial response surface mo
del (RSM) used to estimate 𝑓̑ can be expressed 
as follows: 

 
  𝑓̑(𝒙) = 𝐱𝜷 + 𝒄                              (1) 

Where x  is all the polynomial terms of vector of 
design variable, 𝜷   is the vector of regression 
coefficients. 

The 𝜷 and 𝒄 can be found as follows; 
 

𝜷 = (𝑿𝑇𝑿)−1𝑿𝑇𝑭         (2) 
𝒄 = 𝑭 − 𝑿𝜷                             (3) 

Where 𝑿 is all the polynomial terms of all 
sampling points. 

2.2. Through RBF modelling  
The RBF (radial basis function) samples a set 

of  [𝑋] with its function [𝐹] . The radial basis 

function model (RBF) is used to estimate  𝑓̑ can 
be expressed as follows  

 
𝑓̑(𝑥) = ∑ 𝐶𝑖𝐾(‖𝑥 − 𝑥𝑖‖)𝑛

𝑖=1                    (4) 
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Where 𝐾 is kernel function. 𝐶𝑖 is an interpolant 

coefficient to be found. By setting the 
interpolation function 𝑓̑(𝑥𝑖) = 𝑓𝑗 , Defining the 
Euclidean distance term ‖𝑥𝑗 − 𝑥𝑖‖ = 𝑟𝑗𝑖 ,  the 
coefficient can be determined. And a matrix form 
of the RBF construction is  
 
[𝐾(‖𝑥𝑗 − 𝑥𝑖‖)]{𝐶𝑗} = {𝑓𝑗}   (5)
  
and 𝐶𝑖 can be found  as  
 
{𝐶𝑗} = [𝐾(‖𝑥𝑗 − 𝑥𝑖‖)]

−1
{𝑓𝑗}    (6) 

 
The radial basis 𝑟𝑗𝑖 ,   can be selected from 

various types, such as Linear spline, Cubic 
spline, Thin plate spline, Gaussian, Multiquadric, 
Inverse quadric, Inverse multiquadric, Bump 
function, or others. It is important to note that the 
radial basis function matrix is symmetric. To 
ensure that Equation 6 has a unique solution, the 
chosen basis function must be non-singular. 

2.3. Through KRG modelling  
The Kriging (KRG) surrogate model is 

constructed using a Gaussian correlation 
function and a polynomial trend model, as 
outlined by M. Kumar et al. [18]. The KRG 
prediction function is defined as: 

 
𝑓̑(𝒙) = 𝑝(𝒙)𝑇𝜷 + 𝝍𝑇𝚿−𝟏(𝑭 − 𝒑𝜷)              (7) 
                
where 

𝜷  represents the regression coefficients, 
𝝍  is the correlation vector between  

𝑥 and each sample point,  
𝚿 is the correlation matrix between sample 

points. 
The KRG correlation function is given by: 
 
  𝜓(𝒙𝑖 , 𝒙𝑗) = 𝑒𝑥𝑝( − (𝒙𝑖 − 𝒙𝑗)

𝑇
𝜽(𝒙𝑖 − 𝒙𝑗)       (8) 

 
where 𝜽 = {𝜃1, 𝜃2, . . . , 𝜃𝑘}𝑇 are the correlation 

parameters, estimated by maximum likelihood. In 
this study, the MATLAB DACE toolbox is used fo
r constructing the Kriging model. 

2.4. Through SVR modelling  
Support Vector Regression (SVR) is a variant of 

Support Vector Machine (SVM) that excels in 
regression tasks due to its strong learning 
capabilities. In SVR, the term "support vectors" 
(SV) refers to the data points closest to the 
regression model's decision boundary, which 
defines the maximum margin. By utilizing an 
optimal decision-making surface, SVR effectively 
separates data points within a specified margin, 
thereby balancing model complexity and 
prediction accuracy. This maximum-margin 
approach also mitigates the risk of overfitting by 
ensuring that the model generalizes well to 
unseen data (Hu A et al., 2023 [6]). 

In simple terms, as described by Alexander I. 
J. Forrester et al. (2008) [1], the SVR predictor 
function can be expressed as: 
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𝑓̑(𝒙) = 𝒘𝑇𝜙(𝒙) + 𝑏      (9) 
Where  

 w  is weighting factor,  
𝜙(𝒙) is mapping function that transforms input 

x into a higher-dimensional feature space, 
b is bias term. 
The weight vector w is found by solving the 

following optimization problem 
 
min:

1

2
|𝒘|2 + 𝐶 ∑ (𝜉𝑖 − 𝜉𝑖

∗)𝑛
𝑖=1                                               (10) 

 
Subject to: 

𝑓𝑖 − 𝑓̑(𝒙) ≤ 𝜀 + 𝜉𝑖 
 

 𝑓̑(𝒙) − 𝑓𝑖 ≤ 𝜀 + 𝜉𝑖
∗ 

 
where 

𝜉𝑖  and 𝜉𝑖
∗ are slack variables for data points 

outside the margin 
C is regularization parameter controlling trade-

off between margin width and prediction error. 
2.5. Through NNB modelling  

 
 
 
 
 
 

Figure 2  A feed-forward 4-6-5-3 network. 
 

Neural network (NN) modeling comprises 
interconnected nodes that mimic the behavior of 

neurons in living organisms. A feed-forward 
multilayer network typically includes input, 
hidden, and output layers, as illustrated in Figure 
2. 

The NN estimation function at the output layer 
is represented as: 
 𝑓̑(𝒙) = 𝒇(𝒁𝒘(𝟐) + 𝒃(𝟐))               (11) 
where the hidden layer output Z is defined as: 
𝒁 = 𝒈(𝒙𝒘(𝟏) + 𝒃(𝟏))               (12) 
 
where 

𝐰(𝟏) and 𝒘(𝟐) are the weight matrices from the 
input layer to the hidden layer and from the 
hidden layer to the output layer, respectively, 

𝒃(𝟏) and 𝒃(𝟐) are bias vectors for the hidden 
and output layers, respectively, 

g and f are the activation functions for the hidd
en and output layers. 

The weights 𝑤 and biases 𝑏 in a neural 
network are optimized through a training process, 
commonly using backpropagation in conjunction 
with an optimization algorithm such as gradient 
descent. During training, the network iteratively 
adjusts these weights to minimize a cost function, 
which quantifies the difference between 
predicted and actual outputs. This adjustment 
allows the network to learn patterns from the 
training data and generalize effectively to unseen 
testing data. 
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 3. PROBLEM FORMULATION 
Between the bent screen, which filters starch 

milk from the extractor, and the fine screen, which 
further refines the milk before it is sent to the 
hydro cyclone for purification, lies the separator 
process used in tapioca starch production (see 
Fig. 1). As shown in Fig. 3, the primary cause of 
starch loss during this separator step is the 
washing process. 

At the top of the separator, a feed pump and a 
proportional flow control valve feed and regulate 
the starch milk coming from the extractor. 
Washing water is introduced from below. The 
dense starch milk is then cleaned, centrifuged, 
and discharged as concentrated starch milk, 
which proceeds to the hydro cyclone process. 
Meanwhile, the light phase discharge is expelled 
as wastewater, and the medium phase waste is 
returned to previous washing stages. 

According to the company's SCADA system, 
the annual starch loss attributed to this light 
phase discharge is approximately 1,000 tons, 
equivalent to a financial loss of 14 million baht 
annually. The factory has a production capacity 
of 220,000 tons of starch per year and consumes 
around 1,000,000 tons of raw tapioca annually. 

To enhance this process, a proportional flow 
control valve can be employed to regulate the 
starch milk intake, thereby reducing significant 
losses. The valve's opening is adjusted based on 

preset parameters and feedback signals from a 
starch density meter positioned in the wastewater 
drain section. The relationship between specific 
gravity and starch density data from the case 
study plant is used to calculate starch loss in the 
drain wastewater. 

To develop a surrogate model for determining 
the optimal input flow settings, the following 
design variables were considered: 

1. Pulp Input (% ml Pulp/ml Starch Milk) 
2. Baume Input (˚Be input) of the starch 

milk feeding into the separator 
3. Flow Rate Allowance (Q in m³/hr.) from 

the valve regulator 
The plant's SCADA system can be utilized to 

collect and monitor these design variables, 
enabling accurate modeling and optimization of 
the process. Note that the pulp input and Baume 
input are collected each hour from two buffer 
tanks before and after the separator process by 
a worker then fill their wet lab data into the 
SCADA. 

The objective function is designed to 
simultaneously: 

1. Maximize the concentration of starch 
(˚Be output) in the discharged starch milk. 

2. Minimize the starch loss (Ls  in grams per 
liter) in the wastewater, as measured by an 
additional density meter installed on the 
wastewater line. 
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 This dual objective ensures an optimized balance 

between product recovery and waste reduction 
in the starch production process. 
 

 
 
 

 
 
 
 
Figure 3  The crossection schematic diagram of 

a separator 
 

Thus, the objective function can be expressed 
as follows: 

Min: 𝑓(𝑋)
𝐿𝑠

°𝐵𝑒 𝑜𝑢𝑡𝑝𝑢𝑡
                                     (13) 

Subject to: 
      0 ≤ 𝑃𝑢𝑙𝑝 𝑖𝑛𝑝𝑢𝑡 ≤ 3 

 3 ≤ ˚𝐵𝑒 𝑖𝑛𝑝𝑢𝑡 ≤ 8 

 130 ≤ 𝑄𝑖𝑛 ≤ 200 

Where 
𝑋 = [𝑃𝑢𝑙𝑝 𝑖𝑛𝑝𝑢𝑡, ˚𝐵𝑒 𝑖𝑛𝑝𝑢𝑡, 𝑄𝑖𝑛]𝑇 is a vector 

of the design variables with constrains.     
      

4. SURROGATE-ASSISTED OPTMIZATION 
AND NUMERICAL EXPERIMENT SET UP 

 Surrogate modeling is essential for 
understanding the system's behavior, especially 
given the complex mechanisms involved in the 
washing process of derived starch milk. Despite 

the intricate dynamics, the optimization process 
is simplified by its single objective function and 
the limited number of design factors.  

In this study, the optimizer used was the Single 
Objective Differential Evolution (SODE). 
Surrogate models, developed using PRS, RBF, 
KRG, SVR, and NNB approaches, were 
employed to approximate the behavior of the 
nonlinear complex plant, reducing computational 
effort. Further research is necessary to evaluate 
which surrogate model provides the most 
accurate tracking of the training dataset and 
yields suitable design parameters for the PLC 
controller.  

SODE, as described by Sujin B. (2013) [9], 
optimizes by iteratively evolving the population 
vector of design parameters through 
differentiation, mutation, and selection, ultimately 
deriving an optimal solution. This approach 
effectively balances exploration and exploitation 
in the optimization process. 
The SODE procedure is shown below. 

SODE algorithm: 
Beginning process   
Define all design parameters and their initial 

population with respect to their objective 
function. 

Calculation process 
1. If a cost function has met, stop seeking 

solutions. If the cost function hasn’t met go to the 
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 2nd step. 
2. Generate population of the design 

parameters by using mutation and crossover 
methods. 

3. Calculate the objective function of the 
offspring from the 2nd step. 

4. choose population for the next iteration from 
the prior parent and offspring population. 

5. Interchange population position randomly 
then go to the 1st step.  

The operators of the Single Objective 
Differential Evolution (SODE) algorithm fall into 
three primary categories: 

1. Crossover: Combines parent solutions with 
mutated solutions to create offspring, promoting 
diversity in the population. 

2. Mutation: Generates new candidate 
solutions by perturbing existing ones, enabling 
exploration of the search space. 

3. Selection: Chooses the best solutions from 
the current population and offspring for the next 
generation, ensuring convergence toward the 
optimal solution. 

The processes of mutation and crossover are 
mathematically described by the following 
equations: 

𝒖𝒊 = 𝑿𝒊𝟏 + 𝑭(𝑿𝒊𝟐 − 𝑿𝒊𝟑)                                (14) 
Where 

 𝐹 ∈ [0,1] is a scaling factor. 
 𝑢𝑖 is a mutation solution vector. 

 𝑋𝑖1is the best so far solution vector. 
𝑋𝑖2 and 𝑋𝑖3 are random solution vectors in the 

member of a current population and  𝑋𝑖2 ≠ 𝑋𝑖3.  
 

𝒗𝒊,𝒋 = {
𝒖𝒊,𝒋; 𝒓𝒂𝒏𝒅 ≤ 𝑪𝑹

𝒙𝒊,𝒋; 𝒓𝒂𝒏𝒅 > 𝑪𝑹
            (15) 

 

where 𝐶𝑅 ∈ [0,1] is a crossover rate and rand is 
a uniform random number in [0, 1]. 

Index i refers to the ith solution in the current 
population, while index j represents the jth 
element in a solution vector. 

In the fourth step of the selection procedure, 
the design parameters of the parent and offspring 
solutions (𝑋𝑖) are compared simultaneously. The 
next population for the subsequent iteration is 
selected based on the solutions that provide the 
best performance according to the objective 
function. This ensures that the algorithm retains 
the most optimal solutions while continuing to 
evolve.  

For this study, the following parameters were 
used in the SODE optimization process: 
• Crossover Rate (𝐶𝑅): 0.8 
• Scaling Factor (𝐹): 0.5 
• Probability of Selecting an Element from the 

Offspring: 0.7 
These parameter settings guided the evolution of 
the population while balancing exploration and 
exploitation. 

For the numerical experiment, the surrogate 



60 
 

FEAT JOURNAL 
July – December 2024; 10(2) : 51 - 67 
 models served as representations of the plant. 

Below is an illustration of the technique used to 
develop the plant's meta-model, highlighting the 
integration of surrogate modeling and 
optimization to identify the optimal design 
parameters. 
 

 
 

 
Figure 4  Surrogate modelling procedure 

 
The SCADA system samples data from the 

separator process every hour, providing 
continuous monitoring and recording of 
operational parameters. The separator operates 
non-stop throughout the day, ensuring a 
consistent flow of data for analysis and 
optimization.  As stated earlier, the pulp and 
Baume parameters were sampled manually each 
hour from buffer tanks at the product infeed line 
and the discharge starch milk line. These 
samples were analyzed in a wet lab, and the 
results were subsequently fed into the SCADA 
database, while the flow rate was continuously 
logged by an inline sensor. However, the manual 
sampling and wet lab analysis may introduce 
errors, particularly if the sampling interval is 
reduced to less than one hour, as human 

limitations could affect consistency and 
accuracy.  

To mitigate the risk of over-prediction in the 
surrogate model, a data-cleaning process is 
performed. Specifically, K-means clustering is 
employed to eliminate redundant or overly similar 
data points, ensuring a more representative and 
well-distributed dataset for model training and 
testing. This step enhances the robustness and 
accuracy of the surrogate model. 

After the data cleaning process, 80% of the 
dataset was allocated for training, while the 
remaining 20% was reserved for testing on 
unobserved data. K-means clustering was 
utilized to group the training data and ensure a 
well-distributed dataset, avoiding any clustering 
bias. The training dataset was then prepared and 
fed into the modeling algorithms: PRS, RBF, KRG, 
SVR, and NNB. Each algorithm was configured 
as follows: 
• PRS (Polynomial Response Surface): Used a 

second-order polynomial function to 
approximate the system's behavior. 

• RBF (Radial Basis Function): Employed a 
Gaussian kernel as its basis function to 
model complex non-linear relationships. 

• KRG (Kriging): Utilized a linear model with a 
Gaussian correlation function to capture 
the global and local trends of the data. 

Data cleaning and 

clustering 

(Training and testing) 

Surrogate modelling 

(PRS, RBF, KRG, 

SVR, and NNB) 
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• SVR (Support Vector Regression): Applied a 
radial basis function (RBF) kernel to 
predict the response surface accurately. 

• NNB (Neural Network Backpropagation): Also 
utilized an RBF kernel for its activation 
functions to model non-linear 
relationships effectively. 

Ultimately, these five surrogate models were 
constructed to facilitate the optimization 
procedure, leveraging their individual strengths 
to approximate the behavior of the separator 
process and identify optimal design parameters. 
 
5. RESULTS AND DISCUSSION 

The SCADA system, as previously mentioned, 
collected raw data over a period of 31 days, 
sampling at a rate of one data point per hour, 24 
hours a day. K-means clustering (Alexander I. J. 
Forrester et al., 2008 [1]) was applied to clean the 
dataset by consolidating repeated value 
parameters into a single entry. This resulted in a 
refined dataset shared across all design fields. 
The dataset was then randomly divided into 
training (80%) and testing (20%) groups, 
ensuring that the testing domain was adequately 
covered by the training domain (as illustrated in 
Figures 5–8). 

Due to a hydro-cyclone process constraint 
near the separator, the target Baume output 
(˚Be output) was set to approximately 18–19 ˚Be, 

with the goal of minimizing starch loss (Ls). 
Adjustments to the flow rate through the 
regulated valve revealed an inverse relationship: 
a lower Baume input resulted in a higher flow rate, 
and vice versa. An adaptive precision PID 
controller (outside the scope of this study) 
regulated this adjustment to reduce starch loss in 
wastewater. 

Although Figures 6 indicates the potential for 
nearly zero loss at Baume inputs between 3 and 
4 ˚Be, this range is not recommended due to the 
low efficiency of prior starch extraction methods. 
Additionally, data suggests that at Baume inputs 
above 4 ˚Be, there is a substantial concentration 
of nearly zero-loss conditions. Consequently, 
Baume inputs in the range of 4.5 to 8 ˚Be were 
considered. However, inappropriate control of 
the valve's flow rate could lead to increased 
losses at higher Baume inputs. Figures 5 and 7 
also show that flow inputs of approximately 100 
to 200 m³/hr. yield high Baume outputs (density 
of the high ˚Be output point cloud along that 
range), though it remains unclear if higher pulp 
inputs lead to greater losses. 

To address these relationships, surrogate 
models were employed to investigate and 
optimize the process. The meta-modeling 
approach was used to mitigate initial losses 
caused by incorrect or transient control 
parameter settings and to estimate initial 
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 setpoints (𝑋𝑖 ) for the PLC controller, avoiding 

fluctuations due to the plant's nonlinear behavior. 
The cleaned dataset (80% for training and 20% 

for testing) was then utilized to construct 
surrogate models, including PRS, RBF, KRG, 
SVR, and NNB. The performance of each model 
was evaluated using the Root Mean Square Error 
(RMSE), which quantified the accuracy of the 
objective function estimations. These results 
informed the selection of the most effective 
surrogate model for optimizing the separator 
process. 
 

 
 
 
 
 
 
 

Figure 5  The training ˚Be output cleaned data 
VS its variables 

 
 
 
 
 
 
 
 
 
 
 

Figure 6  The training Ls cleaned data VS its 
variables 

 

 
 
 
 
 
 
 
 
 
 

Figure 7  The testing ˚Be output cleaned data 
VS its variables 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 8  The testing Ls cleaned data VS its 
variables 

 
The Root Mean Square Error (RMSE) for each 

surrogate model is displayed in Figure 9. It was 
observed that the Radial Basis Function (RBF) 
model exhibited the lowest error in plant 
estimation, with the Support Vector Regression 
(SVR) model also achieving comparably low 
errors. This highlights the strong performance of 
both models in accurately approximating the 
plant's behavior. 

Although the rankings of the surrogate models 
were determined (with RBF and SVR ranking first 
and second, respectively), the final determination 
of the optimal design variables for each model 
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 requires the application of the Single Objective 

Differential Evolution (SODE) optimizer. This step 
ensures that the surrogate models provide the 
most effective solutions for the separator process 
optimization, aligning model estimations with 
real-world performance requirements. The PLC's 

supervisory input was subsequently configured 
using the optimal design parameters derived 
from the surrogate models. This ensured that the 
process control system operated at its most 
efficient settings, effectively aligning the plant's 
performance with the optimization objectives.  

Table 1 presents the results for the optimal 
design variables, the estimated objective 
function values, and the actual objective function 
values based on the optimal parameters. Among 
the surrogate models: 
• SVR and RBF provided the most accurate 

estimations, with comparatively low 
discrepancies between the modeled and 
actual objective function values. 

• KRG produced the highest Baume output 
(˚Be output) according to the actual plant 
data, showcasing its potential for maximizing 
starch concentration. 

• SVR, ranked second, demonstrated a strong 
balance between minimizing starch loss and 
achieving high Baume output, making it a 
reliable option for practical application. 

 

These findings highlight the strengths of each 
model and their respective suitability for different 
aspects of the optimization process. 

 
 
 
 
 
 

 
Figure 9  The RMSE of each surrogate model. 

 
In practice, the plant's target Baume value 

(˚Be) typically ranges between 18 and 20. 
Interestingly, the Kriging (KRG) model yielded an 
unexpected objective function result of -1. 
Despite this anomaly, when comparing objective 
function values across surrogate models, the 
KRG model ultimately provided the most 
accurate true optimal solution. This outcome 
highlights the 'blessing and curse of uncertainty' 
often encountered in surrogate-assisted 
optimization [8], [11]. Although the KRG model 
had high RMSE among the surrogate models, it 
demonstrated the ability to best capture the true 
function profile of the system. Conversely, the 
Support Vector Regression (SVR) model 
achieved the lower RMSE, indicating superior 
accuracy in estimating plant behavior. The SVR 
model also produced ˚Be values and starch loss 



64 
 

FEAT JOURNAL 
July – December 2024; 10(2) : 51 - 67 
 metrics closely aligned with those of the KRG 

model (see Table 1), making it a robust choice for 
practical applications where precise estimation is 
critical. 

The authors recommend Support Vector 
Regression (SVR) as the most suitable meta-
model overall, given its superior performance in 
profile tracking and accuracy. Compared to other 
models: 
• The Polynomial Response Surface (PRS) 

model had a low input flow setpoint that 
rendered it unsuitable for proper separator 
operation. 

• The Radial Basis Function (RBF) and Neural 
Network Backpropagation (NNB) models 
produced ideal ˚Be inputs that were too 
small for practical application. 

• The numerical calculations in some models 
yielded negative signs in the objective 
functions, which can be interpreted as a 
scenario where the objective function 
comparison error is effectively zero. 
However, high RMSE values and impractical 
flow control settings made PRS and NNB 
unsuitable. 

• Additionally, the low flow rates suggested by 
these models could prolong the washing 
process, further reducing operational 
efficiency. 

 

This work aimed to identify the best design 
parameters and a surrogate method capable of 
accurately mimicking the separator's behavior. 
The SVR model demonstrated minimal objective 
function errors (as shown in the final column of 
Table 1) and provided ˚Be inputs within a 
practical range of 3–8 ˚Be. Values close to the 
bounds were avoided, as they were deemed 
impractical for real-world use. 

In comparison to the Kriging (KRG) model, the 
SVR offered more consistent results with minimal 
errors and was ultimately chosen as the optimal 
surrogate method for this study. 

By utilizing the SCADA reference values as the 
optimal settings for the proportional valve 
controller, the annual light-phase starch waste of 
approximately 1,000 tons was effectively 
eliminated. This recovery allowed the starch to be 
returned to the production process, yielding a 
financial benefit exceeding 14 million baht per 
year. 

Reducing the discharge of light-phase starch 
into wastewater not only minimizes waste but also 
significantly lowers the chemical oxygen demand 
(COD), which directly impacts the need for 
extensive wastewater treatment. Additionally, this 
reduction curtails the production of greenhouse 
gases such as carbon dioxide (CO₂) and 
methane (CH₄), which are typically generated 
during the treatment process. The decrease in 
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 wastewater also reduces energy consumption 

associated with treatment, further contributing to 
environmental sustainability and the reduction of 
greenhouse gas emissions.

Table 1 
A comparison of the estimated objective function and the real one with respect to the optimal design 
variables. 

Surrogate 
models 

Design variables  Objective functions f opt Objective functions 
Real 

f Real 

  

Pulp (% ml 
Pulp/ml Starch 

Milk) 

˚Be 
input 

Flow 
control 
(m3/hr) 

˚Be 
output 

loss in 
g/l 

 
˚Be 

output 
loss in 

g/l 

 

PRS 3 6.0591 130.0000 17.8988 -0.0269 -0.0015 18.8000 0.2527 0.0134 
RBF 3 3.9977 157.0740 18.1928 -0.0119 -0.0007 17.6000 0.1159 0.0066 

KRG 2.681 4.8835 176.4254 -3.1029 3.1029 -1.0000 19.0000 0.0180 0.0009 
SVR 2.9543 4.7955 173.5075 18.3356 -0.1046 -0.0057 18.8000 0.0328 0.0017 
NNB 1.1651 3.3598 151.5323 17.5914 -0.0760 -0.0043 17.3000 0.1413 0.0082 

 
6. CONCLUSIONS 
The supervisory parameters of the starch milk 
separator plant were successfully optimized 
using surrogate-assisted techniques. Five well-
established surrogate models were developed 
based on SCADA data, with the pulp input, ˚Be 
input, and regulated valve flow control selected 
as the design parameters. The best possible 
solutions for these parameters were then 
identified. Using the objective function, which 
considered starch loss (Ls) and Baume output 
(˚Be output), the Single Objective Differential 
Evolution (SODE) optimizer was employed. The 
initial parameters of the separator plant were 
established based on the optimization results 

while accounting for the plant's capabilities and 
operational constraints. 

The comparative analysis demonstrated that 
the Support Vector Regression (SVR) model 
provided the best overall performance in 
modeling and optimizing the separation process. 
The SVR model not only accurately estimated the 
separator's functional profile but also delivered 
an optimal solution that, under real operating 
conditions, achieved superior results in terms of 
output and minimized loss. 
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