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Abstract

This study employs a single-objective differential evolution optimizer for surrogate-assisted
optimization. A separator plant is modeled using five surrogate approaches for process optimization.
The optimization objective is defined as minimizing starch loss relative to the Baume output of starch
milk, while adhering to the lower and upper bounds of design parameters, including pulp input, Baume
input, and regulated valve flow control. These bounds also support the plant controller's original design
parameters. The optimal parameters were implemented and their real and numerical performances
compared to validate the proposed method. The results demonstrate that the suitable surrogate model
for the separator plant can be identified and that the optimal characteristics can be achieved,
providing practical benefits to the process.
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1. INTRODUCTION

Air and water pollution are common
consequences of processing  agricultural
products, particularly in the tapioca starch

industry. Wastewater from tapioca starch
producers, which often seeps into public canals
and rivers, has become a significant contributor
to Thailand's pollution problem. During large
volume of wastewater treatment, carbon dioxide
(CO3) and methane (CH,4) are released, further
harming the environment. Consequently, it is
crucial to reduce and regulate the volume of
these wastewater and harmful gases to mitigate
their impact effectively.

In this instance, light starch milk spills during
the process are the primary source of
wastewater. One of the main points of significant
leakage in the tapioca starch production process
is the separator. This study aims to minimize the
amount of starch released into wastewater,
thereby reducing pollution caused by starch loss
and improving production efficiency in the starch
industry. The separator process is illustrated in
Fig. 1.

In the Signal Control and Data Acquisition
(SCADA) system, process data is controllable,
observable, and recordable. A mass flow meter,

located at position 1, measures the density of

starch loss. Position 2 features a control panel for
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setting parameters, including starch milk input
flow rate and output starch density. At position 3,
a proportional valve is installed, equipped with an
adaptive PID flow controller. This controller
adjusts its gain dynamically in response to

changes in the setting input parameters and the

target output density.

[ | asmima]e] o [ oo ]

Figure 1 A separator SCADA and the tapioca

starch production process

The separation mechanism is highly intricate,
making the cost of direct mathematical modeling
prohibitively high. To address this, the surrogate
technique is employed to assist in the
optimization process, enabling the determination
of ideal design parameters to reduce starch loss
and increase starch density output. This
technique is commonly used in research to

enhance industrial production efficiency.
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Jin, W. et al. (2022) [10], while optimizing a

high-temperature reservoir thermal energy
storage (HT-RTES) system, developed a machine
learning model comprising a Bayesian search
algorithm and two deep-layer artificial neural
network (ANN) models. This approach, which
accounted for operational scenarios and site-
specific variables, produced more reliable and
efficient energy storage solutions.

Chen, X. et al. (2021) [4] enhanced the
operational performance of fluidized catalytic
crackers in real-time refinery applications. By
estimating the load in real time and reducing the
order of the cracker model, they improved the
trust region filter optimization process.

Franzoi, R. E. et al. (2021) [5] integrated
sequential linear programming techniques, trust
region methods, and adaptive sampling
strategies into an optimizer to reduce lag time
and convergence issues. The performance of the
adaptive sampling iteration was evaluated using
a surrogate model of the response system.

Surrogate models are particularly vital for
modeling extremely nonlinear plants or machines
that are prohibitively expensive to simulate. For
example, Ali, W. et al. (2018) [2] employed an
RBF-thin plate spline to model the mixed
refrigerant liquefaction process. Additionally,
surrogate models can be applied to adaptive

controller tuning of brushless direct current
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motors for speed regulation using the response
surface approach (Rojas-Lopez, A. G. et al., 2024
(7).

In numerical simulations for plant modeling,
high-order spatio-temporal discretization is often
necessary for highly nonlinear models, such as
those employed in complex thermo-mechanical
structure analysis using the finite element method
(FEM), material

characterization, tribological

contact, significant deformation, or damage
scenarios. Bagheri, S. et al. (2021) [3] used RBF
meta-modeling for these nonlinear FEM
problems, avoiding the need for direct FEM
calculations.

In our work, we utilized five popular surrogate
models to simulate a real-world plant, aiming to
optimize the reference parameters of the PLC
controller. A summary of the five surrogate
modeling techniques is presented in Section 2.
Sections 3 and 4 focus on the problem
formulation and the numerical setup. Section 5
provides a comparison of the optimization results
and surrogate modeling outcomes for each
method. Finally, the conclusions are outlined in

Section 6.

2. SURROGATE MODELLING
A separator machine is employed in the starch
enhance  starch

washing  process to

concentration and purify starch milk. This phase
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of the operation is referred to as the concentration
stage (see Fig. 3). A nozzle, which uses counter
wash water for starch purification, is fed with
heavy starch particles that were casted via
centrifugal force generated by a series of discs
attached to a shaft. Once cleaned, the starch
particles are collected and discharged through
an outlet pipe. However, the wash water feed
pressure can lead to contamination and cause
some starch particles to overflow from the top of
the separator.

While computationally expensive
Computational Fluid Dynamics (CFD) modeling
can be used to simulate the combined gravity-
centrifugal and washing phenomena, real-time
testing remains impractical. This is true even
under conditions where the machine rotates at a
constant speed with a fixed wash water flow rate.
Surrogate modeling offers a more efficient
alternative to state-space or other

system

identification techniques, as it significantly
reduces the computational effort required during
the optimization process.

As noted by Wahid Ali et al. (2018) [2],
surrogate models transform complex processes
into reduced-order models, making them an
attractive choice. This study explored a suitable
model capable of representing the intricate
dynamics of the starch washing process. The

following modeling techniques were applied, with
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much of the detailed methodology and algorithms
drawn from the work of Alexander I. J. Forrester,
Andras Sébester, and Andy J. Keane (2008) [1].
The following is a synopsis of each technique.

2.1. Through RSM modelling

Given [X] = [xq,...,x,]T is a matrix of desig
n vector for n sampling points and [F] =
[f,, ..., f]T represents a function value correspo
nding to X. The polynomial response surface mo

del (RSM) used to estimate f can be expressed

as follows:

fx)=xB +c (1)

Where x is all the polynomial terms of vector of
design variable, B is the vector of regression
coefficients.

The B and ¢ can be found as follows;

B=X"X)"X"F 2)
c=F—-XB (3)

Where X is all the polynomial terms of all
sampling points.

2.2. Through RBF modelling

The RBF (radial basis function) samples a set
of [X] with its function [F]. The radial basis
function model (RBF) is used to estimate }?can

be expressed as follows

f) =Ty GKlx = %D (4)
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Where K is kernel function. C; is an interpolant

coefficient to be found. By setting the
interpolation function £ (x;) = f;, Defining the
Euclidean distance term ||x; — x| = 7;;, the
coefficient can be determined. And a matrix form

of the RBF construction is

[K (Il — x| = {1} (5)

and C; can be found as

(6} = [kl = =ID] {5} (®)

The radial basis 1;;, can be selected from
various types, such as Linear spline, Cubic
spline, Thin plate spline, Gaussian, Multiquadric,
Inverse quadric, Inverse multiquadric, Bump
function, or others. It is important to note that the
radial basis function matrix is symmetric. To
ensure that Equation 6 has a unique solution, the
chosen basis function must be non-singular.
2.3. Through KRG modelling
(KRG)

The Kriging surrogate model is

constructed using a Gaussian correlation
function and a polynomial trend model, as
outlined by M. Kumar et al. [18]. The KRG

prediction function is defined as:

f@) =p@)"B+ P ¥ I(F - pp) (7)

where
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P represents the regression coefficients,

P is the correlation vector between

X and each sample point,

Y s the correlation matrix between sample
points.
The KRG correlation function is given by:

Y(x;,x;) = exp(— (x; — xj)Te(xi —x;) (8

where 8 = {6,,0,,...,0,}" are the correlation
parameters, estimated by maximum likelihood. In
this study, the MATLAB DACE toolbox is used fo
r constructing the Kriging model.

2.4. Through SVR modelling

Support Vector Regression (SVR) is a variant of
Support Vector Machine (SVM) that excels in
regression tasks due to its strong learning
capabilities. In SVR, the term "support vectors"
(SV) refers to the data points closest to the
regression model's decision boundary, which
defines the maximum margin. By utilizing an
optimal decision-making surface, SVR effectively
separates data points within a specified margin,
thereby balancing model complexity and
prediction accuracy. This maximum-margin
approach also mitigates the risk of overfitting by
ensuring that the model generalizes well to
unseen data (Hu A et al., 2023 [6]).

In simple terms, as described by Alexander |.
J. Forrester et al. (2008) [1], the SVR predictor

function can be expressed as:
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f@) =w'p@) +b (9)
Where

w is weighting factor,

¢ (x) is mapping function that transforms input
x into a higher-dimensional feature space,

b is bias term.

The weight vector w is found by solving the
following optimization problem

min:%lwl2 +C Y& — ¢ (10)

Subject to:
fi-f)<e+§

fO-fise+§

where

& and & are slack variables for data points
outside the margin

C is regularization parameter controlling trade-
off between margin width and prediction error.

2.5. Through NNB modelling

. _

> Output layer
Hidden layer

Input layer

Figure 2 A feed-forward 4-6-5-3 network.

Neural network (NN) modeling comprises

interconnected nodes that mimic the behavior of

56

neurons in living organisms. A feed-forward

multilayer network typically includes input,
hidden, and output layers, as illustrated in Figure
2.

The NN estimation function at the output layer
is represented as:

f@) = f(@w® +b®) (11)
where the hidden layer output Z is defined as:
Z = g(aw® + pW) (12)
where

w® and w® are the weight matrices from the
input layer to the hidden layer and from the
hidden layer to the output layer, respectively,

b® and b® are bias vectors for the hidden
and output layers, respectively,

g and f are the activation functions for the hidd
en and output layers.

The weights W and biases b in a neural
network are optimized through a training process,
commonly using backpropagation in conjunction
with an optimization algorithm such as gradient
descent. During training, the network iteratively
adjusts these weights to minimize a cost function,
which quantifies the difference between
predicted and actual outputs. This adjustment
allows the network to learn patterns from the
training data and generalize effectively to unseen

testing data.
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3. PROBLEM FORMULATION

Between the bent screen, which filters starch
milk from the extractor, and the fine screen, which
further refines the milk before it is sent to the
hydro cyclone for purification, lies the separator
process used in tapioca starch production (see
Fig. 1). As shown in Fig. 3, the primary cause of
starch loss during this separator step is the
washing process.

At the top of the separator, a feed pump and a
proportional flow control valve feed and regulate
the starch milk coming from the extractor.
Washing water is introduced from below. The
dense starch milk is then cleaned, centrifuged,
and discharged as concentrated starch milk,
which proceeds to the hydro cyclone process.
Meanwhile, the light phase discharge is expelled
as wastewater, and the medium phase waste is
returned to previous washing stages.

According to the company's SCADA system,
the annual starch loss attributed to this light
phase discharge is approximately 1,000 tons,
equivalent to a financial loss of 14 million baht
annually. The factory has a production capacity
of 220,000 tons of starch per year and consumes
around 1,000,000 tons of raw tapioca annually.

To enhance this process, a proportional flow
control valve can be employed to regulate the
starch milk intake, thereby reducing significant

losses. The valve's opening is adjusted based on
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preset parameters and feedback signals from a
starch density meter positioned in the wastewater
drain section. The relationship between specific
gravity and starch density data from the case
study plant is used to calculate starch loss in the
drain wastewater.

To develop a surrogate model for determining
the optimal input flow settings, the following
design variables were considered:

1. Pulp Input (% ml Pulp/ml Starch Milk)

2. Baume Input (‘Be input) of the starch
milk feeding into the separator

3. Flow Rate Allowance (Q in m¥nhr.) from
the valve regulator

The plant's SCADA system can be utilized to
collect and monitor these design variables,
enabling accurate modeling and optimization of
the process. Note that the pulp input and Baume
input are collected each hour from two buffer
tanks before and after the separator process by
a worker then fill their wet lab data into the
SCADA.

The objective function is designed to
simultaneously:

1.Maximize the concentration of starch

("Be output) in the discharged starch milk.
2.Minimize the starch loss (Ls in grams per
liter) in the wastewater, as measured by an

additional density meter installed on the

wastewater line.
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This dual objective ensures an optimized balance
between product recovery and waste reduction

in the starch production process.

Product Feed
&

Discharge of
Medium Phase -

Discharge of
Concentrated Milk

Wash Water Feed

Figure 3 The crossection schematic diagram of

a separator

Thus, the objective function can be expressed

as follows:
. _Ls
Min: f(X) *Be output (13)
Subject to:

0 < Pulp input <3
3 <°Beinput <8
130 < Qin < 200
Where
X = [Pulp input,°Be input, Qin]" is a vector

of the design variables with constrains.

4. SURROGATE-ASSISTED OPTMIZATION
AND NUMERICAL EXPERIMENT SET UP

Surrogate  modeling is essential  for
understanding the system's behavior, especially
given the complex mechanisms involved in the

washing process of derived starch milk. Despite
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the intricate dynamics, the optimization process
is simplified by its single objective function and
the limited number of design factors.

In this study, the optimizer used was the Single
Objective  Differential ~ Evolution ~ (SODE).
Surrogate models, developed using PRS, RBF,
KRG, SVR, and NNB approaches, were
employed to approximate the behavior of the
nonlinear complex plant, reducing computational
effort. Further research is necessary to evaluate
which surrogate model provides the most
accurate tracking of the training dataset and
yields suitable design parameters for the PLC
controller.

SODE, as described by Sujin B. (2013) [9],
optimizes by iteratively evolving the population
vector of design parameters  through
differentiation, mutation, and selection, ultimately
deriving an optimal solution. This approach
effectively balances exploration and exploitation
in the optimization process.

The SODE procedure is shown below.

SODE algorithm:

Beginning process

Define all design parameters and their initial

population with respect to their objective

function.

Calculation process

1. If a cost function has met, stop seeking

solutions. If the cost function hasn't met go to the
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2" step.

2. Generate population of the design
parameters by using mutation and crossover
methods.

3. Calculate the objective function of the
offspring from the 2M step.

4. choose population for the next iteration from
the prior parent and offspring population.

5. Interchange population position randomly
then go to the 1* step.

The operators of the Single Objective
Differential Evolution (SODE) algorithm fall into
three primary categories:

1. Crossover: Combines parent solutions with
mutated solutions to create offspring, promoting
diversity in the population.

2. Mutation: Generates new candidate
solutions by perturbing existing ones, enabling
exploration of the search space.

3. Selection: Chooses the best solutions from
the current population and offspring for the next
generation, ensuring convergence toward the
optimal solution.

The processes of mutation and crossover are
mathematically described by the following
equations:

u; = X1 + F(Xi2 — Xi3) (14)
Where

F € [0,1] is a scaling factor.

u; is a mutation solution vector.
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Xi1is the best so far solution vector.
Xi, and X;3 are random solution vectors in the

member of a current population and X;, # X;3.

U~ \x;;rand > CR (15)

u;j;rand < CR
v =
Ly’

where CR € [0,1] is a crossover rate and rand is
a uniform random number in [0, 1].

Index i refers to the i" solution in the current
population, while index ;| represents the /th
element in a solution vector.

In the fourth step of the selection procedure,
the design parameters of the parent and offspring
solutions (X;) are compared simultaneously. The
next population for the subsequent iteration is
selected based on the solutions that provide the
best performance according to the objective
function. This ensures that the algorithm retains
the most optimal solutions while continuing to
evolve.

For this study, the following parameters were
used in the SODE optimization process:

e Crossover Rate (CR): 0.8

e Scaling Factor (F): 0.5

e Probability of Selecting an Element from the

Offspring: 0.7
These parameter settings guided the evolution of
the population while balancing exploration and
exploitation.

For the numerical experiment, the surrogate
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models served as representations of the plant.
Below is an illustration of the technique used to
develop the plant's meta-model, highlighting the
integration  of and

surrogate  modeling

optimization to identify the optimal design

parameters.

Data cleaning and

clustering
(Training and testing) =

Surrogate modelling
(PRS, RBF, KRG,
SVR, and NNB)

Figure 4 Surrogate modelling procedure

The SCADA system samples data from the

separator process every hour, providing

continuous monitoring and recording of
operational parameters. The separator operates
non-stop throughout

the day, ensuring a

consistent flow of data for analysis and
optimization. As stated earlier, the pulp and
Baume parameters were sampled manually each
hour from buffer tanks at the product infeed line
and the discharge starch milk line. These
samples were analyzed in a wet lab, and the
results were subsequently fed into the SCADA
database, while the flow rate was continuously
logged by an inline sensor. However, the manual
sampling and wet lab analysis may introduce
errors, particularly if the sampling interval is

reduced to less than one hour, as human

60

limitations could affect consistency and

accuracy.

To mitigate the risk of over-prediction in the
surrogate model, a data-cleaning process is
performed. Specifically, K-means clustering is
employed to eliminate redundant or overly similar
data points, ensuring a more representative and
well-distributed dataset for model training and
testing. This step enhances the robustness and
accuracy of the surrogate model.

After the data cleaning process, 80% of the
dataset was allocated for training, while the
remaining 20% was reserved for testing on
unobserved data. K-means clustering was
utilized to group the training data and ensure a
well-distributed dataset, avoiding any clustering
bias. The training dataset was then prepared and
fed into the modeling algorithms: PRS, RBF, KRG,
SVR, and NNB. Each algorithm was configured
as follows:

e PRS (Polynomial Response Surface): Used a
second-order polynomial function to
approximate the system's behavior.

e RBF (Radial Basis Function): Employed a
Gaussian kernel as its basis function to
model complex non-linear relationships.

e KRG (Kriging): Utilized a linear model with a

Gaussian correlation function to capture

the global and local trends of the data.
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e SVR (Support Vector Regression): Applied a
radial basis function (RBF) kernel to
predict the response surface accurately.

o NNB (Neural Network Backpropagation): Also
utilized an RBF kernel for its activation
functions to model non-linear
relationships effectively.

Ultimately, these five surrogate models were

constructed to facilitate the optimization

procedure, leveraging their individual strengths
to approximate the behavior of the separator

process and identify optimal design parameters.

5. RESULTS AND DISCUSSION

The SCADA system, as previously mentioned,
collected raw data over a period of 31 days,
sampling at a rate of one data point per hour, 24
hours a day. K-means clustering (Alexander I. J.
Forrester et al., 2008 [1]) was applied to clean the
dataset by consolidating repeated value
parameters into a single entry. This resulted in a
refined dataset shared across all design fields.
The dataset was then randomly divided into
training (80%) and testing (20%) groups,
ensuring that the testing domain was adequately
covered by the training domain (as illustrated in
Figures 5-8).

Due to a hydro-cyclone process constraint
near the separator, the target Baume output

("Be output) was set to approximately 18-19 ‘Be,
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with the goal of minimizing starch loss (Ls).

Adjustments to the flow rate through the
regulated valve revealed an inverse relationship:
a lower Baume input resulted in a higher flow rate,
and vice versa. An adaptive precision PID
controller (outside the scope of this study)
regulated this adjustment to reduce starch loss in
wastewater.

Although Figures 6 indicates the potential for
nearly zero loss at Baume inputs between 3 and
4 "Be, this range is not recommended due to the
low efficiency of prior starch extraction methods.
Additionally, data suggests that at Baume inputs
above 4 Be, there is a substantial concentration
of nearly zero-loss conditions. Consequently,
Baume inputs in the range of 4.5 to 8 "‘Be were
considered. However, inappropriate control of
the valve's flow rate could lead to increased
losses at higher Baume inputs. Figures 5 and 7
also show that flow inputs of approximately 100
to 200 m3hr. yield high Baume outputs (density
of the high °Be output point cloud along that
range), though it remains unclear if higher pulp
inputs lead to greater losses.

To address these

relationships, surrogate

models were employed to investigate and

optimize the process. The meta-modeling

approach was used to mitigate initial losses

caused by incorrect or transient control

parameter settings and to estimate initial
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setpoints (Xi) for the PLC controller, avoiding
fluctuations due to the plant's nonlinear behavior.

The cleaned dataset (80% for training and 20%
for testing) was then utilized to construct
surrogate models, including PRS, RBF, KRG,
SVR, and NNB. The performance of each model
was evaluated using the Root Mean Square Error
(RMSE), which quantified the accuracy of the
objective function estimations. These results
informed the selection of the most effective
surrogate model for optimizing the separator

process.

m1 Suarch Milk)

Input Pulp (% ml Puln

Figure 5 The training "Be output cleaned data

VS its variables

ml Stareh Milk)

ml Pulp:

Tnput Pulp %

Figure 6 The training Ls cleaned data VS its
variables

62

m Starch Milk)
RS BN

Inpat Pl (% il Pulp

Figure 7 The testing ‘Be output cleaned data
VS its variables

anl Starch Milky

il Pulp:

eny ';
sageped n e

Figure 8 The testing Ls cleaned data VS its
variables

The Root Mean Square Error (RMSE) for each
surrogate model is displayed in Figure 9. It was
observed that the Radial Basis Function (RBF)
model exhibited the lowest error in plant
estimation, with the Support Vector Regression
(SVR) model also achieving comparably low
errors. This highlights the strong performance of
both models in accurately approximating the
plant's behavior.

Although the rankings of the surrogate models
were determined (with RBF and SVR ranking first

and second, respectively), the final determination

of the optimal design variables for each model
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requires the application of the Single Objective

Differential Evolution (SODE) optimizer. This step

ensures that the surrogate models provide the

most effective solutions for the separator process
optimization, aligning model estimations with
real-world performance requirements. The PLC's
supervisory input was subsequently configured
using the optimal design parameters derived
from the surrogate models. This ensured that the
process control system operated at its most
efficient settings, effectively aligning the plant's
performance with the optimization objectives.
Table 1 presents the results for the optimal
design variables, the estimated objective
function values, and the actual objective function
values based on the optimal parameters. Among
the surrogate models:
e SVR and RBF provided the most accurate
estimations,  with comparatively  low
discrepancies between the modeled and
actual objective function values.

e KRG produced the highest Baume output
("Be output) according to the actual plant
data, showcasing its potential for maximizing
starch concentration.

e SVR, ranked second, demonstrated a strong
balance between minimizing starch loss and

achieving high Baume output, making it a

reliable option for practical application.
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These findings highlight the strengths of each
model and their respective suitability for different

aspects of the optimization process.

0 02 04 06 08 ! 12 14 16
RMSE of Objective Function x10”

Figure 9 The RMSE of each surrogate model.

In practice, the plant's target Baume value
(‘Be) typically ranges between 18 and 20.
Interestingly, the Kriging (KRG) model yielded an
unexpected objective function result of -1.
Despite this anomaly, when comparing objective
function values across surrogate models, the
KRG model ultimately provided the most
accurate true optimal solution. This outcome
highlights the 'blessing and curse of uncertainty’
often  encountered in  surrogate-assisted
optimization [8], [11]. Although the KRG model
had high RMSE among the surrogate models, it
demonstrated the ability to best capture the true
function profile of the system. Conversely, the
Support  Vector Regression (SVR) model
achieved the lower RMSE, indicating superior
accuracy in estimating plant behavior. The SVR

model also produced ‘Be values and starch loss
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metrics closely aligned with those of the KRG

model (see Table 1), making it a robust choice for

practical applications where precise estimation is
critical.

The authors recommend Support Vector
Regression (SVR) as the most suitable meta-
model overall, given its superior performance in
profile tracking and accuracy. Compared to other
models:

e The Polynomial Response Surface (PRS)
model had a low input flow setpoint that
rendered it unsuitable for proper separator
operation.

e The Radial Basis Function (RBF) and Neural
Network Backpropagation (NNB) models

produced ideal "Be inputs that were too

small for practical application.

e The numerical calculations in some models
yielded negative signs in the objective
functions, which can be interpreted as a
scenario where

the objective function

comparison error is effectively zero.
However, high RMSE values and impractical
flow control settings made PRS and NNB
unsuitable.

e Additionally, the low flow rates suggested by
these models could prolong the washing
process, further

reducing operational

efficiency.
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This work aimed to identify the best design
parameters and a surrogate method capable of
accurately mimicking the separator's behavior.
The SVR model demonstrated minimal objective
function errors (as shown in the final column of
Table 1) and provided °‘Be inputs within a
practical range of 3-8 ‘Be. Values close to the
bounds were avoided, as they were deemed
impractical for real-world use.

In comparison to the Kriging (KRG) model, the
SVR offered more consistent results with minimal
errors and was ultimately chosen as the optimal
surrogate method for this study.

By utilizing the SCADA reference values as the
optimal settings for the proportional valve
controller, the annual light-phase starch waste of
approximately 1,000 tons was effectively
eliminated. This recovery allowed the starch to be
returned to the production process, yielding a
financial benefit exceeding 14 million baht per
year.

Reducing the discharge of light-phase starch
into wastewater not only minimizes waste but also
significantly lowers the chemical oxygen demand
(COD), which directly impacts the need for
extensive wastewater treatment. Additionally, this
reduction curtails the production of greenhouse
gases such as carbon dioxide (CO,) and
methane (CH,4), which are typically generated

during the treatment process. The decrease in
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wastewater also reduces energy consumption

associated with treatment, further contributing to

Table 1
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environmental sustainability and the reduction of

greenhouse gas emissions.

A comparison of the estimated objective function and the real one with respect to the optimal design

variables.
Surrogate Design variables Objective functions fopt Objective functions f Real
models Real
Pulp (% ml ‘Be Flow ‘Be loss in ‘Be loss in
Pulp/ml Starch input control output elll output g/l
Milk) (m°/hr)
PRS 3| 6.0591 130.0000 | 17.8988 | -0.0269 -0.0015 18.8000 | 0.2527 | 0.0134
RBF 3| 3.9977 157.0740 | 18.1928 | -0.0119 -0.0007 17.6000 | 0.1159 | 0.0066
KRG 2.681 4.8835 176.4254 | -3.1029 3.1029 -1.0000 19.0000 | 0.0180 | 0.0009
SVR 2.9543 | 4.7955 173.5075 | 18.3356 | -0.1046 -0.0057 18.8000 | 0.0328 | 0.0017
NNB 1.1651 3.3598 151.56323 | 17.5914 | -0.0760 -0.0043 17.3000 | 0.1413 | 0.0082

6. CONCLUSIONS

The supervisory parameters of the starch milk
separator plant were successfully optimized
using surrogate-assisted techniques. Five well-
established surrogate models were developed
based on SCADA data, with the pulp input, ‘Be
input, and regulated valve flow control selected
as the design parameters. The best possible
solutions for these parameters were then
identified. Using the objective function, which
considered starch loss (Ls) and Baume output
(‘Be output), the Single Objective Differential
Evolution (SODE) optimizer was employed. The

initial parameters of the separator plant were

established based on the optimization results

while accounting for the plant's capabilities and
operational constraints.

The comparative analysis demonstrated that
the Support Vector Regression (SVR) model
provided the best overall performance in
modeling and optimizing the separation process.
The SVR model not only accurately estimated the
separator's functional profile but also delivered
an optimal solution that, under real operating
conditions, achieved superior results in terms of

output and minimized loss.
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