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Using Predicting Analytics to Determine Discharge Status and Mortality in Sepsis and
Septic Shock Patients based on Surgery and Medical Procedures
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ABSTRACT

Sepsis and Septic shock are the major health problems that affect the mortality rates of patients in Global, including
Thailand, proven by 62-74 patients increase every year. Ratchaburi Hospital, one of the largest government hospital in the Central
region of Thailand, has sepsis and septic shock patients approximately 1,339 cases per year. This research proposes the data mining
application to build the prediction model for survival and discharge status of sepsis and septic shock patients. The study is scoped to
the sepsis and septic shock patient information obtained from Ratchaburi hospital during 2012-2016. Five prediction methods, which
are Naive Bayes, Logistic Regression, Deep learning, Decision tree and Gradient Boosted Trees, were experimented and compared for
finding the highest performance and most appropriate model. The results showed that although the Gradient Boosted Trees is the
highest performance, the Decision Tree is the most appropriate model due to its interpretability and easy-to-communicate to the
medical personnel. Moreover, its performance is slightly different between Gradient Boosted Trees. Finally, the produced decision
rules could facilitate and support the decision making for medical personnel.
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a a9 ¥
AITNN 1 57YATIDYAUVDYANNHTINA

N puanwu ANUTMNY Yoyamsann

1 age 019 (1)) Mean = 60.52 S.D.=22.08

2 los Suauuueulsanenuna (u) Mean = 14.84 S.D. =20.66

3 gender LWl Male 3,421 (51.08%) Female 3,276 (48.92%)
4 status_im ﬁmummé}ﬂamﬁaﬁmﬂm Improved 3,402 (50.80%) Other 3,295 (49.20%)
5 status_alive ﬁmuwamfﬂamﬁaﬁmﬂm Death 3,122 (46.62%) Alive 3,575 (53.38%)
6  depart HHUR Mode = MED - 81g5mMa03 5,362 (80.07%)

7 pdx_sepsis Iiﬂﬁﬁlﬂlﬂu Sepsis Yes 1,279 (19.10%) No 5,418 (80.90%)
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0 AMANYY ANNHINEY Yoyameada
8 sdx_sepsis T5a3913)1 Sepsis Yes 3,308 (49.40%)  No 3,389 (50.60%)
9 pdx_septic Tsﬂwé”mﬂu Septic shock Yes 326 (4.87%) No 6,371 (95.13%)
10 sdx_septic T5n59mT1 Septic shock Yes 2,192 (32.73%)  No 4,505 (67.27%)
11-30*  pdxA-pdxT  naulsananutisaunaal ICD-10 (WHO)
31-55%  sdxA-sdxz  naulsAIINILAInAEt ICD-10 (WHO)
56 et tube lanexaomals Yes 2,258 (33.72%)  No 4,439 (66.28%)
57 ven It 96 Alanieeionals <96 %1 Tua Yes 1,519 (22.68%)  No 5,178 (77.32%)
58 ven gt 96 Slansestionels > 96 5 Tua Yes 1,709 (25.52%)  No 4,988 (74.48%)
59 or_nerve st WaamsiRerTuszuszam Yes 650 (9.71%) No 6,047 (90.29%)
60 or_res st WaamsiRerTuszuumaaumele Yes 296 (4.42%) No 6,401 (95.58%)
61 or_car s Waamsertuszunilonasasn  Yes 1344 (20.07%) No 5,353 (79.93%)
1fon
62 or_lym FdR HAD M ABINLTLUUNIAUYDY Yes 196 (2.93%) No 6,501 (97.07%)
@oauaziunies
63 or_digest Fhdta WanmsifeITuszuDdue S Yes 745 (11.12%) No 5,952 (88.88%)
64  or uri st WanmsiReITuszuIMadn Yes 156 (2.33%) No 6,541 (97.67%)
faane
65 or_ing rhda HanmsReRusL DRI Yes 404 (6.03%) No 6,293 (93.97%)

HUHe : * uﬂmmmmcﬁ International Statistical Classification of Diseases and Related Health Problems — World

Health Organization

4 [ T Y @ o .
ﬂ"li"lﬂﬁ 2 Llﬁﬂi"ﬁ}’t’]u‘]aﬁﬂ']1!3ﬂ'lii]']ﬁu']ﬂ@ﬂ’lﬂﬁﬁﬁi]'lﬂﬂ']ﬁ/ﬂ Data preparation

i AMANHY ANUVINEY Yoyanada

1 age 91y (1)) Mean = 59.53 S.D.= 22.72

2 los fuaniuueuIsanea (u) Mean = 14.70 S.D. =19.54

3 gender LNe Male 684 (51.08%) Female 655 (48.92%)
4 status_im ﬁmu:ﬂlmé’ﬂamﬁ"a MUY Improved 680 (50.78%) Other 659 (49.22%)
5 depart BN Mode = MED - 81453 1,094 (81.70%)

6 pdx_sepsis Tsanamilu Sepsis Yes 258 (19.27%) No 1,081 (80.73%)
7 sdx_sepsis I’iﬂéimﬂu Septic shock Yes 673 (50.26%) No 666 (49.74%)

8 sdx_septic T5pgamihu Septic shock Yes 419 (31.29%) No 920 (68.71%)
9 pdxJ ngulsavesszuuveludulsandn Yes 249 (18.60%) No 1,090 (81.40%)
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A15199 2 Llﬁﬂ\‘l"’lgljﬂll”aﬁiﬂugﬂ?iﬂ?ﬂu?ﬂﬁﬂ’lﬂ‘ﬂﬁﬂ%Wﬂﬂ?i‘ﬂ? Data preparation (919)

i AMANHME ANUTINY Yoyaneada
10 pdxN ngulsnvesszuuduiusiazmududaaniiu  ves 143 (10.68%)  No 1,196 (89.32%)
Tsawan
11 sdxB ﬂfjilIﬁﬂam%mmzﬂiamﬂuiiﬂﬁﬂm Yes 185 (13.82%)  No 1,154 (86.18%)
12 sdxD ﬂtjuiiﬂl“fﬂﬁﬁ)ﬂ ¥i0lsnvoudoanazederzdd|e  Yes 566 (4227%)  No 773 (57.73%)
doanazanuAnnavsednvena lnagiiduin
Julsasw
13 sdxE ngulsaden1ive Tnvums uazwaueadmilu  Yes 991 (74.01%)  No 348 (25.99%)
Taninu
14 sdxI nguTsnvesszuy lnadouTaiadiulsasu Yes 576 (43.02%)  No 763 (56.98%)
15  sdxJ ngulsavesszuuieladiulsnion Yes 543 (41.58%) No 763 (58.42%)
16 sdxK ngulsavesszuutesemisiiulsaiu Yes 392 (29.28%) No 947 (70.72%)
17 sdxN ngulsnvesszuuduiusiazmudndaanaiiu  ves 718 (53.62%)  No 621 (46.38%)
Tsnsam
18 et tube lanewierale Yes 450 (33.61%) No 889 (66.39%)
19 venltos  dlaniessienols <96 #2Tua Yes 291 (21.73%)  No 1,048 (78.27%)
20 ven gt 96 iHam3edseniole > 96 ¥ Tua Yes 340 (25.39%) No 999 (74.61%)
21 or car Hdia siamsmeatuszuuii laaznaeaiden Yes 278 (20.76%)  No 1,061 (79.24%)
22 or digest HfA KA AT LTLUUII 1IN Yes 145 (10.83%)  No 1,194 (89.17%)

M5190 3 uaasdeyaanIuzMITonTInAdeTInve il 1eat9 NN 159 Data preparation

f AMANHME NN Voyameadn

1 age 91y (1)) Mean = 61.85 S.D.=21.28

2 los SwuIuueulsaneuia (3u) Mean = 14.36 S.D.=18.66

3 gender INA Male 650 (48.54%) Female 689 (51.46%)

4 status_alive z*rmummvj’ﬂamﬁa ORVATRL Death 624 (46.60%) Alive 715 (53.40%)

5 depart AU Mode = MED - EHEﬁPﬂﬁﬁg 1,065 (79.54%)

6 pdx_sepsis Iiﬂ“ﬁﬁmﬂu Sepsis Yes 256 (19.12%) No 1,083 (80.88%)

7 sdx_sepsis T5a32mi1 Sepsis Yes 659 (49.22%) No 680 (50.78%)
8 sdx_septic Tsasauiu Septic shock Yes 438 (32.71%) No 901 (67.29%)
9 pdd ngulsavesszuuveludulsandn Yes 239 (17.85%) No 1100 (82.15%)
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A A a Al @ 3 . !
M5190 3 udasdoyaa Uz MITOATIN/AToTIAUeHT181AI91NN391 Data preparation (A9)

0 AMANYY ANNHINY Yoyamaada
10 pdxN ngu Isnvesszuuduwusiazmuaudaanziu Yes 147 (10.98%)  No 1,192 (89.02%)
Tsanan
11 sdxB ﬂa:1115ﬂﬁﬂﬁ:mmzﬂﬁﬁmﬂuiﬁﬂﬁ'm Yes 203 (15.16%)  No 1136 (84.84%)
12 sdxD ndulsaifiesen wie Tsnvoudeauaze fzaing Yes 543 (40.55%)  No 796 (59.45%)
eauazawAnlnAvseduena lnagidui
fulsaiu
13 sdxE ngulsadeu1ive Tayums uazwmueazuilu Yes 945 (70.58%)  No 394 (29.42%)
Tsnsm
14 sdxI ngulsavesszuy lnadouTaiimilulsaio Yes 618 (46.15%)  No 721 (53.85%)
15 sdxJ ngulsavesszuuwiluiulsasau Yes 505 (37.71%)  No 834 (62.29%)
16 sdxK nqulsnvesszuudesemsiiulsniu Yes 335 (25.02%)  No 1004 (74.98%)
17 sdxN ngulsavesszuuduiuiuasmadudaaizilu Yes 704 (52.58%)  No 635 (47.42%)
Tsnsau
18 et tube lanereela Yes 461 (34.43%)  No 878 (65.57%)
19 venltos  rlamsessaomels <96 #1Tua Yes 287 (21.43%)  No 1,052 (78.57%)
20 ven gt 96 launsestieniole > 96 1 Tus Yes 341 (25.47%)  No 998 (74.53%)
21 or_car rhda Waamsmeruszu laazvasaidon Yes 262 (19.57%)  No 1,077 (80.43%)
22 or digest Hda T3S UUEeR M Yes 145 (10.83%)  No 1,194 (89.17%)

' , v N '
M519% 4 uaasmanfiouifiena1nugNADa (Accuracy) MNUNTANT 1M (Area under the curve / AUC) A1 False

Negative Rate (FNR) Lag fin False Positive Rate (FPR)

amuzMsivig Joya 3 Accuracy  AUC FNR FPR
Improved/ Other  dauii1: NB 0.695 0.742 0.308 0.300
mgdaielunssumien LR 0.710 0.773 0.290 0.292

(Sepsis) DL 0.763 0.841 0.261 0.205

DT 0.731 0.759 0.274 0.263

GBT 0.760 0.851 0.272 0.195

dauii2: NB 0.703 0.754 0.304 0.290

Azion LR 0.711 0.777 0.295 0.282

(Septic shock) DL 0.758 0.839 0.281 0.182

DT 0.733 0.760 0.270 0.263

GBT 0.754 0.849 0.280 0.196
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v Y H
M523 4 naraamsnfFoufiouninnugnaes (Accuracy) AU 1AN5 1 (Area under the curve / AUC) 1 False

Negative Rate (FNR) 4ag fiN False Positive Rate (FPR) (GI' 9)

o 1 . - Accura
a|uUZMINHINY Yoya 5 AUC FNR FPR
cy
Death / Alive daui 3 : NB 0.684 0.746 0.306 0.329
Anrdaelunseua LR 0.706 0.766 0.289 0.299
1809 (Sepsis) DL 0.728 0.818 0.295 0.231
DT 0.741 0.763 0.237 0.283
GBT 0.755 0.838 0.264 0.214
Death / Alive dufi 4 NB 0.698 0.754 0.293 0.314
AMzFon LR 0.713 0.769 0.288 0.286
(Septic shock) DL 0.732 0.817 0.278 0.254
DT 0.744 0.767 0.239 0.275
GBT 0.757 0.836 0.270 0.197

H Y
m91ed 5 ngmssinneaaugmsivmihevesdihennzaaielunszuaden (Sepsis)

. A Confidence padnsanIuzMs
il iouly . A o
(!!Wﬂﬂﬂ%‘!iy]ﬂ 1 0Uq) MUY

1 los <= 1.5 and 68 < age <= 99 1.000 (3: 0) uwwémgtym
and pdxN = Yes and sdxE = No

2 los <= 2.5 and age > 18 and pdxJ = Yes 0.897 (26 : 3) !mﬂﬁﬁ)gq‘nﬂ

3% los<=2.5 and age > 18 and pdxJ = No 0.824 (14:3) unndoyan
and sdxD = No and pdxN = Yes

4*  los>2.5 and sdxJ = No and age <= 98 0.734 (1961 : 710) u‘wmiautym

5 los > 2.5 and sdxJ = Yes and age <= 5.5 0.708 (51 :21) u‘wmiautym

{ o o o 3 Y . .
HAEHA : *ﬂa‘ﬁuﬁﬂﬁﬂﬂﬂnnﬁﬁﬂuﬂu%']ﬂﬂ']ﬁ‘ﬂ']“Ll']flﬁﬂ']uzﬂ'ﬁfl]']ﬁu']mﬂ\?"llﬂﬂﬁﬂ'\lﬂ Sepsis LLa Septic shock
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v d
4 A4 Confidence NAANDTADIUTMT
il iouly , 4 o
(!!W‘Vlf]i)“lalillu1ﬂ : i’)“lrlcl) VU
1 1.5 <los <= 75.5 and sdxJ = Yes and age <= 5.5 ‘
1.000 (11 : 0) UNNgoUIN
and sdx_septic = No and ven It 96 = Yes
2 los <= 1.5 and 68 < age <=99 and pdxN = Yes .
1.000 (3 : 0) UNNgoUNIN
and sdxE = No
3 5.5 <los <=57.5 and sdxJ = Yes and age <= 5.5 .
0.895(34:4) UNNgoUNIN
and sdx_septic = No and ven_lt_96 =No
4* los <= 2.5 and age > 18 and pdxJ = No and sdxD = No ‘
0.824 (14 : 3) UNNgDUNIN
and pdxN = Yes
5% los > 2.5 and sdxJ = No and age <= 98 0.734 (1961 : 710) uwwéagt:gm

{ o o o 3 Y . .
HNBTHA : *ﬂgﬁuﬁmﬂﬂﬂun"riﬁauﬂ‘ui]Wﬂmimma’dmuzmii]mm&lmauamﬂ’m Sepsis LLag Septic shock

d‘ o aa a Aaa Y a d” A .
AN 7 ﬂaﬂﬁﬂWHWfJﬂWSSE]ﬂ%’JG]/LﬁEJGH’m"UEN@ﬂ?ﬂﬂn%@]ﬂw@iuﬂﬁzL!,ﬁm’t‘)ﬂ (Sepsis)

o d
4 A Confidence HAANTaDIUTNT
fi ol
A S Aa o \
(5003730 ; 1TETFIN) KU
1 2.5<los<=75.5 and age <= 4.5 and sdxJ = Yes 0.821 (55 : 12) s0ATIN
2% los > 2.5 and age <= 97.5 and sdxJ = No 0.760 (2015 : 637) 90T

: o o = =~ 3 V1 . .
Hawn : *ﬂg‘ﬁu’dmﬂﬂﬂmmﬁ’t‘]uﬂui]Tﬂmi‘1/1mwmiiﬂﬂ%’m/ﬁrﬂ%mmﬂmmﬂ’m Sepsis ag Septic shock

d' o aa A A Aa Y < .
AN 8 ﬂaﬂﬁ‘ﬂ11«!”IfJﬂTi’iE]ﬂ"]f’m1’iiﬂlﬁﬂﬂﬂﬁ“ﬂ’é}\mﬂiﬂﬂnzﬂfaﬂ (Septic shock)

v d
HaaNs
. . Confidence
= =)
n qouly o oan aNULTMI
(500370 : (AYFIN) L
Nvive
1*  los>2.5 and age <=97.5 and sdxJ = No 0.760 (2015 : 637) s0ATIN
2 1.5<los<=2.5 and age <= 99 and ven_lt_96 =No 0.681 (47 : 22) s0ATIN
and sdx_septic = No and sdxD = No
3 los>1.5 and 4.5 <age <= 101 and sdxJ = Yes 0.645 (1191 : 655) 50ATIN

¥ v

WNEg : *NgNuaaseonu e uiuINMINUIEMIToaTIn/AderIaN1ver1] e Sepsis 11ag Septic shock
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Business Data
Understanding understanding
Data
preparation

I ¥

DL DT GBT LR NB DL DT GBT LR NB DL DT GBT LR NB DL DT GBT LR NB

Sepsis Septic shock Sepsis Septic shock

Improved / Other Death / Alive

a = ' ' an
M 2 nsllSeueum Accuracy UDLUANSID
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AUC FNR FPR

7w 3 n5lSeudiey Decision Tree, Gradient Boosted Tree L& Logistic Regression
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