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บทคดัย่อ 
สารประกอบแอลดีไฮด์สายยาวถูกใชเ้ป็นตวัช้ีวดัทางการแพทยส์ าหรับการตรวจวดัโรคต่างๆ โดยแอลดีไฮด์สาย

ยาวดงักล่าวนั้น จะประกอบไปดว้ยสายโซ่ไฮโดรคาร์บอนและหมู่ฟอร์มิลซ่ึงสามารถใชเ้ป็นสารลดแรงตึงผิวส าหรับการเกิด
การจดัเรียงตวัเป็นไมเซลล์ ในงานวิจยัน้ีผูว้ิจยัอาศยัหลกัการของการจดัเรียงตวัของไมเซลล์แบบไม่สมบูรณ์ส าหรับการ
ตรวจวดัสารประกอบแอลดีไฮดส์ายยาว โดยกกัเก็บโมเลกุลเซ็นเซอร์ (HZ) ท่ีมีองคป์ระกอบของแนฟทาลีไมดแ์ละหมู่
ฟังกช์ัน่ไฮดราซีนไวใ้นไมเซลลด์งักล่าวซ่ึงเตรียมไดจ้ากสารลดแรงตึงผิว 2 ชนิด คือ สารลดแรงตึงผิว CTAB และสารลด
แรงตึงผวิร่วม (S1) เม่ือน าระบบเซ็นเซอร์นั้นไปตรวจวดัสารประกอบแอลดีไฮดส์ายยาวท าใหเ้กิดการจดัเรียงตวัของไมเซลล์
อยา่งสมบูรณ์และส่งผลให้เกิดการเปล่ียนแปลงของสัญญาณฟลูออเรสเซนต ์ยิ่งไปกวา่นั้นพบวา่สัญญาณฟลูออเรสเซนตท่ี์
เปล่ียนไปจะแปรผนัโดยตรงกบัความเขม้ขน้ของแอลดีไฮดส์ายยาวซ่ึงมีขีดจ ากดัของการตรวจวดั เท่ากบั 80.38 ไมโครโม
ลาร์ ในช่วงความเป็นเส้นตรง 0.03-0.33 มิลลิโมลาร์ ในสารละลาย 2.5 % DMSO/พีบีเอส บฟัเฟอร์ pH 7.4 

 

ABSTRACT 
 Long-chain aldehyde compounds are regarded as potential biomarkers of many diseases for biomedical 
applications. Apart from hydrophobic tails of long-chain hydrocarbon and formyl group of long-chain aldehydes, it should 
perform as surfactants to form the self-assembling organized micelles. In this research, the HZ-doped micellar probes 
towards aldehyde have been achieved in the concept of incomplete micelle, which was prepared by CTAB and co-
surfactant (S1) upon the challenge optimizing task. The micelles could form the complete micelle by long-chain aldehyde 
as a target analyte based on a self-assembling organized nanomicelles.  The fluorescence intensity of fluorescent dye 
incorporated in incomplete micelle was enhanced upon the addition of long-chain aldehyde to form the complete micelles. 
Moreover, the fluorescence change of dye-doped micelles is proportional to the amount of long-chain aldehyde added 
with the limit of detection (LOD) of 80.38 µM in the linear concentration range of 0.03 to 0.33 mM in 2.5% DMSO/PBS 
buffer pH 7.4. 
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บทน า 
 โรคมะเร็งปอดเป็นสาเหตุหลกัของการเสียชีวิตของประชากรไทย  โดยมะเร็งปอดเกิดจากการเจริญเติบโตของ
เซลลใ์นเน้ือเยื่อปอดอยา่งควบคุมไม่ไดแ้ละยงัแพร่กระจายไปสู่ส่วนต่างๆของร่างกาย เซลลม์ะเร็งปอดแบ่งเป็น 2 ประเภท
ตามขนาดเซลล ์คือ เซลลม์ะเร็งปอดชนิดเซลลเ์ลก็ (small cell lung cancer)  และ เซลลม์ะเร็งปอดชนิดไม่ใช่เซลลเ์ลก็ (non-
small cell lung cancer) [1] ส าหรับปัจจยัเส่ียงท่ีส าคญัท่ีก่อใหเ้กิดโรคมะเร็งปอด คือ การสูบบุหร่ี [2] เน่ืองจากภายในบุหร่ีมี
สารท่ีท าลายเซลล์เน้ือเยื่อปอด อย่างไรก็ตามอาการของโรคมะเร็งปอดมกัจะไม่แสดงอาการในระยะเร่ิมตน้แต่จะแสดง
อาการในระยะท่ีเซลลม์ะเร็งลุกลามแลว้ ดงันั้นการตรวจคดักรองโรคมะเร็งปอดจึงเป็นส่ิงส าคญัท่ีท าใหแ้พทยส์ามารถตรวจ
พบและรักษามะเร็งไดอ้ยา่งทนัท่วงที การตรวจเบ้ืองตน้ส าหรับโรคมะเร็งปอดมีดว้ยกนัหลายวิธี ยกตวัอยา่งเช่น การส่อง
กลอ้งตรวจภายในหลอดลม (bronchoscopy) การใชเ้ขม็ขนาดเลก็ตดัช้ินเน้ือ (fine-needle aspiration) การตรวจช่องกลาง
ทรวงอกโดยการส่องกลอ้ง (mediastinoscopy) การตรวจดว้ยเคร่ืองเอ็กซเรยค์อมพิวเตอร์ (CT scan) การตรวจโดยใชค้ล่ืน
แม่เหลก็ไฟฟ้า (MRI) และการตรวจดว้ยเคร่ือง PET scan (position emission tomography scan) [3] แต่อยา่งไรกต็าม ใน
ปัจจุบนันั้นยงัไม่มีการตรวจวดัโรคมะเร็งปอดแบบง่าย ไม่ยุง่ยากซบัซอ้น และใชเ้คร่ืองมือราคาไม่แพง 

ส าหรับเลือดและลมหายใจของผูป่้วยโรคมะเร็งปอดจะมีสารประกอบแอลดีไฮดส์ายยาว [4]  อาทิเช่น เฮกซานาล 
(hexanal) เฮปทานาล (heptanal) ออกทานาล (octanal) และ โนนานาล (nonanal) ดงันั้นแอลดีไฮดส์ายยาวจึงถูกใชเ้ป็น
ตวัช้ีวดัทางชีวภาพของผูป่้วยโรคมะเร็งปอดได ้[5-6] ยิง่ไปกวา่นั้นแอลดีไอดส์ายยาว เช่น เฮกซานาล ยงัสามารถใชเ้ป็นตวั
บ่งบอกถึงคุณภาพของผลิตภณัทไ์ขมนัและน ้ ามนัได ้เน่ืองจากการเกิดปฏิกิริยาออกซิเดชัน่ (oxidation) บริเวณพนัธะคู่ของ
กรดไขมนั [7-8] ดงันั้นการตรวจวดัแอลดีไฮด์สายยาวจึงมีความส าคญัทั้งในดา้นการแพทยแ์ละดา้นอุตสาหกรรมอาหาร 
ส าหรับเทคนิคท่ีใชก้ารตรวจวดัสารประกอบแอลดีไฮด์สายยาวในปัจจุบนั ไดแ้ก่ เทคนิคแก็สโครมาโตกราฟแมสเปกโตร
มิเตอร์ (GC-MS) [9-10] และเทคนิคโครมาโตกราฟีสมรรถภาพสูง (HPLC) [11] แต่เทคนิคดงักล่าวเป็นเทคนิคท่ีราคาสูงตอ้ง
อาศยัประสบการณ์ในการวิเคราะห์และความยุง่ยากในการเตรียมสารตวัอยา่ง ดงันั้นเทคนิคฟลูออเรสเซนตจึ์งเป็นเทคนิคท่ี
น่าสนใจส าหรับการตรวจวดัสารประกอบแอลดีไฮดส์ายยาว เน่ืองจากเป็นเทคนิคท่ีเตรียมตวัอยา่งไดง่้าย ราคาถูก และเป็น
มิตรต่อส่ิงแวดลอ้ม โดยตวัตรวจวดัทางฟลูออเรสเซนต์ส าหรับสารประกอบแอลดีไฮด์ ท่ีมีผูว้ิจัยแลว้นั้น จะอาศยัการ
เกิดปฏิกิริยาระหวา่งหมู่ฟอร์มิลของแอลดี์ไฮด ์กบั หมู่ไฮดราซีน (hydrazine) [12] 

จากงานวจิยัของ Tang Y. และคณะ [13] ไดศึ้กษาถึงการตรวจวดัฟอร์มาดีไฮดใ์นไลโซโซม (lysosome)โดยติดตาม
การเปล่ียนแปลงของสัญญาณฟลูออเรสเซนต ์ในงานวิจยัน้ี  สารเรืองแสง (fluorescent dye) จะมีหมู่ไฮดราซีนท่ีท าหนา้ท่ี
เกิดปฏิกิริยากบัฟอร์มาดีไฮดผ์า่นปฏิกิริยาการควบแน่น (condensation) นอกจากนั้น Mukherjee K. และคณะ [14] ไดศึ้กษา
การตรวจวดัสารประกอบคาร์บอนิล โดยในงานวิจยัน้ี ไดใ้ช ้เบนโซคอร์มารีน (benzocoumarin) เป็นสารเรืองแสง และมี
บริเวณการเกิดปฏิกิริยา คือ หมู่ไฮดราซีน จากท่ีกล่าวมาทั้งหมดจะเห็นไดว้า่ หมู่ไฮดราซีนเป็นหมู่ฟังกช์ัน่ท่ีน่าสนใจส าหรับ
การตรวจวดัแอลดีไฮด ์

ในปัจจุบนัไมเซลลถ์กูน ามาใชอ้ยา่งกวา้งขวางทั้งในดา้นเภสัชกรรม อาหารและเคร่ืองส าอาง  [15-17]  เน่ืองจากไม
เซลลมี์ความสามารถในการละลายน ้าไดดี้และเป็นมิตรต่อส่ิงแวดลอ้ม ไมเซลลเ์ป็นโครงสร้างท่ีเกิดจากกระบวนการการเรียง
ตวักนัเอง (self-assembly) ของสารลดแรงตึงผิว (surfactants) ซ่ึงประกอบไปดว้ย ส่วนท่ีไม่มีขั้ว (non-polar) คือ สายโซ่
ไฮโดรคาร์บอน และส่วนท่ีมีขั้ว (polar) คือ ส่วนท่ีมีประจุไฟฟ้าหรือหมู่ฟังกช์ัน่ ส าหรับการจดัเรียงตวักนัเองของไมเซลลใ์นน ้า 
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(aqueous solution) จะหันส่วนมีขั้วเขา้สู่วฏัภาคน ้ า (water phase) และหันส่วนไม่มีขั้วเขา้สู่วฏัภาคน ้ ามนั (oil phase) 
ก่อให้เกิดส่วนกลางท่ีไม่มีขั้ว (hydrophobic core) ซ่ึงมีความสามารถในการกกัเก็บ (encapsulation) สารเรืองแสง 
(fluorescent dye) ส่งผลท าใหก้ารละลายน ้าและคุณสมบติัเชิงแสง (optical property) ดีข้ึนอีกดว้ย [18-19] ส าหรับความ
เขม้ขน้ของสารลดแรงตึงผิวท่ีท าให้เกิดการจดัเรียงตวัแบบไมเซลลอ์ยา่งสมบูรณ์ เรียกวา่ ความเขม้ขน้วิกฤตของการเกิดไม
เซลล ์(critical micelle concentration) ดงันั้นการจดัเรียงตวัไมเซลลแ์บบสมบูรณ์ (complete micelles) จะเกิดข้ึนไดต่้อเม่ือ
ความเขม้ขน้ของสารลดแรงตึงผิวสูงกวา่ความเขม้ขน้วิกฤตของการเกิดไมเซลล ์ในทางกลบักนั เม่ือใชค้วามเขม้ขน้ของสาร
ลดแรงตึงผิวต ่ากว่าความเขม้ขน้วิกฤตของการเกิดไมเซลล ์จะเกิดการจดัเรียงตวัเป็นไมเซลลแ์บบไม่สมบูรณ์ (incomplete 
micelles) ส าหรับสารลดแรงตึงผิวท่ีเหมาะสมส าหรับการกกัเก็บสารเรืองแสงควรมีความสามารถในพฒันาคุณสมบติัเชิง
แสงไดอ้ยา่งมีประสิทธิภาพหรือสามารถใหก้ารเรืองแสงสูงสุด นอกจากนั้นสารลดแรงตึงผิวร่วม (S1) ไดถู้กน ามาใชร่้วมกบั
สารลดแรงตึงผิว เน่ืองจากคณะผูว้ิจยัคาดว่า การเพ่ิมข้ึนของความไม่ชอบน ้ า (hydrophobicity) ของวสัดุเซ็นเซอร์จะ
เหน่ียวน าท าให้สารประกอบแอลดีไฮด์สายยาวเขา้มาเกิดปฏิกิริยากบัโมเลกุลเซ็นเซอร์ภายใน และส่งผลท าให้สัญญาณ
ฟลอูอเรสเซนตเ์ปล่ียนแปลงไป [20]   

จากคุณสมบติัของสารประกอบแอลดีไฮดส์ายยาวท่ีประกอบดว้ยสายไฮโดรคาร์บอนและหมู่ฟอร์มิล คณะผูว้ิจยัจึง
คาดว่าสารประกอบแอลดีไฮด์สายยาวสามารถเป็นสารลดแรงตึงผิวได ้ดงันั้นในงานวิจัยน้ี คณะผูว้ิจัยจึงไดศึ้กษาการ
ตรวจวดัแอลดีไฮด์สายยาวโดยอาศยัหลกัการของไมเซลล ์คือการกกัเก็บโมเลกุลเซ็นเซอร์ไวภ้ายในไมเซลลท่ี์ไม่สมบูรณ์ 
และน าระบบเซ็นเซอร์ดงักล่าวไปตรวจวดัแอลดีไฮดส์ายยาวซ่ึงเป็นโมเลกุลท่ีมีส่วนไม่ชอบน ้ าและหมู่ฟอร์มิลท่ีน่าจะช่วย
การจดัเรียงตวัเป็นไมเซลล์ท่ีสมบูรณ์ได ้ แลว้ส่งผลท าให้โมเลกุลฟลูออเรสเซนตท่ี์ถูกกกัเก็บอยูใ่นไมเซลลใ์ห้ค่าสัญญาณ
ฟลอูอเรสเซนตท่ี์เปล่ียนแปลงไป   ดงันั้นจึงสามารถหาปริมาณของสารประกอบแอลดีไฮดส์ายยาวจากการเปล่ียนแปลงของ
สัญญาณฟลูออเรสเซนตไ์ด ้

 
วตัถุประสงค์ของงานวจิยั 

เพื่อศึกษาการตรวจวดัแอลดีไฮดส์ายยาวโดยอาศยัหลกัการของไมเซลล์จากการเปล่ียนแปลงของสัญญาณฟลูออ
เรสเซนต ์
 

สารเคมีและวธีิการวจิยั  
Sodium dodecyl sulfate (SDS), Cetrimonium bromide (CTAB), Triton X-100, Sodium dihydrogen phosphate 

(NaH2PO4), Disodium hydrogen phosphate (Na2HPO4), Trifluoroacetic acid (CF3COOH), Ethylene glycol monomethyl 
ether (EGME), 4-bromo-1,8-naphthalic anhydride (C12H5BrO3), Pyridine (C5H5N), Aniline (C6H5NH2), Hydrazine 
monohydrate (N2H4·H2O), 6-mercaptohexanol (C6H14OS) จากบริษทั Merck, Sigma, TCI และ Fluka  

การสังเคราะห์โมเลกุลเซ็นเซอร์ท่ีมีหมู่ไฮดราซีนเป็นองคป์ระกอบ (HZ) มีขั้นตอนการสังเคราะห์ (ดงัภาพท่ี 1) 
ดงัน้ี 

1. เติมวงเบนซีนแก่โมเลกุล 4-โบรโม-1, 8-แนฟทาลีไมด์ (4-bromo-1, 8-napthalimide) ท่ีใชเ้ป็นสารตั้งตน้จาก
ปฏิกิริยาการแทนท่ีของอะนิลีน (aniline) โดยใชไ้พริดีน (pyridine) เป็นตวัเร่งปฏิกิริยา 
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2. เติมหมู่ไฮดราซีนท่ีท าหนา้ท่ีเป็นบริเวณของการเกิดปฏิกิริยาลงไปในโมเลกุล 1 และเติมโปรตอนแก่หมู่ไฮดรา
ซีนโดยใชก้รดไตรคลอโรอะซิติก (CF3COOH, TFA) จากนั้นตกผลึกในตวัท าละลายผสมเมทานอล:เฮกเซน (1:4)  

 
ภาพที ่1 แสดงการสังเคราะห์โมเลกุลเซ็นเซอร์ (HZ) 

 

การศึกษาสภาวะท่ีเหมาะสมของระบบไมเซลลใ์นการกกัเกบ็โมเลกุลเซ็นเซอร์ (HZ) ประกอบดว้ยสารลดแรงตึง
ผวิ คือ CTAB,  Triton X-100 และ SDS และสารลดแรงตึงผวิร่วม คือ โมเลกลุ S1 ดงัภาพท่ี 2 

 
ภาพที ่2 สารลดแรงตึงผวิ CTAB, Triton X-100, SDS และ S1 

 

การเตรียมไมเซลลส์ าหรับการกกัเกบ็โมเลกลุเซ็นเซอร์ HZ เพ่ือน าไปตรวจวดัสารประกอบแอลดีไฮดส์ายยาวใน
ระบบ 2.5 % DMSO/ พีบีเอส บฟัเฟอร์ pH 7.4 มีขั้นตอนดงัน้ี 

1. เติมสารลดแรงตึงผิว (surfactants) และสารลดแรงตึงผวิร่วม (co-surfactants)ในสารละลายพีบีเอส บฟัเฟอร์ pH 
7.4  และคนอยา่งต่อเน่ือง 

2. เติมโมเลกลุเซ็นเซอร์ HZ ลงไปในสารละลาย จากนั้นคนอยา่งต่อเน่ืองเพ่ือใหเ้กิดการกกัเกบ็โมเลกลุ HZ ภายใน
ไมเซลล ์ 

 
ภาพที ่3 การเตรียมวสัดุเซ็นเซอร์ HZ/CTAB/S1 ในระบบ 2.5 % DMSO/ พีบีเอสบฟัเฟอร์ pH 7.4 
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การพิสูจน์เอกลกัษณ์ของโมเลกุลเซ็นเซอร์ HZ ดว้ยเทคนิคนิวเคลียร์แมกเนติกเรโซแนนซ์สเปกโตรสโคปี (NMR 
spectroscopy) แมสสเปกโตรเมทรี (Mass spectrometry) และ อินฟราเรดสเปกโทรสโกปี (Fourier transform infrared 
spectroscopy, FTIR; Nicolet 6700 FT-IR)  ส าหรับอนุภาคนาโนไมเซลลไ์ดท้  าการพิสูจน์เอกลกัษณ์ดว้ยกลอ้งจุลทรรศน์
อิเลก็ตรอนแบบส่องผา่น (Transmission electron microscopy, TEM; JEOL JEM 2010)  และติดตามการเปล่ียนแปลง
คุณสมบติัเชิงแสงของตวัตรวจวดัดว้ยเทคนิคยวูี-วิสซิเบิล (UV-visible spectroscopy; Varian Cary 50) และเทคนิคฟลอูอเรส
เซนซ์สเปกโทรสโกปี (Fluorescence spectroscopy; Varian spectrofluorometer)  
 ส าหรับการตรวจวดัแอลดีไฮดส์ายยาว เช่น เฮปทานาล โดยวสัดุเซ็นเซอร์ HZ/CTAB/S1 จากการติดตามการ
เปล่ียนแปลงของสัญญาณฟลอูอเรสเซนซ์ วสัดุเซ็นเซอร์ HZ/CTAB/S1 จะท าปฏิกิริยากบัเฮปทานาลเป็นเวลา 20 นาที ท่ี
อุณหภูมิหอ้ง ภายใตร้ะบบ 2.5% DMSO/ พีบีเอส บฟัเฟอร์ และขีดจ ากดัการตรวจวดั (Limit of detection, LOD) ค านวณได้
จากสมการ 

     LOD = 
   

     
 

 

ผลการวจิยัและอภปิราย 
1. การพสูิจน์เอกลกัษณ์ของโมเลกุลเซ็นเซอร์ (HZ)   
การพิสูจน์เอกลกัษณ์ของโมเลกุลเซ็นเซอร์ HZ  ดว้ยเทคนิค 1H-NMR (400 MHz, d6-DMSOd6-DMSO): δ (in ppm) = 

9.24 (s, 1 H, NH), 8.59 (d, J = 7.6 Hz, 2 H, ArH), 8.41 (d, J = 6.6 Hz, 2 H, ArH), 8.28 (d, J = 8.3 Hz, 2 H, ArH), 7.64 (s, 2 
H, ArH), 7.21 (d, J = 8.6 Hz, 2 H, ArH), 5.53 (s, 2 H, NH2) และ  ดว้ยเทคนิคแมสสเปกโตรเมทรี ค  านวณ  [C18H14N3O2]

+ 
m/z = 304.11 พบ m/z = 303.50 จากนั้นไดว้เิคราะห์หมู่ฟังกช์ัน่ของโมเลกลุเซ็นเซอร์ HZ ดว้ยเทคนิค FT-IR พบวา่ ใหพี้คท่ี 
3336.1 3288.9 และ 3225.9 cm-1 ซ่ึงแสดงถึงหมู่ฟังกช์ัน่ของไฮดราซีน และใหพี้คท่ี 1625.8 และ 1570.7 cm-1 แสดงถึงหมู่
คาร์บอนิลภายในโมเลกลุเซ็นเซอร์ HZ และพีคท่ี 1535.8 1467.5 และ1438.7 cm-1 แสดงถึงพนัธะคู่ (C=C) ของวงอะโรมาติก 

2. การหาระบบไมเซลล์ทีเ่หมาะสมส าหรับการกกัเกบ็โมเลกลุเซ็นเซอร์ HZ 
ในงานวิจยัน้ี ผูว้ิจยัศึกษาสารลดแรงตึงผิว 3 ชนิด ไดแ้ก่ CTAB  Triton X-100 และ SDS  ในการกกัเก็บโมเลกุล

เซ็นเซอร์ HZ  ในระบบ 2.5 % DMSO/ พีบีเอส บฟัเฟอร์ pH 7.4 พบวา่ สารลดแรงตึงผิว CTAB เป็นสารลดแรงตึงผิวท่ี
เหมาะสมท่ีสุดเน่ืองจากใหค้่าสัญญาณฟลูออเรสเซนตสู์งท่ีสุด (ภาพท่ี 4ก) ซ่ึงคาดวา่เป็นผลมาจากแรงดึงดูดของอิเลค็ตรอน
คู่โดดเด่ียวของไนโตรเจนท่ีหมู่ไฮดราซีนและประจุบวกของสารลดแรงตึงผิว CTAB  ส่งผลท าใหโ้มเลกุล HZ ในไมเซลลท่ี์
เกิดจากสารลดแรงตึงผิว CTAB ให้ค่าสัญญาณฟลูออเรสเซนตสู์งท่ีสูดเม่ือเทียบกบัสารลดแรงตึงผิวชนิดอ่ืน ซ่ึงเป็นผลมา
จากไมเซลล ์CTAB สามารถกกัเกบ็โมเลกุล HZ ไดดี้ท่ีสุด จากนั้นผูว้ิจยัไดศึ้กษาถึงความเขม้ขน้วิกฤตของสารลดแรงตึงผิว 
CTAB ต่อโมเลกลุเซ็นเซอร์ HZ  พบวา่ มีค่าความเขม้ขน้วกิฤต เท่ากบั 1.25 มิลลิโมลาร์ (ภาพท่ี 4ข)  
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ภาพที่ 4 (ก) สเปกตรัมฟลอูอเรสเซนตข์องโมเลกลุเซ็นเซอร์ (HZ) ภายใตส้ารลดแรงตึงผิว CTAB,  Triton X-100 และ SDS 

ใน 2.5 % DMSO/ พีบีเอส บฟัเฟอร์ pH 7.4 (ความยาวคล่ืนกระตุน้ 445 นาโนเมตร), (ข) กราฟแสดงความเขม้ขน้
วิกฤต (CMC) ของสารลดแรงตึงผวิ CTAB ใน 2.5 % DMSO/ พีบีเอส บฟัเฟอร์ pH 7.4 

 
 จากนั้น ผูว้ิจยัเลือกใชส้ารลดแรงตึงผิว CTAB ท่ีความเขม้ขน้ต ่ากว่าความเขม้ขน้วิกฤตในการกกัเก็บโมเลกุล
เซ็นเซอร์ HZ ใน 2.5 % DMSO/ พีบีเอส บฟัเฟอร์ pH 7.4 เน่ืองจากผูว้ิจยัตอ้งการระบบเซ็นเซอร์ท่ีมีการจดัการเรียงไมเซลล์
แบบไม่สมบูรณ์ อยา่งไรกต็าม พบวา่ โมเลกุลเซ็นเซอร์ HZ ภายใตส้ารลดแรงตึงผิว CTAB (HZ/CTAB) ใน 2.5 % DMSO/ 
พีบีเอส บฟัเฟอร์ pH 7.4  ดงักล่าว ไม่ใหค้วามจ าเพาะต่อการตรวจวดัสารประกอบแอลดีไฮดส์ายยาว ดงัภาพท่ี 5ก ดงันั้น
ผูว้ิจยัจึงศึกษาสารลดแรงตึงผิวร่วมควบคู่กบัสารลดแรงตึงผิว CTAB สารลดแรงตึงผิวร่วมดงักล่าว คือ โมเลกุล S1 พบว่า
อตัราส่วนท่ีเหมาะสมระหวา่ง CTAB และ S1 คือ 1:0.83 (ภาพท่ี  5ข) เน่ืองจากให้ค่าสัญญาณฟลูออเรสเซนตข์องวสัดุ
เซ็นเซอร์ HZ/CTAB/S1 สูงท่ีสุดเม่ือน าไปตรวจวดัเฮปทานาลท่ีความเขม้ขน้ 0.25 มิลลิโมลาร์ ยิ่งไปกวา่นั้นวสัดุเซ็นเซอร์ 
HZ/CTAB/S1 ใน 2.5 % DMSO/ พีบีเอส บฟัเฟอร์ pH 7.4 ใหค้วามจ าเพาะจงต่อการตรวจวดัสารประกอบแอลดีไฮดส์าย
ยาว ดงัภาพท่ี 5ค  เน่ืองจากเม่ือวสัดุเซ็นเซอร์ HZ/CTAB/S1 มีองคป์ระกอบของสารลดแรงตึงผิว CTAB และ S1 ท่ีมีสมบติั
ความไม่ชอบน ้ า (hydrophobicity) เพ่ิมข้ึนเม่ือเปรียบเทียบกบัวสัดุเซ็นเซอร์ HZ/CTAB  ส่งผลท าให้แอลดีไฮด์สายยาว
อยา่งเช่นเฮปทานาล สามารถถูกเหน่ียวน าเขา้ไปเกิดปฏิกิริยากบัโมเลกุลเซ็นเซอร์ HZ ภายในวสัดุเซ็นเซอร์ HZ/CTAB/S1 
และช่วยใหมี้การจดัเรียงตวัเป็นไมเซลลท่ี์สมบูรณ์ยิง่ข้ีนเม่ือเทียบกบัแอลดีไฮดช์นิดอ่ืน 
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ภาพที่ 5  (ก) กราฟแท่งแสดงความเขม้ของสัญญาณฟลอูอเรสเซนตส์ัมพทัธ์ท่ี 542 นาโนเมตร ของวสัดุเซ็นเซอร์ HZ/CTAB 

หลงัท าปฏิกิริยากบัสารประกอบแอลดีไฮดแ์ต่ละชนิด (ความเขม้ขน้ 0.25 มิลลิโมลาร์) ใน 2.5 % DMSO/ พีบีเอส 
บฟัเฟอร์ pH 7.4, (ข) กราฟแสดงความเขม้ของสัญญาณฟลูออเรสเซนตส์ัมพทัธ์ท่ี 542 นาโนเมตรต่ออตัราส่วนของ
สารลดแรงตึงผิวระหวา่ง CTAB และ S1  หลงัท าปฏิกิริยากบัเฮปทานาล ความเขม้ขน้ 0.25 มิลลิโมลาร์ ใน 2.5 % 
DMSO/ พีบีเอส บฟัเฟอร์ pH 7.4, (ค) กราฟแท่งแสดงความเขม้ของสัญญาณฟลูออเรสเซนตส์ัมพทัธ์ท่ี 542 นาโน
เมตรของวสัดุเซ็นเซอร์ HZ/CTAB/S1 หลงัท าปฏิกิริยากบัสารประกอบแอลดีไฮดแ์ต่ละชนิด (ความเขม้ขน้ 0.25 
มิลลิโมลาร์) ใน 2.5 % DMSO/ พีบีเอส บฟัเฟอร์ pH 7.4 (ความยาวคล่ืนกระตุน้ 445 นาโนเมตร) 

 

3. การพสูิจน์เอกลกัษณ์ของวสัดุเซ็นเซอร์ HZ/CTAB/S1 
การวดัขนาดของวสัดุเซ็นเซอร์ HZ/CTAB/S1 ด้วยกลอ้งจุลทรรศน์อิเล็กตรอนแบบส่องผ่าน (Transmission 

electron microscopy, TEM ) พบวา่ วสัดุเซ็นเซอร์ HZ/CTAB/S1 มีรูปร่างเป็นทรงกลม (spherical) ท่ีมีขนาดเฉล่ีย 5.39 ± 
1.03  นาโนเมตร (ภาพท่ี 6ก) และเม่ือน าวสัดุเซ็นเซอร์ดงักล่าวไปท าปฏิกิริยากบัเฮปทานาลความเขม้ขน้ 0.25 และ 0.50 มิลลิ
โมลาร์ ใน 2.5 % DMSO/ พีบีเอสบฟัเฟอร์ pH 7.4 พบวา่ ไมเซลลจ์ะมีขนาดเพ่ิมข้ึนโดยมีขนาดเฉล่ียประมาณ 22.38 ± 5.49 
และ 30.19 ± 7.28 นาโนเมตร ตามล าดบั ดงัภาพท่ี 6ข และ 6ค การเพ่ิมข้ึนของขนาดไมเซลลด์งักล่าวนั้น สามารถใชใ้นการ
ยนืยนัถึงการเกิดปฏิกิริยาระหวา่งวสัดุเซ็นเซอร์และเฮปทานาล ซ่ึงเป็นผลมาจากเฮปทานาลไดเ้ขา้ไปจดัเรียงตวัเป็นไมเซลล์
ท่ีสมบูรณ์ข้ึนของวสัดุเซ็นเซอร์ HZ/CTAB/S1 และส่งผลท าใหเ้กิดการรวมตวัของไมเซลลใ์หมี้ขนาดใหญ่ข้ึน 

 

 
 
ภาพที่ 6 ภาพถ่ายกลอ้งจุลทรรศน์อิเลก็ตรอนแบบส่องผา่นของวสัดุเซ็นเซอร์ HZ/CTAB/S1 ก่อน (ก) และหลงัท าปฏิกิริยา

กบัเฮปทานาลความเขม้ขน้ 0.25 มิลลิโมลาร์ (ข) และ 0.50 มิลลิโมลาร์ (ค) ใน 2.5% DMSO/พีบีเอส บฟัเฟอร์ pH 7.4 
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4. คุณสมบัตเิชิงแสงของวสัดุเซ็นเซอร์ HZ/CTAB/S1 
จากภาพท่ี 7ก พบวา่โมเลกลุเซ็นเซอร์ HZ ในสารละลายพีบีเอส บพัเฟอร์ pH 7.4 (HZ/PBS buffer pH 7.4) และ

วสัดุเซ็นเซอร์ HZ/CTAB/S1 ภายใตร้ะบบ 2.5 % DMSO/ พีบีเอส บฟัเฟอร์ pH 7.4 ใหค้่าการดูดกลืนแสงสูงสุดท่ีความยาว
คล่ืน 445 นาโนเมตร โดยทั้ง 2 ระบบเซ็นเซอร์ใหส้มบติัการดูดกลืนแสงคลา้ยกนั ส าหรับการศึกษาสมบติัการคายแสงของ
ทั้ง 2 ระบบเซ็นเซอร์ในสารละลายพีบีเอส บพัเฟอร์ pH 7.4 พบวา่  โมเลกลุเซ็นเซอร์ HZ ใหค้วามเขม้การคายแสงฟลูออเรส
เซนตต์  ่ามาก เม่ือเทียบกบัวสัดุเซ็นเซอร์ HZ/CTAB/S1 ท่ีใหค้วามเขม้การคายแสงฟลอูอเรสเซนตสู์งมาก ดงัภาพท่ี 7ข ซ่ึง
คาดวา่เป็นผลมาจากไมเซลลส์ามารถป้องกนัการเกิดอนัตรกิริยาระหวา่งตวัตรวจวดัทางฟลอูอเรสเซนตแ์ละโมเลกุลของน ้า
ได ้และการกกัเกบ็โมเลกลุเซ็นเซอร์ HZ ในไมเซลลย์งัช่วยท าใหโ้มเลกลุเซ็นเซอร์มีความแขง็เกร็ง (rigidity) มากข้ึน  ส่งผล
ท าใหก้ารคายแสงของโมเลกลุเซ็นเซอร์ HZ ท่ีถกูกกัเกบ็ในไมเซลลมี์ค่าสูงข้ึน   

 
 
ภาพที่ 7 (ก) สเปกตมัการดูดกลืนแสง และ (ข) สเปกตรัมฟลอูออเรสเซนตร์ะบบเซ็นเซอร์ ในสารละลายพีบีเอส บฟัเฟอร์ 

pH 7.4 (ความยาวคล่ืนกระตุน้ เท่ากบั 445 นาโนเมตร) 
 

5. การตรวจวดัแอลดไีฮด์สายยาวด้วยวสัดุเซ็นเซอร์ HZ/CTAB/S1 
การตรวจวดัสารประกอบแอลดีไฮดส์ายยาว เช่น เฮปทานาล ดว้ยระบบวสัดุเซ็นเซอร์ HZ/CTAB/S1 โดยอาศยัการ

เปล่ียนแปลงของสัญญาณฟลอูอเรสเซนต ์พบวา่เม่ือความเขม้ขน้ของเฮปทานาลเพ่ิมข้ึนจะส่งผลท าใหค้่าสัญญาณของฟลูออ
เรสเซนตมี์ค่าเพ่ิมข้ึน ซ่ึงคาดวา่ เกิดจากหมู่ฟอร์มิลของแอลดีไฮด์ท าปฏิกิริยากบัไฮดราซีนบนโมเลกุลเซ็นเซอร์ HZ ในไม
เซลล ์เกิดเป็นโมเลกุลเซ็นเซอร์ท่ีมีสายยาวช่วยใหมี้การจดัเรียงตวัเป็นไมเซลลท่ี์หนาแน่นหรือสมบูรณ์มากข้ึน จึงยบัย ั้งการ
เกิดอนัตรกิริยาระหว่างเซ็นเซอร์โมเลกุลในไมเซลล์กบัน ้ าและส่งผลท าให้เกิดการยบัย ั้งกระบวนการถ่ายเทอิเล็กตรอน 
(Photoinduced-electron transfer, PET) อนัเป็นผลมาจากปฏิกิริยาควบแน่นระหว่างหมู่ไฮดราซีนและแอลดีไฮด์เกิดเป็น
สารประกอบไฮดราโซน (hydrazone)  ส่งผลท าให้ค่าพลงังงาน LUMO และ HOMO เปล่ียนแปลงไปจากเดิม และท าใหไ้ด้
สัญญาณฟลอูอเรสเซนตสู์งข้ึน [12] 
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ภาพที่ 8 ความเขม้ของสัญญาณฟลูอออเรสเซนตท่ี์ 542 นาโนเมตร ของโมเลกุลเซ็นเซอร์ HZ ใน 2.5 % DMSO/ พีบีเอส 

บฟัเฟอร์ pH 7.4 (HZ/PBS buffer pH 7.4, blank), วสัดุเซ็นเซอร์ HZ/CTAB/S1 และวสัดุเซ็นเซอร์ HZ/CTAB/S1 
เม่ือท าปฏิกิริยากบัเฮปทานาลท่ีความเขม้ขน้ 0.25 มิลลิโมลาร์ ภายใตร้ะบบ 2.5 % DMSO/ พีบีเอส บฟัเฟอร์ pH 7.4 
(ความยาวคล่ืนกระตุน้ เท่ากบั 445 นาโนเมตร) 

 
 จากภาพท่ี 8 แสดงการเปล่ียนแปลงของสัญญาณฟลูออเรสเซนตข์องโมเลกุลเซ็นเซอร์ HZ และวสัดุเซ็นเซอร์ 
HZ/CTAB/S1 ภายใตร้ะบบ 2.5 % DMSO/ พีบีเอส บฟัเฟอร์ pH 7.4  พบวา่ค่าสัญญาณฟลอูอเรสเซนตข์องโมเลกุลเซ็นเซอร์ 
HZ ในระบบพีบีเอสบพัเฟอร์ จะมีค่าเพ่ิมสูงข้ึนและไม่คงท่ีเม่ือเวลาผา่นไป ซ่ึงคาดวา่เกิดจากความไม่เสถียรของหมู่ฟังกช์ัน่
ไฮดราซีนของโมเลกุลเซ็นเซอร์ HZ ในสภาวะสารละลายบฟัเฟอร์ซ่ึงมีน ้าเป็นองคป์ระกอบ และเม่ือกกัเกบ็โมเลกุล HZ ใน
ระบบไมเซลล ์CTAB/S1 (HZ/CTAB/S1) ภายใตร้ะบบ 2.5 % DMSO/ พีบีเอสบฟัเฟอร์ pH 7.4   พบวา่ ค่าสัญญาณฟลูออ
เรสเซนตข์องตวัตรวจวดั HZ ในระบบไมเซลล ์ (HZ/CTAB/S1) จะมีค่าสูงกวา่โมเลกุลเซ็นเซอร์ท่ีไม่ถูกกกัเกบ็ในไมเซลล ์
และคงท่ีเม่ือเวลาผ่านไป 60 นาที ซ่ึงคาดว่าเกิดจากไมเซลล ์CTAB/S1 สามารถกกัเก็บโมเลกุลเซ็นเซอร์ HZ ไดอ้ยา่ง
สมบูรณ์ จากนั้นน าวสัดุเซ็นเซอร์ HZ/CTAB/S1ไปตรวจวดัเฮปทานาลท่ีความเขม้ขน้ 0.25 มิลลิโมลาร์ ในระบบ 2.5 % 
DMSO/ พีบีเอส บฟัเฟอร์ pH 7.4  พบวา่ค่าสัญญาณฟลูออเรสเซนตจ์ะเพ่ิมสูงข้ึนจากเดิม และภายใน 20 นาที จะพบการ
เปล่ียนแปลงของสัญญาณฟลูออเรสเซนตม์ากท่ีสุด และเร่ิมคงท่ีเม่ือเวลาผา่นไป 60 นาที 
 เพื่อศึกษาการตรวจวดัเฮปทานาลในเชิงปริมาณของวสัดุเซ็นเซอร์ HZ/CTAB/S1 โดยการไทเทรตกบัเฮปทานาล 
ในระบบ 2.5 % DMSO/ พีบีเอส บฟัเฟอร์ pH 7.4 จากภาพท่ี 9 พบวา่สัญญาณฟลอูอเรสเซนตจ์ะแปรผนัโดยตรงกบัความ
เขม้ขน้ของเฮปทานาล และจากความสัมพนัธ์ดงักล่าวหาขีดจ ากดัการตรวจวดัเท่ากบั 80.38 ไมโครโมลาร์ ในช่วงความ
เขม้ขน้เป็นเส้นตรง 0.03-0.33 มิลลิโมลาร์ และมีร้อยละการคืนกลบั อยูใ่นช่วง 93.97 ถึง 97.62   
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ภาพที่ 9 (ก) ฟลูออเรสเซนตส์เปกตรัมของวสัดุเซ็นเซอร์ HZ/CTAB/S1 ในระบบ 2.5 % DMSO/ พีบีเอสบฟัเฟอร์ pH 7.4  ท่ี

ความยาวคล่ืนกระตุน้ 445 นาโนเมตร เม่ือความเขม้ขน้ของเฮปทานาลเพ่ิมสูงข้ึน (ก. รูปแทรก) ภาพของวสัดุ
เซ็นเซอร์ HZ/CTAB/S1 เม่ือเติมเฮปทาลนาลลงไป 0.25 มิลลิโมลาร์ เป็นเวลา 20 นาที ภายใตแ้สงยวูี ท่ีความยาว
คล่ืน 254 นาโนเมตร  (ข) กราฟการไทเทรตของเฮปทานาลและค่าสัญญาณฟลูออเรสเซนตส์ัมพทัธ์ (I/I0) ท่ีความ
ยาวคล่ืนการคายแสง 542 นาโนเมตร (ข. รูปแทรก) กราฟมาตรฐานของการไทเทรตเฮปทานาลในช่วงความเป็น
เส้นตรง คือ 0.03-0.33 มิลลิโมลาร์  ในระบบ 2.5 % DMSO/ พีบีเอส บฟัเฟอร์ pH 7.4 (ความยาวคล่ืนกระตุน้ เท่ากบั 
445 นาโนเมตร) 

 

สรุปผลการศึกษา 
 ในงานวจิยัน้ี ผูว้จิยัสามารถเตรียมวสัดุเซ็นเซอร์ HZ/CTAB/S1 ส าหรับการตรวจวดัสารประกอบแอลดีไฮดส์าย
ยาว โดยอาศยัหลกัการการกกัเกบ็โมเลกลุเซ็นเซอร์ HZ ภายในไมเซลลแ์บบไม่สมบูรณ์และติดตามการเพ่ิมข้ึนของสัญญาณ
ฟลอูอเรสเซนตท่ี์ความยาวคล่ืน 542 นาโนเมตร  ซ่ึงการตรวจวดัแอลดีไฮดโ์ดยใชว้สัดุเซ็นเซอร์ HZ/CTAB/S1 ใหขี้ดจ ากดั
การตรวจวดัเท่ากบั 80.38 ไมโครโมลาร์ ในช่วงความเขม้ขน้เป็นเส้นตรง 0.03-0.33 มิลลิโมลาร์ ภายใตร้ะบบ 2.5 % DMSO/ 
พีบีเอส บฟัเฟอร์ pH 7.4   
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