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∫∑§—¥¬àÕ

°“√§âπÀ“°≈ÿà¡¬àÕ¬¢Õß¬’π∑’Ë¡’Õ”π“®®”·π° ‡ªìπªí≠À“∑’Ë ”§—≠ ”À√—∫ß“π«‘®—¬∑“ß¥â“π™’««‘∑¬“

‡π◊ËÕß®“°¡’®”π«π¬’π‡æ‘Ë¡¢÷Èπ‡ªìπ®”π«π¡“°  ¥—ßπ—Èπ‡∑§π‘§°“√≈¥¡‘µ‘¢Õß¢âÕ¡Ÿ≈ ®÷ß‡ªìπª√–‚¬™πå„π°“√™à«¬§âπÀ“

°≈ÿà¡¬àÕ¬¢Õß¬’π  “‡Àµÿ‡π◊ËÕß®“°‡¡◊ËÕ¢âÕ¡Ÿ≈¡’®”π«π¡‘µ‘À√◊Õµ—«·ª√¡“° ∑”„Àâ¢âÕ¡Ÿ≈‡°‘¥°“√°√–®“¬ (data sparse)

·≈–∑”„Àâ‡°‘¥ªí≠À“¡‘µ‘¢âÕ¡Ÿ≈ (Curse of Dimensionality) ß“π«‘®—¬π’È®–π”‡Õ“¢âÕ¡Ÿ≈¬’π¢Õß‚√§¡–‡√Áß‡¡Á¥‡≈◊Õ¥¢“«

·∫∫‡©’¬∫æ≈—π (Acute Leukemia) ´÷Ëß¡’®”π«π¡‘µ‘¢Õß¢âÕ¡Ÿ≈ 7,129 ¡‘µ‘ ·∫àßÕÕ°‡ªìπ 2 °≈ÿà¡ §◊Õ ALL ·≈–

AML ¡“∑”°“√∑¥≈Õß·≈–‡æ◊ËÕ‡ª√’¬∫‡∑’¬∫ª√– ‘∑∏‘¿“æ¢Õß°“√≈¥¡‘µ‘¢âÕ¡Ÿ≈ √–À«à“ß«‘∏’ Correlation Based

Feature Selection, Gain Ratio ·≈– Information Gain ‚¥¬π”º≈≈—æ∏å∑’Ë‰¥â®“°°“√≈¥¡‘µ‘ ¡“‡ªìπ¢âÕ¡Ÿ≈Õ‘πæÿµ

¢Õß´—ææÕ√åµ‡«°‡µÕ√å·¡™™’π (Support Vector Machine) ‡æ◊ËÕ§—¥·¬°ª√–‡¿∑¢Õß‚√§¡–‡√Áß ́ ÷Ëßº≈°“√∑¥≈Õß

· ¥ß„Àâ‡ÀÁπ«à“ °“√≈¥¢âÕ¡Ÿ≈‚¥¬«‘∏’ Gain Ratio ·≈– Information Gain ¡’§«“¡‡À¡“– ¡ §◊Õ  “¡“√∂≈¥¡‘µ‘

¢Õß¢âÕ¡Ÿ≈‡À≈◊Õ 36 ¡‘µ‘ ·≈–‡æ‘Ë¡§«“¡·¡àπ¬”®“°‡¥‘¡ 73.53% ‡ªìπ 88.24%

ABSTRACT

Finding subset of informative gene is the main problem for biological processes. The numbers of

gene grow up into the tens of thousands.  Thus, dimension reduction of data is more benefit for finding

subset of gene. When the data are many dimensions or variables that lead to data sparsity and cause the

problem of curse of dimensionality. This research focuses on comparing efficiency of three dimension

reduction techniques Correlation Based Feature Selection, Gain Ratio, and Information Gain using acute

leukemia data that contains 7,129 dimensions, 2 groups that are ALL and AML. In this way, the output

from each of the three dimension reduction techniques is used to input data of Support Vector Machine

(SVM) for classifying data. The result of experiment shows that Gain Ratio and Information Gain
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∫∑π”

°“√·¬°ª√–‡¿∑¢Õß¡–‡√Áß‡¡Á¥‡≈◊Õ¥¢“«

‡ªìπ ‘Ëß∑’Ë®”‡ªìπ ”À√—∫°“√µ√«®«‘π‘®©—¬Õ“°“√ºŸâªÉ«¬

‡æ◊ËÕ∑’Ë®–∑”„Àâ°“√¥”‡π‘π¥Ÿ·≈°“√√—°…“‰¥âµ√ßµ“¡Õ“°“√

¢Õß‚√§ ¡–≈‘°“ (2549) °≈à“««à“ „π∑“ß°“√·æ∑¬å

°“√«‘π‘®©—¬¡–‡√Áß‡¡Á¥‡≈◊Õ¥¢“«·µà≈–™π‘¥ ¡’§«“¡

 ”§—≠Õ¬à“ß¬‘Ëß ‡π◊ËÕß®“°°“√µÕ∫ πÕßµàÕ°“√√—°…“

¥â«¬¬“À√◊Õ«‘∏’°“√√—°…“¢Õß¡–‡√Áß‡¡Á¥‡≈◊Õ¥¢“«·µà≈–

™π‘¥·µ°µà“ß°—π

·µà„π§«“¡‡ªìπ®√‘ß·≈â« °“√·¬°ª√–‡¿∑

¢Õß¡–‡√Áß‡¡Á¥‡≈◊Õ¥¢“« ´÷Ëß¡’¬’πÕ¬Ÿà‡ªìπ®”π«π¡“°

‚¥¬Õ“»—¬§«“¡ “¡“√∂¢Õß¡πÿ…¬å‡æ’¬ßÕ¬à“ß‡¥’¬«

∑”‰¥âÕ¬à“ß®”°—¥ Golub et. al. (1999) °≈à“««à“ °“√

¥”‡π‘π°“√‡æ◊ËÕ‡æ‘Ë¡ª√– ‘∑∏‘¿“æ„π°“√·¬°ª√–‡¿∑

¢Õß¡–‡√Áß„Àâ‡ªìπ·∫∫Õ—µ‚π¡—µ‘ ®–∑”„Àâ‡√“ “¡“√∂

∑”π“¬ª√–‡¿∑¢Õß¡–‡√Áß‰¥âÕ¬à“ß™—¥‡®π

 ”À√—∫„πß“π∑“ß¥â“π‡À¡◊Õß¢âÕ¡Ÿ≈ À√◊Õ

Data Mining ∫“ß°√≥’‡¡◊ËÕ¢âÕ¡Ÿ≈¡’®”π«π¡‘µ‘ À√◊Õ

µ—«·ª√¡“° ·≈–¡‘µ‘¢âÕ¡Ÿ≈‰¡à‰¥â‰ª„π∑‘»∑“ß‡¥’¬«°—π

∑”„Àâ¢âÕ¡Ÿ≈‡°‘¥°“√°√–®“¬ (data sparse) ́ ÷Ëß®–∑”„Àâ

∫“ß®ÿ¥Õ“®®–‰¡à¡’¢âÕ¡Ÿ≈Õ¬Ÿà‡≈¬ ÷́Ëß ‘Ëßπ’È∂Ÿ°‡√’¬°«à“

‡ªìπ ªí≠À“¢Õß¡‘µ‘¢âÕ¡Ÿ≈ ¥—ßπ—Èπ°“√¢®—¥ªí≠À“¢Õß

¡‘µ‘¢âÕ¡Ÿ≈π—ÈππÕ°®“°®–™à«¬∑”„Àâ “¡“√∂≈¥°“√„™â

∑√—æ¬“°√µà“ßÊ ·≈â« ¬—ß‡æ‘Ë¡§«“¡ “¡“√∂„π°“√·¬°

ª√–‡¿∑¢âÕ¡Ÿ≈‰¥â·¡àπ¬”¢÷ÈπÕ’°¥â«¬ ÷́Ëß‡∑§π‘§°“√≈¥

¡‘µ‘ ‡ªìπ¢—ÈπµÕπÀπ÷Ëß¢Õß°“√‡µ√’¬¡¢âÕ¡Ÿ≈ (data

preprocessing)  “¡“√∂§âπÀ“°≈ÿà¡¬àÕ¬¢Õß¬’π∑’Ë¡’

Õ”π“®®”·π°‰¥âÕ¬à“ß¡’√– ‘∑∏‘¿“æ

ªí®®ÿ∫—π¡’À≈“¬‡∑§π‘§ ”À√—∫°“√§âπÀ“

°≈ÿà¡¬àÕ¬¢Õß¬’π∑’Ë¡’Õ”π“®®”·π° Õ“∑‘ «‘∏’°“√«‘‡§√“–Àå

Õß§åª√–°Õ∫ (Principle Component Analysis: PCA)

Yijuan (2008) ‰¥â™’È„Àâ‡ÀÁπ«à“«‘∏’π’È¡’ª√– ‘∑∏‘¿“æµË”≈ß

‡¡◊ËÕ∑¥≈Õß§âπÀ“°≈ÿà¡¬àÕ¬¢Õß¬’  ∑’Ë¡’¡‘µ‘®”π«π¡“°

‡™àπ 2,324 ¬’π Yun (2009) °≈à“««à“¢âÕ‡ ’¬¢Õß PCA

§◊Õ‰¡à “¡“√∂«‘‡§√“–Àåµ—«·ª√·≈–µ—«Õ¬à“ß‰ªæ√âÕ¡Ê

°—π ¿—∑√“«ÿ≤‘ ·≈–§≥– (2009) ∑”°“√∑¥≈Õß

‡ª√’¬∫‡∑’¬∫«‘∏’°“√≈¥¡‘µ‘°≈ÿà¡¢âÕ¡Ÿ≈‚√§¡–‡√Áß√–À«à“ß

‡∑§π‘§°“√§—¥‡≈◊Õ°µ—«·ª√·∫∫∂Õ¬À≈—ß∑’≈–¢—Èπ

(Backward Stepwise Feature Selection: BSFS)

°—∫«‘∏’ PCA ‡æ◊ËÕπ”¡“‡ªìπ¢âÕ¡Ÿ≈‡¢â“‚§√ß¢à“¬ª√– “∑

‡∑’¬¡ (ANN) æ∫«à“«‘∏’ PCA ¡’ª√– ‘∑∏‘¿“æ„π°“√

≈¥¡‘µ‘¢Õß¢âÕ¡Ÿ≈µË”≈ß¡“° ‡¡◊ËÕ¢âÕ¡Ÿ≈¡’°“√°√–®“¬

µ—« Ÿß ´÷Ëßµà“ß°—∫«‘∏’ BSFS ∑’Ë¡’ª√– ‘∑∏‘¿“æ≈¥µË”≈ß

‡æ’¬ß‡≈Á°πâÕ¬

πÕ°®“°π’È„πß“π«‘®—¬‡°’Ë¬«°—∫°“√§âπÀ“°≈ÿà¡

¬àÕ¬¢Õß¬’π à«π„À≠à ‡™àπ Yijuan (2008) Mitsubayashi

et. al. (2008) Laura et. al. (2008) ·≈– Jin and

Sung (2008)  ¡—°π‘¬¡„™â«‘∏’°“√®—¥Õ—π¥—∫°“√· ¥ßÕÕ°

¢Õß¬’π (Ranking Gene Expression) Õ“∑‘ T-test,

Difference of Mean, Correlation based Feature

Selection À√◊Õ Chi-square  º≈∑’Ë‰¥â®“°°“√∑¥≈Õß

§◊Õ¢âÕ¡Ÿ≈°“√· ¥ßÕÕ°¢Õß¬’π„π√–¥—∫∑’Ë·µ°µà“ß°—π

∑—Èßπ’È¡’§«“¡‡™◊ËÕ«à“√–¥—∫°“√· ¥ßÕÕ°∑’Ë Ÿß¢Õß¬’π

„πµ—«Õ¬à“ß∑¥ Õ∫„¥Ê ¬àÕ¡· ¥ß«à“¬’ππ—Èπ¡’Õ‘∑∏‘æ≈

µàÕµ—«Õ¬à“ßπ—ÈπÊ Õ¬à“ß‰√°Áµ“¡«‘∏’°“√®—¥Õ—π¥—∫¬’π

‡æ’¬ßÕ¬à“ß‡¥’¬«°Á¬—ß‰¡à‡æ’¬ßæÕµàÕ°“√§—¥·¬°ª√–‡¿∑

¢Õß¡–‡√Áß‡¡Á¥‡≈◊Õ¥¢“«

‡∑§π‘§´—ææÕ√åµ‡«°‡µÕ√å·¡™™’π (Support

Vector machine : SVM)  ÷́Ëß‡ªìπ«‘∏’°“√Àπ÷Ëß¢Õß

‡√’¬π√Ÿâ·∫∫¡’ºŸâ Õπ (Supervised Learning) ·≈–

¡’ª√– ‘∑∏‘¿“æ ”À√—∫°“√§—¥·¬°ª√–‡¿∑°≈ÿà¡¢âÕ¡Ÿ≈

Õ¬à“ß‰√°Áµ“¡ Kamal et. al. (2009) °≈à“««à“

techniques are suitable for working with Support Vector Machine because it can reduce dimension of data

into 36 dimensions and increase original corrected classification from 73.53% to 88.24%.

§” ”§—≠ : °“√§—¥·¬°ª√–‡¿∑  °“√®—¥Õ—π¥—∫  —́ææÕ√åµ‡«°‡µÕ√å·¡™™’π

Key Words : Classification,  Ranking  Support, Vector Machine
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®“°º≈≈—æ∏å°“√∑¥≈Õß·¬°ª√–‡¿∑¬’π¥â«¬ ́ —ææÕ√åµ

‡«°‡µÕ√å·¡™™’π æ∫«à“ ¡’§«“¡‰«¡“°µàÕ®”π«π¢Õß

¬’π∑’Ë∂Ÿ°§—¥‡≈◊Õ° ·≈– Cheng-San et. al. (2008)

°≈à“««à“ ¢âÕ¡Ÿ≈°“√· ¥ßÕÕ°¢Õß¬’π∑’Ë¡’¡‘µ‘∑’Ë¡“°·≈–

¡’≈—°…≥–¢π“¥‡≈Á° ∑”„Àâ°“√Ωñ°Ωπ·≈–∑¥ Õ∫¢Õß

«‘∏’∑—Ë«‰ª„π°“√§—¥·¬°ª√–‡¿∑∑”‰¥â¬“°

¥—ßπ—Èπ‡æ◊ËÕ∑’Ë®–§âπÀ“°≈ÿà¡¬àÕ¬¢Õß¬’π∑’Ë¡’

Õ”π“®®”·π°·≈–‡æ‘Ë¡ª√– ‘∑∏‘¿“æ„π°“√·¬°ª√–‡¿∑

¢Õß¡–‡√Áß‡¡Á¥‡≈◊Õ¥¢“« ß“π«‘®—¬π’È®÷ß‰¥â∑”°“√‡ª√’¬∫

‡∑’¬∫«‘∏’°“√®—¥Õ—π¥—∫®”π«π 3 «‘∏’§◊Õ Correlation

Based Feature Selection (CFS), Gain Ratio (GR)

·≈– Information Gain (IG) ‡æ◊ËÕ„™â‡ªìπµ—«≈¥¡‘µ‘

¢Õß¢âÕ¡Ÿ≈¬’π∑’Ë‡À¡“– ¡ ·≈–π”¡“‡ªìπÕ‘πæÿµ¢Õß

´—ææÕ√åµ‡«°‡µÕ√å·¡™™’π‡æ◊ËÕ°“√§—¥·¬°ª√–‡¿∑

¡–‡√Áß‡¡Á¥‡≈◊Õ¥¢“«

„πÀ—«¢âÕµàÕ‰ª  ®–°≈à“«∂÷ßÕÿª°√≥å·≈–«‘∏’°“√

«‘®—¬ À—«¢âÕ∑’Ë 3 ®–· ¥ßº≈°“√«‘®—¬·≈–°“√Õ¿‘ª√“¬º≈

 √ÿªÕ¿‘ª√“¬º≈„πÀ—«¢âÕ∑’Ë 4 ·≈–¢âÕ‡ πÕ·π–„π

À—«¢âÕ∑’Ë 5

Õÿª°√≥å·≈–«‘∏’°“√«‘®—¬

∂â“¡‘µ‘¢Õß¢âÕ¡Ÿ≈‡¢â“¡’¢π“¥„À≠à¡“° °“√≈¥

¢π“¥¢Õß¡‘µ‘¢âÕ¡Ÿ≈®–™à«¬„Àâ‡æ‘Ë¡§«“¡·¡àπ¬”¢Õß

°“√«‘‡§√“–Àå¢âÕ¡Ÿ≈  ”À√—∫®ÿ¥¡ÿàßÀ¡“¬„π°“√≈¥¡‘µ‘

¢Õß¢âÕ¡Ÿ≈ Cunningham  (2007) °≈à“« √ÿª‰«â¥—ßπ’È

(°) ‡æ◊ËÕ‡®“–®ß°≈ÿà¡¢Õßµ—«·ª√∑’ËµâÕß°“√

≈¥ ´÷Ëß∑”„Àâº≈≈—æ∏å¢Õß°“√æ¬“°√≥å “¡“√∂π”‰ª

„™âª√–‚¬™πå‰¥â‡µÁ¡∑’Ë

(¢) Õ—≈°Õ√‘∏÷¡∑’Ë„™â‡√’¬π√ŸâÀ≈“¬Ê Õ¬à“ß

„™â‡«≈“„π°“√Ωñ°Ωπ À√◊Õ°“√·¬°ª√–‡¿∑°≈ÿà¡¢âÕ¡Ÿ≈

‡æ‘Ë¡¢÷Èπµ“¡®”π«π¢Õßµ—«·ª√

(§)  ‘Ëß√∫°«πÀ√◊Õµ—«·ª√∑’Ë‰¡à‡°’Ë¬«¢âÕß

 “¡“√∂¡’Õ‘∑∏‘æ≈µàÕ°“√·¬°ª√–‡¿∑°≈ÿà¡¢âÕ¡Ÿ≈

´÷Ëß¡—°®– àßº≈µàÕ§«“¡·¡àπ¬”

(ß) ∫“ß§√—Èß®”π«π¢Õßµ—«·ª√¢âÕ¡Ÿ≈‡¢â“∑’Ë

¡“° Õ“®„™âÕ∏‘∫“¬‰¥âæÕÊ °—∫§à“‡©≈’Ë¬¢Õßµ—«·ª√

¢âÕ¡Ÿ≈‡¢â“∑—ÈßÀ¡¥

 ”À√—∫‡∑§π‘§°“√§—¥°≈ÿà¡¬àÕ¬¢Õß¬’π∑’Ë¡’

Õ”π“®®”·π° ´÷Ëß®–„™â«‘∏’≈¥µ—«¡‘µ‘¢Õß¢âÕ¡Ÿ≈ ¡’À≈“¬

«‘∏’¥â«¬°—π ·µà„πß“π«‘®—¬π’È®–„™â«‘∏’°“√®—¥Õ—π¥—∫‚¥¬

π”‡ πÕ 3 «‘∏’ §◊Õ„πÀ—«¢âÕ 2.1 2.2 ·≈– 2.3

1. ‡∑§π‘§°“√‡≈◊Õ°¡‘µ‘¢âÕ¡Ÿ≈‚¥¬„™â§«“¡

 —¡æ—π∏å (Correlation Based Feature Selection : CFS)

Mark (1999) ‰¥â°≈à“«∂÷ß CFS «à“§◊Õ

Õ—≈°Õ√‘∏÷¡°“√°√Õß∑’Ëßà“¬Ê ‚¥¬ CFS ®–®—¥Õ—π¥—∫

°≈ÿà¡¬àÕ¬¢Õß¡‘µ‘¢âÕ¡Ÿ≈ µ“¡§«“¡ —¡æ—π∏å∑’ËÕ¬Ÿà∫π

æ◊Èπ∞“π¢Õßøíß°å™—π°“√ª√–¡“≥·∫∫ heuristic ´÷Ëß

°≈ÿà¡¬àÕ¬¢Õß¡‘µ‘¢âÕ¡Ÿ≈®–¡’§«“¡ —¡æ—π∏å°—π Ÿß°—∫§≈“ 

·≈–‰¡à¡’§«“¡ —¡æ—π∏å°—∫§≈“ Õ◊ËπÊ  ”À√—∫¡‘µ‘¢âÕ¡Ÿ≈

∑’Ë‰¡à‡°’Ë¬«¢âÕßÕ“®®–∂Ÿ°≈–∑‘Èß ‡æ√“–¡‘µ‘¢âÕ¡Ÿ≈‡À≈à“π’È

Õ“®®–¡’§«“¡ —¡æ—π∏åµË”°—∫§≈“   ¡‘µ‘¢âÕ¡Ÿ≈∑’Ë´È”´âÕπ

Õ“®®–∂Ÿ°¢®—¥ÕÕ°‰ª®“°°≈ÿà¡¡‘µ‘¢âÕ¡Ÿ≈∑’Ë¡’§«“¡

 —¡æ—π∏å Ÿß  ¡°“√ª√–‡¡‘π°≈ÿà¡¬àÕ¬¢Õß¡‘µ‘¢âÕ¡Ÿ≈

·∫∫ CFS · ¥ß„π ¡°“√∑’Ë (1)

‚¥¬∑’Ë  Ms §◊Õ §à“∑’Ë§âπÀ“‰¥â¢Õß¡‘µ‘¢âÕ¡Ÿ≈

°≈ÿà¡¬àÕ¬ S ÷́Ëßª√–°Õ∫¥â«¬¡‘µ‘¢âÕ¡Ÿ≈ k

§◊Õ §à“‡©≈’Ë¬§«“¡ —¡æ—π∏å¢Õßµ—«·ª√°—∫§≈“ 

§◊Õ §à“‡©≈’Ë¬§«“¡ —¡æ—π∏å√–À«à“ß¡‘µ‘¢Õß¢âÕ¡Ÿ≈
2. ‡∑§π‘§°“√«—¥ Information Gain (IG)

Han and Kamber (2006) ‰¥â°≈à“««à“

Õ—≈°Õ√‘∏÷¡ IG „™â„π°“√‡≈◊Õ°¡‘µ‘¢Õß¢âÕ¡Ÿ≈ ‡æ◊ËÕ„™â„π

°“√·∫àß·¬°¢âÕ¡Ÿ≈ Õ—≈°Õ√‘∑÷¡ IG ®–§”π«≥§à“ Gain

 ”À√—∫·µà≈–¡‘µ‘¢âÕ¡Ÿ≈ ´÷Ëß∂â“¡‘µ‘¢âÕ¡Ÿ≈„¥¡’§à“ Gain

 Ÿß ÿ¥®–∂Ÿ°‡≈◊Õ°„Àâ‡ªìπ°≈ÿà¡¬àÕ¬¢Õß¡‘µ‘¢âÕ¡Ÿ≈∑’Ë¡’Õ”π“®

®”·π°  ¡°“√∑’Ë 2 · ¥ß°“√§”π«≥§à“ Entropy ·≈–

 ¡°“√∑’Ë 2 · ¥ß°“√§”π«≥§à“ Information Gain

‚¥¬∑’Ë  §◊Õº≈√«¡¢Õß§«“¡πà“®–‡ªìπ¢Õß§à“

j ∑’Ë‡°‘¥„π§≈“  t
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‚¥¬∑’Ë   §◊Õ §à“ Entropy ¢Õßµ—« Root

 §◊Õ §à“ Entropy „π·µà≈–‚Àπ¥¬àÕ¬

3. ‡∑§π‘§°“√«—¥·∫∫ Gain Ratio (GR)

Mark (1999) ‰¥â· ¥ß«‘∏’¢Õß GR «à“‡ªìπ

°“√ª√–‡¡‘π§«“¡πà“‡™◊ËÕ∂◊Õ¢Õß¡‘µ‘¢âÕ¡Ÿ≈‚¥¬°“√«—¥

Gain Ratio „π·µà≈–§≈“  °“√§”π«≥ GR ‚¥¬π”§à“

Information Gain ¡“  ¡°“√∑’Ë 4 · ¥ß°“√§”π«≥«—¥

Gain Ratio

4. ‡∑§π‘§´—ææÕ√åµ‡«°‡µÕ√å·¡™™’π

(Support Vector Machine : SVM)

Vapnik (1995) ‰¥âπ”‡ πÕ‡∑§π‘§

´—ææÕ√åµ‡«°‡µÕ√å·¡™™’π «—µ∂ÿª√– ß§å∑’Ë ”§—≠¢Õß

«‘∏’°“√π’È §◊Õ æ¬“¬“¡∑’Ë®–∑”°“√≈¥§«“¡º‘¥æ≈“¥

®“°°“√∑”π“¬ (Minimize error) æ√âÕ¡°—∫‡æ‘Ë¡

√–¬–·¬°·¬–„Àâ¡“°∑’Ë ÿ¥ (Maximized Margin) ÷́Ëß

µà“ß®“°‡∑§π‘§‚¥¬∑—Ë«‰ª‡™àπ‚§√ß¢à“¬ª√– “∑‡∑’¬¡

(Artificial Neural Network: ANN) ∑’Ë¡ÿàß‡æ’¬ß

∑”„Àâ§«“¡º‘¥æ≈“¥®“°°“√∑”π“¬„ÀâµË”∑’Ë ÿ¥‡æ’¬ß

Õ¬à“ß‡¥’¬«

     °”Àπ¥≈—°…≥–¢âÕ¡Ÿ≈∑¥≈Õß D = {x
i
, y

i
; I

=1,2,...,n} ‚¥¬∑’Ë xi = (x
i1
, x

i2
,...,x

in
) ∈ Rn  ‡ªìπ

¢âÕ¡Ÿ≈π”‡¢â“ ·≈– y
i
 ∈ (+1, -1) ´÷Ëß y

i
 ®–„™â· ¥ß

µ—«·ª√¢Õß§≈“  ‡™àπ §≈“  ALL ¡’§à“‡∑à“°—∫ 1 ·≈–

§≈“  AML ¡’§à“‡∑à“°—∫ -1 ‡ªìπµâπ ∑—Èßπ’È SVM

®–„™âøíß°å™—Ëπ°“√µ—¥ ‘π„®∑’Ë¡’§«“¡ “¡“√∂„π°“√

·¬°·¬–§à“¥—ß ¡°“√∑’Ë (5)

°“√·∫àß°≈ÿà¡¢âÕ¡Ÿ≈ x ´÷Ëß‰¡à “¡“√∂·∫àß

·¬°‰¥â¥â«¬ ¡°“√‡ âπµ√ß ®–µâÕßÕ“»—¬ ¡°“√∑’Ë (6)

‚¥¬∑’Ë φ (x) ®–„™â·∑πøíß°å™—π ”À√—∫·ª≈ß¢âÕ¡Ÿ≈∑’Ë

‰¡à‡ªìπ‡™‘ß‡ âπ„Àâ‡ªìπ¢âÕ¡Ÿ≈∑’ËÕ¬Ÿà„π√Ÿª·∫∫ ¡°“√

‡™‘ß‡ âπ ·≈– “¡“√∂π”¡“§—¥·¬°ª√–‡¿∑‰¥â  W
j
 ·∑π

§à“πÈ”Àπ—° (Weighting) ∑’Ë‡™◊ËÕ¡‚¬ß®“°ª√‘¿Ÿ¡‘≈—°…≥–

(feature space) ‰ª Ÿàª√‘¿Ÿ¡‘º≈≈—æ∏å (output space)

·≈– b π—Èπ‡ªìπ§à“‚πâ¡‡Õ’¬ß (Bias À√◊Õ threshold)

¥—ß∑’Ë°”Àπ¥‰«â¥—ß ¡°“√∑’Ë (7)

¥—ßπ—Èπ®“° ¡°“√¥—ß°≈à“«  “¡“√∂·∫àß

ª√–‡¿∑¢Õß¢âÕ¡Ÿ≈‰¥â„π≈—°…≥–‡™‘ß‡ âπ ®“°øíß°å™—π

°“√·∫àß f(x)  ·≈–∂â“¢âÕ¡Ÿ≈„π°≈ÿà¡ D  “¡“√∂·¬°

‚¥¬„™â ¡°“√‡ âπµ√ß‰¥â·≈â« °Á· ¥ß«à“¡’°“√·∫àß

·¬°ª√–‡¿∑∑’Ë ¡∫Ÿ√≥å „π°√≥’∑’Ë°“√®—¥·∫àßª√–‡¿∑

 ”À√—∫§à“ y ∂Ÿ°°”Àπ¥„Àâ¡’§à“¢Õß§≈“ ‡ªìπ -1 ·≈–

+1  ‡¡◊ËÕ‡ªìπ‡™àππ’È·≈â« ¡°“√∑’Ë (8) ·≈– ¡°“√ (9)

·≈–π”¡“√«¡°—π¥—ß ¡°“√∑’Ë (10)

®“° ¡°“√¥—ß°≈à“«∑’Ë‡ªìπ‡™‘ß‡ âπ ·≈–¡’§«“¡

 “¡“√∂„π°“√·¬°·¬–¢âÕ¡Ÿ≈∑”„Àâ‡°‘¥°“√‡æ‘Ë¡√–¬–

¢Õß‡ âπ·∫àß‡¢µ∑’Ë¡’§«“¡°«â“ß‡∑à“°—∫ 2/||w||2 ¥—ß· ¥ß

„π¿“æ∑’Ë 1

¿“æ∑’Ë 1 °“√·¬°ª√–‡¿∑°≈ÿà¡¢âÕ¡Ÿ≈¥â«¬‡∑§π‘§

SVM
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Õ¬à“ß‰√°Áµ“¡‡π◊ËÕß®“°„π∫“ß°√≥’°“√§—¥·¬°

ª√–‡¿∑ ‰¡à “¡“√∂∑”‰¥â∂Ÿ°µâÕß‚¥¬ ¡∫Ÿ√≥å ¥—ßπ—Èπ

®÷ßµâÕß¡’°“√°”Àπ¥µ—«·ª√ ”À√—∫¬Õ¡√—∫§à“§«“¡

º‘¥æ≈“¥ ‚¥¬°“√‡æ‘Ë¡µ—«·ª√ ξ (Slack Variable)

‚¥¬‡æ‘Ë¡µ—«·ª√π’È‡¢â“‰ª„π ¡°“√∑’Ë (10) ·≈– (11)

∑”„Àâ‡°‘¥ ¡°“√∑’Ë  (12) ·≈– (13) ¥—ßπ’È

®“°°“√°”Àπ¥§à“ ξ
i 
> 0 ∑”„Àâ‚§√ß √â“ß¢Õß

SVM ∫√√≈ÿ«—µ∂ÿª√– ß§å„π 2  à«π§◊Õ °“√‡æ‘Ë¡√–¬–

·¬°·¬–„Àâ¡“°∑’Ë ÿ¥·≈–≈¥¢âÕº‘¥æ≈“¥„π°“√

∑”π“¬„ÀâµË”∑’Ë ÿ¥ ¥—ß· ¥ß„π ¡°“√∑’Ë (14)

‚¥¬∑’Ë  : 

®“° ¡°“√¥—ß°≈à“«®– —ß‡°µ‰¥â«à“¡’§à“ C

´÷Ëß‡ªìπµ—«·ª√∑’Ë„™â°”Àπ¥§«“¡ ¡¥ÿ≈¢Õß√–À«à“ß

√–¬–·¬°·¬–∑’Ë Ÿß ÿ¥ À√◊Õ≈¥§à“§«“¡º‘¥æ≈“¥„π

°“√∑”π“¬„ÀâµË”∑’Ë ÿ¥ ´÷Ëß§à“ C ®–∂Ÿ°ºŸâ„™âß“π°”Àπ¥

¢÷Èπ ∑—Èßπ’È‚¥¬ª√°µ‘§à“ C ¡—°°”Àπ¥„Àâ¡’§à“¡“°°«à“

1 ·≈–π”¡“·°âªí≠À“§à“∑’Ë‡À¡“– ¡∑’Ë ÿ¥¥â«¬øíß°å™—Ëπ

≈“°√Õß®å (Lagrangian) ¥â«¬°“√°”Àπ¥§à“µ—«·ª√

·∫∫‡´µ§Ÿà (Dual Sets) ‡æ‘Ë¡‡µ‘¡ ·≈â«∑”°“√·°âªí≠À“

®“°°“√°”Àπ¥¢âÕ®”°—¥∑’Ë¥’∑’Ë ÿ¥ (Constrained

Optimization) ∑”„Àâ‰¥âº≈¥—ß ¡°“√∑’Ë (15)

‚¥¬∑’Ë :

‚¥¬∑’Ë  α
i 
‡ªìπ Lagrange multipliers ‡æ◊ËÕ∑’Ë

®–„™â ”À√—∫°“√·°âªí≠À“∑’Ë¥’∑’Ë ÿ¥  α*
i
 ‡æ◊ËÕ„™â„π°“√

®”·π°¢âÕ¡Ÿ≈∑’Ë‰¡à‰¥â‡ªìπøíß™—π°“√®”·π°¢âÕ¡Ÿ≈·∫∫

‡™‘ß‡ âπ¥—ß ¡°“√∑’Ë (16)

„π¢≥–∑’Ë π—Èπ‡ªìπ

kernel function

 ”À√—∫„πß“π«‘®—¬π’ÈºŸâ«‘®—¬‰¥â‡≈◊Õ°„™â kernel

function ·∫∫ Radial Basis Function ‡π◊ËÕß®“° Cheng

(2008) ·≈– ‡¥™ ·≈–§≥– (2009) °≈à“««à“º≈

°“√∑¥≈Õß∑’Ëºà“π¡“æ∫«à“‡ªìπ kernel function ∑’Ë„Àâ

º≈¥’

5. «‘∏’°“√«‘®—¬

ß“π«‘®—¬π’È®–π”‡Õ“¢âÕ¡Ÿ≈¬’π¢Õß‚√§¡–‡√Áß

‡¡Á¥‡≈◊Õ¥¢“«·∫∫‡©’¬∫æ≈—π (Acute Leukemia) À√◊Õ

Leukemia Dataset ®“° Pablo de Olavide University

of Seville (http://www.upo.es/eps/bigs /datasets.

html) ´÷Ëß¢âÕ¡Ÿ≈™ÿ¥π’Èª√–°Õ∫¥â«¬ 2 §≈“ §◊Õ ALL

·≈– AML ́ ÷Ëß¡’®”π«π¡‘µ‘¢Õß¢âÕ¡Ÿ≈ 7,129 ¡‘µ‘ ®”π«π

76 µ—«Õ¬à“ß

¿“æ∑’Ë 2 ¢—ÈπµÕπ°“√∑”ß“π¢Õß‚¡‡¥≈ SVM

√à«¡°—∫«‘∏’°“√®—¥Õ—π¥—∫„π√Ÿª·∫∫µà“ßÊ

5.1 π”¢âÕ¡Ÿ≈¡“ºà “π°√–∫«π°“√

‡µ√’¬¡¢âÕ¡Ÿ≈ (Data Preprocessing) ‚¥¬∑”°“√

Normalize „Àâ¡’§à“√–À«à“ß -1 ∂÷ß +1 ®“°π—Èπ·∫àß

¢âÕ¡Ÿ≈ÕÕ°‡ªìπ™ÿ¥Ωñ°Ωπ (Training Data) ·≈–™ÿ¥

∑¥ Õ∫ (Testing Data) ®”π«πÕ¬à“ß≈– 38 µ—«

Õ¬à“ß‡∑à“Ê °—π
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5.2 ∑¥≈Õß„™â‡∑§π‘§´—ææÕ√åµ‡«°

‡µÕ√å·¡™™’π ‡æ◊ËÕ·¬°ª√–‡¿∑¢Õß§≈“  ‚¥¬ —ß‡°µ

®“°°“√‡ª≈’Ë¬π§à“æ“√“¡‘µ‡µÕ√å (C) ∑’Ë· ¥ß§à“‡©≈’Ë¬

§«“¡º‘¥æ≈“¥∑’ËµË” ÿ¥ «à“§à“„¥∑’Ë¡’§«“¡‡À¡“– ¡∑’Ë ÿ¥

5.3 ∑¥≈Õß„™â«‘∏’°“√®—¥Õ—π¥—∫¢âÕ¡Ÿ≈

3 «‘∏’§◊Õ CFS, GR ·≈– IG  ·≈–§—¥‡≈◊Õ°°≈ÿà¡¬àÕ¬

¢Õß¬’π∑’Ë¡’Õ”π“®®”·π° ®“°°“√‡≈◊Õ°¬’π∑’Ë¡’§à“Õ—π¥—∫

®“°¡“°‰ªπâÕ¬„π·µà≈–«‘∏’

5.4 π”º≈≈—æ∏å∑’Ë ‰¥â ®“°°“√À“§à “

æ“√“¡‘‡µÕ√å∑’Ë‡À¡“– ¡¢Õß¢Õß´—ææÕ√åµ‡«°‡µÕ√å

·¡™™’π  ¡“ √â“ß‚¡‡¥≈ ‡æ◊ËÕ√à«¡°—∫°≈ÿà¡¬àÕ¬¢Õß¬’π

∑’Ë‰¥â®“°·µà≈–«‘∏’°“√®—¥Õ—π¥—∫„π¢—ÈπµÕπ 2.5.3

5.5 °“√«—¥ª√– ‘∑∏‘¿“æ¢Õß«‘∏’°“√

®—¥Õ—π¥—∫«à“«‘∏’„¥®–‡À¡“– ¡„π°“√∑”ß“π√à«¡°—∫

´—ææÕ√åµ‡«°‡µÕ√å·¡™™’π  „π°“√≈¥¡‘µ‘¢âÕ¡Ÿ≈‡¢â“

‚¥¬„™â«‘∏’°“√‡ª√’¬∫‡∑’¬∫§à“§«“¡·¡àπ¬” (precision)

§à“§«“¡√–≈÷° (Recall) ·≈–°“√«—¥ª√– ‘∑∏‘¿“æ

‚¥¬√«¡ (F-measure) ∑’Ë‰¥â®“°‡∑§π‘§´—ææÕ√åµ

‡«°‡µÕ√å·¡™™’π ¥—ß ¡°“√∑’Ë (17) (18) (19)

µ“¡≈”¥—∫

º≈°“√«‘®—¬·≈–°“√Õ¿‘ª√“¬º≈

1. º≈≈—æ∏å°“√À“§à“æ“√“¡‘µ‡µÕ√å (C)

‡æ◊ËÕ∑’Ë®–À“§à“æ“√“¡‘‡µÕ√å (C) ∑’Ë‡À¡“– ¡

 ”À√—∫‡∑§π‘§´—æ‡«°‡µÕ√å·¡™™’π  ®÷ß‰¥â∑”°“√∑¥≈Õß

°“√·¬°ª√–‡¿∑¢âÕ¡Ÿ≈ ·≈–‚¥¬‡ª≈’Ë¬π§à“æ“√“¡‘µ‡µÕ√å

·≈– —ß‡°µ§à“µà“ßÊ ´÷Ëßæ∫«à“‡¡◊ËÕ°”Àπ¥§à“ C ‡∑à“°—∫

10 ®–¡’§à“ MSE µË” ÿ¥§◊Õ 0.5145 §à“§«“¡∂Ÿ°µâÕß

®“°°“√·¬°ª√–‡¿∑ 73.53% ¡’§à“§«“¡·¡àπ¬”

34.6% §à“§«“¡√–≈÷° 58.8% ·≈–°“√«—¥ª√– ‘∑∏‘¿“æ

‚¥¬√«¡ 43.6%

2. º≈≈—æ∏å®“°‡∑§π‘§°“√®—¥Õ—π¥—∫

°“√®—¥Õ—π¥—∫¢âÕ¡Ÿ≈ ‰¥âπ”‡ πÕ‰«â„πµ“√“ß∑’Ë 1

µ“√“ß∑’Ë 1 ®”π«π¢âÕ¡Ÿ≈∑’Ë‰¥â®“°°“√®—¥Õ—π¥—∫¢âÕ¡Ÿ≈

Ranking Method Number of Attributes

1. CFS 36

2. Gain Ratio 915

3. IG 915

¡’À≈“¬ß“π«‘®—¬À≈“¬ß“πÕ“∑‘ Kamal et. al.

(2009), Shen (2009) ·≈– Golub et. al. (1999)

∑’Ë·π–π”«à“°“√„™â¡‘µ‘¢Õß¢âÕ¡Ÿ≈¬’π√–À«à“ß 30-50 ¡‘µ‘

‡ªìπ¢π“¥∑’Ë ¡‡Àµÿº≈ ”À√—∫°“√√–∫ÿÀπâ“∑’Ë¢Õß¬’π

¥—ßπ—Èπß“π«‘®—¬π’È®÷ß‡≈◊Õ°¡‘µ‘¢âÕ¡Ÿ≈®”π«π 36 ¡‘µ‘‚¥¬

∑”°“√§—¥‡≈◊Õ°¡‘µ‘¢âÕ¡Ÿ≈®“°°“√®—¥Õ—π¥—∫ ®“°¡“°

‰ªπâÕ¬

3. º≈≈—æ∏å®“°°“√∑¥≈Õß·¬°ª√–‡¿∑

¢âÕ¡Ÿ≈¥â«¬´—ææÕ√åµ‡«°‡µÕ√å·¡™™’π ‚¥¬„™â¢âÕ¡Ÿ≈

π”‡¢â“∑’Ë‰¥â®“°«‘∏’°“√®—¥Õ—π¥—∫

„π à«π¢Õßº≈≈—æ∏å®“°°“√∑¥≈Õß®“°°“√

≈¥¡‘µ‘¢âÕ¡Ÿ≈¥â«¬«‘∏’°“√®—¥Õ—π¥—∫ ‡æ◊ËÕπ”‡ªìπ¢âÕ¡Ÿ≈

Õ‘πæÿµ¢Õß°“√·¬°ª√–‡¿∑¥â«¬ —́ææÕ√åµ‡«°‡µÕ√å

·¡™™’π · ¥ß„Àâ‡ÀÁπ«à“«‘∏’ GR ·≈– IG ¡’§à“§«“¡

·¡àπ¬” §«“¡√–≈÷° ·≈–°“√«—¥ª√– ‘∑∏‘¿“æ‚¥¬√«¡

‡∑à“°—π §◊Õ 90.2% 88.2% ·≈– 87.8% µ“¡≈”¥—∫

´÷Ëß Ÿß°«à“«‘∏’ CFS §◊Õ 86.4% 82.4% ·≈– 82.4%

π”‡ πÕ„πµ“√“ß∑’Ë 2

πÕ°®“°π’È«‘∏’ GR ·≈– IG ¬—ß‡æ‘Ë¡§à“§«“¡

∂Ÿ°µâÕß®“°°“√·¬°ª√–‡¿∑‡ªìπ 88.24% ‰¥âπ”‡ πÕ

„πµ“√“ß 3 ·≈–¿“æ∑’Ë 3 · ¥ß°“√«—¥ª√– ‘∑∏‘¿“æ

„π√Ÿª¢Õß°√“ø

µ“√“ß∑’Ë 2 º≈°“√«—¥ª√– ‘∑∏‘¿“æ¢Õß«‘∏’°“√®—¥Õ—π¥—∫
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µ“√“ß∑’Ë 3 º≈°“√«—¥§à“§«“¡º‘¥æ≈“¥‡©≈’Ë¬µË” ÿ¥

·≈–§à“§«“¡∂Ÿ°µâÕß®“°°“√·¬°ª√–‡¿∑

¿“æ∑’Ë 3 °√“ø· ¥ßª√– ‘∑∏‘¿“æ¢Õß«‘∏’°“√®—¥Õ—π¥—∫

 √ÿªº≈°“√«‘®—¬

‡¡◊ËÕ¡‘µ‘¢Õß¢âÕ¡Ÿ≈¡‘‡ªìπ®”π«π¡“° ®–∑”„Àâ

‡°‘¥ªí≠À“¡‘µ‘¢Õß¢âÕ¡Ÿ≈ ·≈– àßº≈„Àâ°“√·¬°ª√–‡¿∑

¢âÕ¡Ÿ≈¡—°‡°‘¥§«“¡º‘¥æ≈“¥ √«¡∂÷ß°“√ ‘Èπ‡ª≈◊Õß

∑√—æ¬“°√µà“ßÊ ¥—ßπ—Èπß“π«‘®—¬§√—Èßπ’È ®÷ß¡’«—µ∂ÿª√– ß§å

‡æ◊ËÕ∑’Ë®–§âπÀ“°≈ÿà¡¬àÕ¬¢Õß¬’π∑’Ë¡’Õ”π“®®”·π°

·≈–‡æ‘Ë¡ª√– ‘∑∏‘¿“æ„π°“√·¬°ª√–‡¿∑¢Õß¡–‡√Áß

‡¡Á¥‡≈◊Õ¥¢“« ‚¥¬„™â«‘∏’°“√®—¥Õ—π¥—∫‡æ◊ËÕ≈¥¡‘µ‘¢Õß

¢âÕ¡Ÿ≈ √à«¡°—∫‡∑§π‘§´—ææÕ√åµ‡«°‡µÕ√å·¡™™’π

‡æ◊ËÕ§—¥·¬°ª√–‡¿∑¡–‡√Áß º≈≈—æ∏å· ¥ß„Àâ‡ÀÁπ∂÷ß
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