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ABSTRACT

Finding subset of informative gene is the main problem for biological processes. The numbers of
gene grow up into the tens of thousands. Thus, dimension reduction of data is more benefit for finding
subset of gene. When the data are many dimensions or variables that lead to data sparsity and cause the
problem of curse of dimensionality. This research focuses on comparing efficiency of three dimension
reduction techniques Correlation Based Feature Selection, Gain Ratio, and Information Gain using acute
leukemia data that contains 7,129 dimensions, 2 groups that are ALL and AML. In this way, the output
from each of the three dimension reduction techniques is used to input data of Support Vector Machine

(SVM) for classifying data. The result of experiment shows that Gain Ratio and Information Gain
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techniques are suitable for working with Support Vector Machine because it can reduce dimension of data

into 36 dimensions and increase original corrected classification from 73.53% to 88.24%.
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