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New Reweighted ¢ -minimization Algorithms for Compressive
Sampling Recovery
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A recent compression method which overlooks the classical Shannon-Nyquist theorem is called
compressive sampling, also known as compressed sensing. The reconstruction of this new compression
method is proved to be done with high probability of success by performing el—minimization problem. The
gl—minimization reconstruction has been developed to the reweighted algorithm which recovers closely
approximate sparse solutions. However, there is no rule that automatically selects the appropriate weighting
values. This paper proposes the enhancements of reweighted gl—minimization by indicating the choice of
weighting functions and the suggestion to find the weighting values.

In reconstruction process, the approximate él—minimization might recover the fault signal by
shifting the zero solutions to the other values. Thus, the hard selective reweighted (HSR) algorithm is
designed to increase the importance of zero candidates by selecting the near-zero solutions whose numbers
are equal to a number of original zero entries scaled by greater weighting value. In general, the locations of
zero entries are not known so that the HSR algorithm could not apply to the real-world problems. This
problem is coped with by the second proposed automatic adaptive reweighted (AAR) algorithm which is
used to predict the locations of zero entries without knowing a number of original entries. The idea is to find
the smallest frequency bin of solutions which contains empty member then set it to be the threshold and the
solutions which are close to zero and the others scaled by larger and smaller weighting values, respectively.
The numerical results show comparatively that HSR and AAR algorithms outperform él—minimization.
Furthermore, both of these algorithms are demonstrated to be applied to manmade and magnetic resonance

imaging (MRI) images.
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Introduction A brief traditional compression process is shown in

A traditional compression method usually
applies a transformation to a sampled signal and then
truncates most of coefficients but significant ones.
This means that the quality of signal compression
depends on type and efficiency of transformation.
Up until now there are many transformations which
have been currently used such as Fourier transfor-
mation, discrete cosine transtformation, wavelets,
etc. However, the way to choose the transformation
is specifically designed for each application so that

there are no suitable transformations for all signals.

Figure 1.

Compressive sampling, also known as
compressed sensing, is a new founded method to
compress signal by exploiting its compressibility.
A conventional sampled signal depends on
Nyquist-bandlimited sampling rate but this method
ignores the Shannon-Nyquist sampling theorem.
This new idea was motivated in 2006 (Candgs,
Romberg and Tao, 2006). They assume that
several signals in the world are sparse, i.e. they

contain much repetitious information. Thus, it is
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not necessary to sample the signal following
Shannon-Nyquist theorem and random sampling is
sufficiently allowed for a considered sparse signal.

Let z be a real-value, finite-length,
discrete-time, one-dimensional signal, which can
be viewed as an Nx1 column vector in R . A
signal in R™ can be represented in term of a N x N
basis matrix ¥ :[l//lll//r_) [...|l//N] by stacking the

basis vector ¥i as columns, i.e.

N
i=1

xr=W¥s. (2)
where s is the N x1 column vector of weighting
coefficients s;. This operation is the first stage in
Figure 1.

A sparse representation focuses on the
elements of non-zero entries in coefficient vector
s . If there are K non-zero entries with K << N -
only K of the s; in (1) are non-zero and (N - K)
are zero, the signal will be considered as a K-sparse
signal. In fact, many natural and manmade signals
are sparse with a few large coefficients and many
small coefficients (Baraniuk, 2007).

The idea of compressive sampling is to

transform the signal 2 via a measurement martrix

®;;, v as defined in (3) and shown in Figure 2.

y=Dxr =DOV¥s=0s. (3)

Original Signal

%

[ N R

~
I

Figure 2 Compressive sampling measurement

process (Baraniuk, 2007)

From (3), the matrix product ® is the
representation of measurement matrix ® and basis
matrix ¥ whose columns correspond to non-zero
coefficients s;; i.e. the compressed signal y is a
linear combination of K columns of matrix product

©® as shown in Figure 3.
. ﬂ ﬂ

Figure 3 Compressed signal from the linear
combination of highlighted columns

(Baraniuk, 2007)

Signifizant Da.1a

Di

Comprassed Signal

Basis & Coefficients

Figure 1 Traditional compression process
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It is surprising that with M <N the
signal can be reconstruction from the compressed
signal ¥ (Candes, Romberg and Tao, 2006). This
is to find a solution of system of linear equations
with fewer equations than unknowns. As known
from linear algebra there are infinitely possible
solutions. Thus, this problem cannot be solved
unless there are other imposed conditions.

The reconstruction algorithm for K-sparse
requires sufficiently A/ ~ K measurement matrix or
slightly more measurements to collect significant
coefficients. Because there are K non-zero entries
which cause this system likely that there are K
unknowns so that the measurement rows M ~ K
which approximate to K equations are enough to
solve this problem (Baraniuk, 2007).

In actual fact, the locations of non-zero
coefficients s; in K-sparse signal are not known
although a number of equations A/ equal or exceed
a number of unknowns k. Thus, a necessary and
sufficient condition that ensures the solution of
M ~ K system is that the vector 5 must share the
same locations as K non-zero entries. The matrix
® which applies this ideal preserving the lengths of
these particular K-sparse vectors is said to have

restricted isometry property (RIP),
PR
RIP < B, - ERIp » (4)
2
for some &pp > 0. So far there are independent
and identically distributed (i.i.d.) random Gaussian
distribution and Rademacher distribution satisfying

the RIP property (Baraniuk, 2007).

Reconstruction algorithms
The M < K system generates infinitely

many possible solutions which all lie on the (N — M)
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~dimensional hyperplane # = N (®)+s in R,
The true solution vector is also sparse correspond-
ing to the constraint &(s + ) = y for any vector r
in null space A/(®). Thus, our goal is to find the
sparsest coefficient vector s in the translated null
space.

A suitable method that counts the smallest
number of non-zero in coefficient vector s is
eo—minimization,

min ||3H0 sub.t0 ®s = y, (5)

which ¢ is well-called “zero norm”. The other

form of ¢ —norm for the vector is defined as,
p

N 1

T 3 (O IS SO

i=1
However, the go—minimization is hard to

solve because an exhaustive enumeration which is

NP-complete requires Cﬁ possible combinations
for all locations of non-zero entries in vector
s. Thus, this optimization is adapted to the
approximate 2 -minimization,

min Hs"1 sub.to @s =y . (7)

This is a convex optimization problem that

conveniently reduces to a linear programming which
requires computational complexity about O(N 3)

(Boyd and Vandenberghe, 2004). It is proved that
this optimization can exactly reconstruct K-sparse
signal vectors with high probability (Candeés,
Romberg and Tao, 2006).

Reweighted fl—minimization

The differences of solutions between go and
gl norms are the locations of K non-zero entries.
Although gl—minimiza‘[ion can search the locations
of K non-zero entries, a number of reconstructed

zero entries are not equal to the original. Because
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the objective function of gl—minimization is

designed specifically for a symmetric el—ball (the
possible capacity cost of objective function ”8“1)
which has probability to touch the hyperplane in
a wrong position for which "&s”1 < ”50”0 , shown as
interior ¢ -ball (Figure 4(b)) while the ¢, ~ball of
radius ||80”1 touches the true solution at the vertex

containing more zero entries and close to K-sparse

(Figure 4(a)).

Os=y
(a) (b)

Figure 4 gl—ball for reconstructed signal (Candes,

Wakin, and Boyd, 2007)

The enhancement of gl —-minimization which
reshapes the él—ball to counteract the function
penalty is possible for a convex optimization.
A weighted relaxation él—minimization which
employs this idea to formulate the objective function

Ws

,With the same constraints is expressed as,
min "Ws"1 sub.to ®s =y, (8)

where W = diag([w; wg,...,wy]") is a weighting
diagonal matrix of size N x N. The weighted £~
minimization can be solved via linear programming
as same as gl—minimization. However, the solutions
from the convex optimization might present the

different solutions. Thus, the suitable weighting

11

matrix can reshape the el—ball in order to avoid the
fault solution s # s, for which "Ws” L S HWS’O"O as

illustrated in Figure 5.

Weighted £, ball
Un-weighted £, ball

Figure 5 Weighted & un-weighted el—ball for
coefficient signal vector (Candes,

Wakin, and Boyd, 2007)

The conceptual weighting function is
designed to control the true solution by counteracting
the influence of signal magnitude on the ‘ penalty
function. The recommended weights are inversely
to the true signal magnitude (Candés, Wakin, and

Boyd, 2007),

if s, #0

. €))

w; = ’30.,1‘
w if s, =0

where $g; is the true solution to each entry ; . This
weighting function guarantees to find the true
solution but the locations of K non-zero entries are
not already known. Thus, this weighting function is
unavoidably applied the solution from gl—minimi—
zation to construct the weights. Otherwise, the
numerical computation cannot be defined when
w; = oo so that the weighting function are revised

to the equivalent form,
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w = (10)
Cos| e

where ¢ > 0 for ensuring the division of zero-value
component in the reconstructed vector S; which
might estimate the weighting value w; to infinity.

The equivalent weighting function (10)
is not required the location of the true solutions so
that the efficiency to find the true solutions might
be generally decreased. The achievable process
which enhances weighted gl—minimization is to
repeat the algorithm iteratively. A simple reweighted

algorithm is shown in Figure 6.

Let W(=D=diag([11 ... 1 W (MeRN l
| 9l 1. Weighting function

w1 g
s=min|| W 3| sub. to Bs=y ¢ |s.(”1)| e

Is (7
well solution ?

Figure 6 Iterative reweighted gl—minimization

The first knowing solution vector s
obtained from un-weighted gl—minimization is used
to construct a range of weighting matrix W, Then,
the next weighting matrix will be estimated by the
previous solution vector s, This algorithm
repeats until the solutions terminate on convergence
or when iteration ¥ attains a specified maximum
number of iterations 7max.

In general, the weighting magnitude w,
depends on the choice of parameter € which
controls its distribution changed obviously when

varying the value of €.

215 15998 M2, (uA.) 10 (3) : n.A. - N.8. 2553

However, there are currently no smart
and robust rules that would automatically select
the parameter € adapting the dynamic range of
weighting values (Candés, Wakin, and Boyd,
2007). Thus, the algorithm that ensures the
appropriate weighting magnitude w;, is still an open

question.

Methods and Solutions
An innovative proposed idea is to design
new weighting function which is more general to
select the appropriate weighting value. Since the
parameter & in weighting function is unbounded
for some ¢ >0 so that it is difficult to vary its
value when undergoing the experiment. The way to
adapt to the new weighting function is possible for
convex optimization. From weighting function (9),
the weighting values are mostly to scale the
solutions which their values are close to zero by
the large factors. Thus, the achievable weighting
function which has the similar characteristic
designed to reduce the complexity of function is
proposed as hard selective weighing function
(Charunphaisan and Meesombon, 2009A),
welfe B
Boin s> 7
where 7 is the threshold which its value is in the
period of possible solutions divided the solutions
into 2 groups; there are the solutions which are
close to zero multiplied by Amax and the other
solutions are multiplied by /., . Furthermore, the
parameters Prnaxs Proin > 0 are well-defined for the
reason that if Bumaxs Fmin = U, some solutions which

are in the summation ”W=5 "1 will be ignored.
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According to Figure 5, the vertex of
weighted el—ball is extended to intersect the
hyperplane at the true solution which contains
many zero entries. Suppose, the solution s; which
are multiplied by fBy.x are zero candidates so that
the weighting value Auax should be infinitely larger

than Pmin- as a hard selective ratio,

ﬂ max
:B min

However, this ratio cannot be defined as

=0, (12)

infinity in numerical experiments in order that
the infinite ratio is alternatively changed to the
suggested formulation,

/B max i

, (13)
ﬂ min H

where # <1 is represented as the expanding rate.
The el—ball can be spanned more elaborately
touching the hyperplane when the limit of x is
closer to zero. Additionally, the recommended value
of parameter u is equal to the floating fixed-point
accuracy. For example, if the considered signal is
of the accuracy at 0.01, the parameter z < 0.01 will
be the sufficient value. The hard selective reweighted

(HSR) algorithm, is shown in Figure 7.

art
Start

4

‘ Let WOY=diag{1 1 ... 1)%), WHeR¥ ‘ e )
; HSR weighting function

i d Pl S 7
) Brie 18] > 7
R .

- Y. -
S=min|| W Os) sub, to Os=y €
. )

Ts s
well solution 7

Select threshold 7

(swp )

Figure 7 Iterative HSR algorithm including

selecting threshold r process
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In reconstruction process, the gl—minimi—
zation is possible to recover the fault signal. For
example in Figure 10(b), it shows the scatter plot of
reconstructed coefficient vector 3(0) . As we notice
these points spreading widely the diagonal line so
that, in this case, the un-weighted 21 minimization
does not offer the exact solution.

Another point of view, this means that
some zero entries in the reconstructed coefficient
vector 3(0) might spread around to the other
solutions. One possibility to recall the original zero
entries is to find the locations of all zero candidate
entries. In this paper, we assume the locations of
solutions which their values are close to zero will
be set as zero entries. Moreover, if a number of zero
entries in the original coefficient vector s, = ¥ ™1
are correctly known and the gl—minimization
presents the fault reconstructed vector 3(0), the
threshold 7 in reweighted el—minimization will be
computed as follows. Firstly, calculate a number of
absolute elements of fault reconstructed vector 3(0)
in each frequency bin (that is histogram of absolute
reconstructed vector ‘S(O)’). After that, count the
cumulative sum along difference frequency index
until the sum is greater than or equals to a number
of original zero entries. Finally, the last cuamulative
sum is the value of the threshold 7.

For example, Figure 8 shows the
cumulative sum of histogram of absolute coefficient
vector ‘3(0)’ via gl—minimization. We know that
the original coefficient vector Sy contains 455 zero
entries while the zero entries of absolute coefficient
vector ‘S(O)’ are merely about 370 so that the
threshold is defined as 0.05 for containing equally

455 zero candidate solutions.
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Cumulative sum

-0.2 [} 0.2 0.4 0.6 0.8 1 1.2
Frequency bin

Figure 8 Cumulative sum of histogram values of
absolute reconstructed vector ‘S(O)’ using

unweighted él—minimization

However, a number of original zero
entries are not known in practical so that an
alternative simple algorithm without knowing
a number of original zero entries is also proposed
by finding only the smallest frequency bin of
histogram of absolute coefficient vector ‘S(O)’ which
is empty, called automatic adaptive reweighted
(AAR) algorithm (Charunphaisan and Meesombon,
2009B). A brief concept of algorithm is to assume
the near-zero solutions being the zero candidates
and their entries are punctuated by the nearest
empty frequency bin of histogram of absolute
coefficient vector ‘3(0)’. For example, Figure 9
shows the histogram of fault absolute coefficient
vector ‘3(0)’ . There are not only zero entries in zero
index, but also the other zero entries might be shifted
to the other values around zero index. The nearest
empty frequency bin of this example is about 0.08
so that the algorithm has decided to select the
threshold 7 =0.08 for containing the near-zero

solutions to be zero candidate entries.
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Figure 9 Histogram values of absolute reconstructed

vector ‘3(0)’ using unweighted gl—mini—

mization

Numerical results

This section demonstrates the numerical
experiments that the concept of el—ball analysis can
do manifestly in practical. However, reweighted 0~
minimization is currently not known the method to
define appropriate parameter in weighting function
(10). Thus, the results can present sufficiently the
percentage of successful reconstruction via
gl—minimization, HSR and AAR algorithms.

The first experiment considers a
normalized uniformly distribution K-sparse signal
vector of size 250-dimensional and defines the
measurement matrix @ as a zero-mean normal
(Gaussian) matrix of size 50 x 250, generated once
for 200 trails of each K-sparse. This experiment
categorizes the reconstructed signal which has
PSNR >80 as the exact reconstructed signal.
Let the expanding rate # = 0.01 and set 5 iterations
for all computational experiments.

In Figure 11, the comparison graph shows
that the percentages of HSR and AAR algorithms
outperform gl—minimization about 12.63% and

13.38%, respectively.
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Figure 10 Sparse signal recovery using HSR algorithm. (a) Original cofficient vector sy on the interval [-1,1],
length N = 500, with 45 spikes and (b) its histogram. (c) Reconstructed cofficient vector §9 and
(d) scatter plot (coefficient-by-coefficient of s, versus its reconstruction) using unweighted
El-minimization. (e) Reconstructed cofficient vector s<1) after the first reweighted iteration and

2)

(d) its scatter plot. (g) Reconstructed cofficient vector %) after the second reweighted iteration and

(h) its scatter plot.
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Figure 11 Comparison of £ ~-minimization, HSR and AAR algorithms in compressive sampling reconstruction

Original ,“minimization
{a)
H5R
{c) (d)

Figure 12 Example of manmade images in compressive sampling: (a) original image (b) ¢ -minimization,
PSNR=61.83 dB (c¢) reconstructed image when using HSR algorithm, PSNR=539.21 dB and (d)

reconstructed image when using AAR algorithm, PSNR=545.02 dB
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£ -minimization

(@
Figure 13 Angiogram MRI images in compressive sampling reconstruction: (a) original MRI image of size
432 x 338 (Dyck and Wilson, 2006) (b) original cropped MRI image of size 25 x 25 (framed in Figure 16
(a)) (c¢) reconstructed cropped MRI image when using fl-minimization, PSNR=71.30 dB (d) HSR
algorithm, PSNR=597.56 dB and (e) AAR algorithm, PSNR=110.88 dB



18 M3 19398 3. (ud.) 10 (3) : n.A. - N.8. 2553

A Ak
A

Figure 14 Throat MRI images in compressive sampling reconstruction: (a) original MRI image of size
336 x 337 (Slocum, 2009) (b) original cropped MRI image of size 25 x 25 (framed in Figure 16 (a)) (c)
reconstructed cropped MRI image when using £ -minimization, PSNR=69.26 dB (d) HSR algorithm,
PSNR=574.92 dB and (e) AAR algorithm, PSNR=585.90 dB
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The second experiment applies these
algorithms to recover an example of manmade image
of size 25x25 with 34.50% K-sparse. The
numerical result shows that PSNRs of its
reconstructions via gl—minimization, HSR and AAR
algorithms as shown in Figure 12.

In the last experiment, an angiogram MRI
image of size 432 x 338 (Figure 13(a)) with
58.14% K-sparse and a throat MRI image of size
336 x 337 (Figure 14(a)) with 60.29% K-sparse
are cropped to the undersized image of size 25 x 25
which are the representation of original image with
64.80% K-sparse and 59.04% respectively.

Figure 13 and Figure 14 show the
reconstructions of angiogram and neck MRI images
respectively, via gl—minimization, HSR and AAR

algorithms.

Results and Discussions

HSR algorithm can recover the exact
signal with high probability but this algorithm needs
to know a number of original zero entries.
However, AAR algorithm is designed to cope with
this problem although the percentage of exact
reconstruction is little lower than HSR algorithm.
This means that AAR algorithm can supersede HSR
algorithm in case that a number of original zero
entries are not known.

Even though, from the results, the HSR
sometimes yields higher PSNR than that of AAR
(sometimes it is the other way round), the main
purpose of this paper is to provide methods that
give better performance than gl—minimization
reconstruction.

It is also an open question in compressive

sampling that when and what kind of signals for the
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compressive sampling reconstruction process which
should work since the main result (Candes,
Romberg and Tao, 2006) is only proved with high
probability of success when the signal is sparse
enough.

In this paper, the enhancements of
reweighted algorithms are proposed to find the
appropriate weighting matrix. As yet there are many
undetermined questions for some properties as
below,

e What condition does the algorithm
converge?

e How many iterations does the solution
converge?

e Can these weighting functions and

algorithms apply to the other applications?

Furthermore, since our experiments are
only applied by the linear programming so that there
are many interesting tools to solve this optimization
problem such as Dantzig selector, basis pursuit and
total variance minimization in addition to ‘ -Magic
(Candes and Romberg, 2005 ). For further works,
we will search out the theoretical supports for above
questions and apply to the other applications such
as signal recognition, remote sensing image, image

processing, etc.
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