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ABTRACT

A recent compression method which overlooks the classical Shannon-Nyquist theorem is called

compressive sampling, also known as compressed sensing. The reconstruction of this new compression

method is proved to be done with high probability of success by performing 
1
-minimization problem. The

1
-minimization reconstruction has been developed to the reweighted algorithm which recovers closely

approximate sparse solutions. However, there is no rule that automatically selects the appropriate weighting

values. This paper proposes the enhancements of reweighted 
1
-minimization by indicating the choice of

weighting functions and the suggestion to find the weighting values.

In reconstruction process, the approximate 
1
-minimization might recover the fault signal by

shifting the zero solutions to the other values. Thus, the hard selective reweighted (HSR) algorithm is

designed to increase the importance of zero candidates by selecting the near-zero solutions whose numbers

are equal to a number of original zero entries scaled by greater weighting value. In general, the locations of

zero entries are not known so that the HSR algorithm could not apply to the real-world problems. This

problem is coped with by the second proposed automatic adaptive reweighted (AAR) algorithm which is

used to predict the locations of zero entries without knowing a number of original entries. The idea is to find

the smallest frequency bin of solutions which contains empty member then set it to be the threshold and the

solutions which are close to zero and the others scaled by larger and smaller weighting values, respectively.

The numerical results show comparatively that HSR and AAR algorithms outperform 
1
-minimization.

Furthermore, both of these algorithms are demonstrated to be applied to manmade and magnetic resonance

imaging (MRI) images.
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(
1
-minimization) ́ ÷ËßµàÕ¡“‰¥â√—∫°“√æ—≤π“¡“‡ªìπ√–‡∫’¬∫«‘∏’°“√·∫∫∂à«ßπÈ”Àπ—° (reweighted algorithm) ·≈–

 “¡“√∂ √â“ß —≠≠“≥°≈—∫‰¥â„°≈â‡§’¬ß°—∫ —≠≠“≥∑’Ë¡’§«“¡‡∫“∫“ß (sparse signal) ·µàÕ¬à“ß‰√°Áµ“¡ ¬—ß‰¡à¡’

·π«∑“ß°“√‡≈◊Õ°§à“∂à«ßπÈ”Àπ—° ·∫∫Õ—µ‚π¡—µ‘ ¥â«¬‡Àµÿπ’È ∫∑§«“¡©∫—∫π’È®÷ß‡ πÕ∑“ß‡≈◊Õ°¢Õßøíß°å™—π

∂à«ßπÈ”Àπ—°·∫∫„À¡à ·≈–¡ÿàß‡ πÕ·π«∑“ß°“√‡≈◊Õ°§à“∂à«ßπÈ”Àπ—°∑’Ë‡À¡“– ¡

„π°√–∫«π°“√ √â“ß —≠≠“≥¬âÕπ°≈—∫‚¥¬°“√À“§à“µË” ÿ¥·∫∫πÕ√å¡Àπ÷Ëßπ—Èπ ¡’‚Õ°“ º‘¥æ≈“¥ ‡π◊ËÕß®“°

¡’°“√¬â“¬§”µÕ∫∑’Ë¡’§à“‡ªìπ»Ÿπ¬å‰ª¬—ßµ”·ÀπàßÕ◊ËπÊ ¥—ßπ—Èπ√–‡∫’¬∫«‘∏’°“√∂à«ßπÈ”Àπ—°·∫∫‡≈◊Õ°§à“Õ¬à“ß©—∫æ≈—π

(hard selective reweighted, HSR) ®÷ß∂Ÿ°ÕÕ°·∫∫‡æ◊ËÕ‡æ‘Ë¡§«“¡ ”§—≠¢Õßµ—«·∑π§”µÕ∫»Ÿπ¬å ´÷Ëß‡≈◊Õ°®“°

§”µÕ∫∑’Ë¡’§à“„°≈â»Ÿπ¬å¡“‡ªìπ®”π«π‡∑à“°—∫®”π«π¢Õß§”µÕ∫»Ÿπ¬å¢Õß —≠≠“≥¥—Èß‡¥‘¡ ‚¥¬®–∑”°“√‡æ‘Ë¡¢π“¥

¢Õß§”µÕ∫„Àâ„À≠à¢÷Èπ ·µà‚¥¬∑—Ë«‰ªµ”·Àπàß¢Õß§”µÕ∫»Ÿπ¬åπ—Èπ‰¡à “¡“√∂√Ÿâ‰¥â ®÷ß àßº≈„Àâ√–‡∫’¬∫«‘∏’°“√

∂à«ßπÈ”Àπ—°·∫∫‡≈◊Õ°§à“Õ¬à“ß©—∫æ≈—π‰¡à “¡“√∂ª√–¬ÿ°µå„™â„πªí≠À“„π‚≈°§«“¡‡ªìπ®√‘ß ‡æ◊ËÕ∑’Ë®–®—¥°“√°—∫

ªí≠À“π’È®÷ß‰¥â¡’°“√‡ πÕ‡æ‘Ë¡‡µ‘¡√–‡∫’¬∫«‘∏’°“√∂à«ßπÈ”Àπ—°·∫∫‡≈◊Õ°§à“‰¥âÕ—µ‚π¡—µ‘ (automatic adaptive

reweighted, AAR) ́ ÷Ëß„™â ”À√—∫∑”π“¬À“µ”·Àπàß¢Õß§à“§”µÕ∫»Ÿπ¬å ‚¥¬‰¡à®”‡ªìπµâÕß∑√“∫®”π«π¢Õß§”µÕ∫

»Ÿπ¬å¢Õß —≠≠“≥¥—Èß‡¥‘¡ ·π«§‘¥π’È„™â«‘∏’°“√·∫àß§”µÕ∫ÕÕ°‡ªìπ™à«ß§«“¡∂’Ëµà“ßÊ ·≈–µ√«® Õ∫«à“™à«ß§«“¡∂’Ë

∑’Ë¡’§à“πâÕ¬∑’Ë ÿ¥„¥‰¡à¡’ ¡“™‘°Õ¬Ÿà ®–∂Ÿ°°”Àπ¥„Àâ‡ªìπµ”·Àπàß®ÿ¥¢Õß°“√‡ª≈’Ë¬π·ª≈ß ·≈–°”Àπ¥„Àâ§”µÕ∫∑’Ë

¡’§à“„°≈â»Ÿπ¬å ·≈–§”µÕ∫Õ◊ËπÊ∂Ÿ°‡æ‘Ë¡¢π“¥„Àâ„À≠à¢÷Èπ ·≈–≈¥¢π“¥„Àâ‡≈Á°≈ßµ“¡≈”¥—∫ ®“°º≈°“√∑¥ Õ∫

‡™‘ßµ—«‡≈¢ æ∫«à“ º≈°“√ √â“ß —≠≠“≥¬âÕπ°≈—∫∑’Ë∂Ÿ°µâÕß ‚¥¬√–‡∫’¬∫«‘∏’°“√∂à«ßπÈ”Àπ—°·∫∫‡≈◊Õ°§à“Õ¬à“ß©—∫æ≈—π

·≈–√–‡∫’¬∫«‘∏’°“√∂à«ßπÈ”Àπ—°·∫∫‡≈◊Õ°§à“‰¥âÕ—µ‚π¡—µ‘ ¥’°«à“«‘∏’°“√À“§à“µË” ÿ¥·∫∫πÕ√å¡Àπ÷Ëß πÕ°®“°π—Èπ

√–‡∫’¬∫«‘∏’∑—Èß Õß¬—ß∂Ÿ°π”‰ªª√–¬ÿ°µå°—∫¿“æ∑’Ë∂Ÿ° —ß‡§√“–Àå®“°¡πÿ…¬å ·≈–¿“æ∑’Ë √â“ß®“°‡√‚´·ππ´å·¡à‡À≈Á°

(magnetic resonance imaging, MRI)
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1
-minimization, 

1
-minimization.

§” ”§—≠ : §Õ¡‡æ√ ´’ø·´¡ª≈‘Ëß   §Õ¡‡æ√ ·´¡ª≈‘Ëß   §Õ¡‡æ√  ’́ø‡´π ‘́Ëß    —≠≠“≥∑’Ë¡’§«“¡‡∫“∫“ß

°“√À“§à“µË” ÿ¥¢ÕßπÕ√å¡Àπ÷Ëß‚¥¬∂à«ßπÈ”Àπ—°   °“√À“§à“µË” ÿ¥¢ÕßπÕ√å¡Àπ÷Ëß

Introduction

A traditional compression method usually

applies a transformation to a sampled signal and then

truncates most of coefficients but significant ones.

This means that the quality of signal compression

depends on type and efficiency of transformation.

Up until now there are many transformations which

have been currently used such as Fourier transfor-

mation, discrete cosine transformation, wavelets,

etc. However, the way to choose the transformation

is specifically designed for each application so that

there are no suitable transformations for all signals.

A brief traditional compression process is shown in

Figure 1.

Compressive sampling, also known as

compressed sensing, is a new founded method to

compress signal by exploiting its compressibility.

A conventional sampled signal depends on

Nyquist-bandlimited sampling rate but this method

ignores the Shannon-Nyquist sampling theorem.

This new idea was motivated in 2006 (Candès,

Romberg and Tao, 2006). They assume that

several signals in the world are sparse, i.e. they

contain much repetitious information. Thus, it is
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not necessary to sample the signal following

Shannon-Nyquist theorem and random sampling is

sufficiently allowed for a considered sparse signal.

Let  be a real-value, finite-length,

discrete-time, one-dimensional signal, which can

be viewed as an  column vector in . A

signal in  can be represented in term of a 

basis matrix  by stacking the

basis vector  as columns, i.e.

  (1)

  (2)

where  is the  column vector of weighting

coefficients . This operation is the first stage in

Figure 1.

A sparse representation focuses on the

elements of non-zero entries in coefficient vector

.  If there are  non-zero entries with -
only  of the  in (1) are non-zero and 

are zero, the signal will be considered as a K-sparse

signal. In fact, many natural and manmade signals

are sparse with a few large coefficients and many

small coefficients (Baraniuk, 2007).

The idea of compressive sampling is to

transform the signal  via a measurement matrix

 as defined in (3) and shown in Figure 2.

(3)

Figure 2 Compressive sampling measurement

process (Baraniuk, 2007)

From (3), the matrix product  is the

representation of measurement matrix  and basis

matrix  whose columns correspond to non-zero

coefficients ; i.e. the compressed signal  is a

linear combination of  columns of matrix product

 as shown in Figure 3.

Figure 3 Compressed signal from the linear

combination of highlighted columns

(Baraniuk, 2007)

Figure 1  Traditional compression process
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It is surprising that with  the

signal  can be reconstruction from the compressed

signal  (Candès, Romberg and Tao, 2006). This

is to find a solution of system of linear equations

with fewer equations than unknowns. As known

from linear algebra there are infinitely possible

solutions. Thus, this problem cannot be solved

unless there are other imposed conditions.

The reconstruction algorithm for   K-sparse

requires sufficiently  measurement matrix or

slightly more measurements to collect significant

coefficients. Because there are K non-zero entries

which cause this system likely that there are K

unknowns so that the measurement rows 

which approximate to K equations are enough to

solve this problem (Baraniuk, 2007).

In actual fact, the locations of non-zero

coefficients  in K-sparse signal are not known

although a number of equations  equal or exceed

a number of unknowns . Thus, a necessary and

sufficient condition that ensures the solution of

 system is that the vector  must share the

same locations as  non-zero entries. The matrix

 which applies this ideal preserving the lengths of

these particular K-sparse vectors is said to have

restricted isometry property (RIP),

(4)

for some . So far there are independent

and identically distributed (i.i.d.) random Gaussian

distribution and Rademacher distribution satisfying

the RIP property (Baraniuk, 2007).

Reconstruction algorithms

The  system generates infinitely

many possible solutions which all lie on the 

-dimensional hyperplane  in .

The true solution vector  is also sparse correspond-

ing to the constraint  for any vector 

in null space .  Thus, our goal is to find the

sparsest coefficient vector  in the translated null

space.

A suitable method that counts the smallest

number of non-zero in coefficient vector  is

0
-minimization,

  (5)

which 
0
 is well-called çzero normé. The other

form of 
p
-norm for the vector is defined as,

  (6)

However, the 
0
-minimization is hard to

solve because an exhaustive enumeration which is

NP-complete requires  possible combinations

for all locations of non-zero entries in vector

. Thus, this optimization is adapted to the

approximate 
1
-minimization,

  (7)

This is a convex optimization problem that

conveniently reduces to a linear programming which

requires computational complexity about 

(Boyd and Vandenberghe, 2004). It is proved that

this optimization can exactly reconstruct K-sparse

signal vectors with high probability (Candès,

Romberg and Tao, 2006).

Reweighted 
1
-minimization

The differences of solutions between 
0
 and

1
 norms are the locations of K non-zero entries.

Although 
1
-minimization can search the locations

of K non-zero entries, a number of reconstructed

zero entries are not equal to the original. Because



KKU Res J (GS) 10 (3) : July - September 2010 11

the objective function of 
1
-minimization is

designed specifically for a symmetric 
1
-ball (the

possible capacity cost of objective function )

which has probability to touch the hyperplane in

a wrong position for which , shown as

interior 
1
-ball (Figure 4(b)) while the 

1
-ball of

radius  touches the true solution at the vertex

containing more zero entries and close to K-sparse

(Figure 4(a)).

(a) (b)

Figure 4
1
-ball for reconstructed signal (Candès,

Wakin, and Boyd, 2007)

The enhancement of 
1
-minimization which

reshapes the 
1
-ball to counteract the function

penalty is possible for a convex optimization.

A weighted relaxation 
1
-minimization which

employs this idea to formulate the objective function

with the same constraints is expressed as,

(8)

where  is a weighting

diagonal matrix of size . The weighted 
1
-

minimization can be solved via linear programming

as same as 
1
-minimization. However, the solutions

from the convex optimization might present the

different solutions. Thus, the suitable weighting

matrix can reshape the 
1
-ball in order to avoid the

fault solution for which as

illustrated in Figure 5.

Figure 5 Weighted & un-weighted 
1
-ball for

coefficient  signal vector (Candès,

Wakin, and Boyd, 2007)

The conceptual weighting function is

designed to control the true solution by counteracting

the influence of signal magnitude on the 
1
 penalty

function. The recommended weights are inversely

to the true signal magnitude (Candès, Wakin, and

Boyd, 2007),

(9)

where  is the true solution to each entry . This

weighting function guarantees to find the true

solution but the locations of K non-zero entries are

not already known. Thus, this weighting function is

unavoidably applied the solution from 
1
-minimi-

zation to construct the weights. Otherwise, the

numerical computation cannot be defined when

 so that the weighting function are revised

to the equivalent form,
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(10)

where  for ensuring the division of zero-value

component in the reconstructed vector  which

might estimate the weighting value  to infinity.

The equivalent weighting function (10)

is not required the location of the true solutions so

that the efficiency to find the true solutions might

be generally decreased. The achievable process

which enhances weighted 
1
-minimization is to

repeat the algorithm iteratively. A simple reweighted

algorithm is shown in Figure 6.

Figure 6 Iterative reweighted 
1
-minimization

The first knowing solution vector 

obtained from un-weighted 
1
-minimization is used

to construct a range of weighting matrix . Then,

the next weighting matrix will be estimated by the

previous solution vector . This algorithm

repeats until the solutions terminate on convergence

or when iteration  attains a specified maximum

number of iterations .

In general, the weighting magnitude 

depends on the choice of parameter  which

controls its distribution changed obviously when

varying the value of .

However, there are currently no smart

and robust rules that would automatically select

the parameter  adapting the dynamic range of

weighting values (Candès, Wakin, and Boyd,

2007). Thus, the algorithm that ensures the

appropriate weighting magnitude  is still an open

question.

Methods and Solutions

An innovative proposed idea is to design

new weighting function which is more general to

select the appropriate weighting value. Since the

parameter  in weighting function is unbounded

for some  so that it is difficult to vary its

value when undergoing the experiment. The way to

adapt to the new weighting function is possible for

convex optimization. From weighting function (9),

the weighting values are mostly to scale the

solutions which their values are close to zero by

the large factors. Thus, the achievable weighting

function which has the similar characteristic

designed to reduce the complexity of function is

proposed as hard selective weighing function

(Charunphaisan and Meesombon, 2009A),

(11)

where  is the threshold which its value is in the

period of possible solutions divided the solutions

into 2 groups; there are the solutions which are

close to zero multiplied by  and the other

solutions are multiplied by . Furthermore, the

parameters  are well-defined for the

reason that if , some solutions which

are in the summation  will be ignored.
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According to Figure 5, the vertex of

weighted 
1
-ball is extended to intersect the

hyperplane at the true solution which contains

many zero entries. Suppose, the solution  which

are multiplied by  are zero candidates so that

the weighting value  should be infinitely larger

than  as a hard selective ratio,

(12)

However, this ratio cannot be defined as

infinity in numerical experiments in order that

the infinite ratio is alternatively changed to the

suggested formulation,

(13)

where  is represented as the expanding rate.

The 
1
-ball can be spanned more elaborately

touching the hyperplane when the limit of  is

closer to zero. Additionally, the recommended value

of parameter  is equal to the floating fixed-point

accuracy. For example, if the considered signal is

of the accuracy at 0.01, the parameter  will

be the sufficient value. The hard selective reweighted

(HSR) algorithm, is shown in Figure 7.

Figure 7 Iterative HSR algorithm including

selecting threshold  process

In reconstruction process, the 
1
-minimi-

zation is possible to recover the fault signal. For

example in Figure 10(b), it shows the scatter plot of

reconstructed coefficient vector . As we notice

these points spreading widely the diagonal line so

that, in this case, the un-weighted 
1
 minimization

does not offer the exact solution.

Another point of view, this means that

some zero entries in the reconstructed coefficient

vector  might spread around to the other

solutions. One possibility to recall the original zero

entries is to find the locations of all zero candidate

entries. In this paper, we assume the locations of

solutions which their values are close to zero will

be set as zero entries. Moreover, if a number of zero

entries in the original coefficient vector 

are correctly known and the 
1
-minimization

presents the fault reconstructed vector , the

threshold  in reweighted 
1
-minimization will be

computed as follows. Firstly, calculate a number of

absolute elements of fault reconstructed vector 

in each frequency bin (that is histogram of absolute

reconstructed vector ). After that, count the

cumulative sum along difference frequency index

until the sum is greater than or equals to a number

of original zero entries. Finally, the last cumulative

sum is the value of the threshold .

For example, Figure 8 shows the

cumulative sum of histogram of absolute coefficient

vector  via 
1
-minimization. We know that

the original coefficient vector  contains 455 zero

entries while the zero entries of absolute coefficient

vector  are merely about 370 so that the

threshold is defined as 0.05 for containing equally

455 zero candidate solutions.



14 «“√ “√«‘®—¬ ¡¢. (∫».) 10 (3) : °.§. - °.¬. 2553

Figure 8 Cumulative sum of histogram values of

absolute reconstructed vector  using

unweighted 
1
-minimization

However, a number of original zero

entries are not known in practical so that an

alternative simple algorithm without knowing

a number of  original zero entries is also proposed

by finding only the smallest frequency bin of

histogram of absolute coefficient vector  which

is empty, called automatic adaptive reweighted

(AAR) algorithm (Charunphaisan and Meesombon,

2009B). A brief concept of algorithm is to assume

the near-zero solutions being the zero candidates

and  their  entries  are  punctuated  by  the nearest

empty frequency bin of histogram of absolute

coefficient vector . For example, Figure 9

shows the histogram of fault absolute coefficient

vector . There are not only zero entries in zero

index, but also the other zero entries might be shifted

to the other values around zero index. The nearest

empty frequency bin of this example is about 0.08

so that the algorithm has decided to select the

threshold =0.08 for containing the near-zero

solutions to be zero candidate entries.

Figure 9 Histogram values of absolute reconstructed

vector  using unweighted 
1
-mini-

mization

Numerical results

This section demonstrates the numerical

experiments that the concept of 
1
-ball analysis can

do manifestly in practical. However, reweighted 
1
-

minimization is currently not known the method to

define appropriate parameter  in weighting function

(10). Thus, the results can present sufficiently the

percentage of successful reconstruction via

1
-minimization, HSR and AAR algorithms.

The first experiment considers a

normalized uniformly distribution K-sparse signal

vector of size 250-dimensional and defines the

measurement matrix  as a zero-mean normal

(Gaussian) matrix of size , generated once

for 200 trails of each K-sparse. This experiment

categorizes the reconstructed signal which has

 as the exact reconstructed signal.

Let the expanding rate  and set 5 iterations

for all computational experiments.

In Figure 11, the comparison graph shows

that the percentages of HSR and AAR algorithms

outperform 
1
-minimization about 12.63% and

13.38%, respectively.
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(a)

(b) (c)

(d) (e)
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(a)

(b) (c)

(d) (e)
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The second experiment applies these

algorithms to recover an example of manmade image

of size  with 34.50% K-sparse. The

numerical result shows that PSNRs of its

reconstructions via 
1
-minimization, HSR and AAR

algorithms as shown in Figure 12.

In the last experiment, an angiogram MRI

image of size  (Figure 13(a)) with

58.14% K-sparse and a throat MRI image of size

  (Figure 14(a)) with 60.29% K-sparse

are cropped to the undersized image of size 

which are the representation of original image with

64.80% K-sparse and 59.04% respectively.

Figure 13 and Figure 14 show the

reconstructions of angiogram and neck MRI images

respectively, via 
1
-minimization, HSR and AAR

algorithms.

Results and Discussions

HSR algorithm can recover the exact

signal with high probability but this algorithm needs

to know a number of original zero entries.

However, AAR algorithm is designed to cope with

this problem although the percentage of exact

reconstruction is little lower than HSR algorithm.

This means that AAR algorithm can supersede HSR

algorithm in case that a number of original zero

entries are not known.

Even though, from the results, the HSR

sometimes yields higher PSNR than that of AAR

(sometimes it is the other way round), the main

purpose of this paper is to provide methods that

give better performance than 
1
-minimization

reconstruction.

It is also an open question in compressive

sampling that when and what kind of signals for the

compressive sampling reconstruction process which

should work since the main result (Candès,

Romberg and Tao, 2006) is only proved with high

probability of success when the signal is sparse

enough.

In this paper, the enhancements of

reweighted algorithms are proposed to find the

appropriate weighting matrix. As yet there are many

undetermined questions for some properties as

below,

ë What condition does the algorithm

converge?

ë How many iterations does the solution

converge?

ë Can these weighting functions and

algorithms apply to the other applications?

Furthermore, since our experiments are

only applied by the linear programming so that there

are many interesting tools to solve this optimization

problem such as Dantzig selector, basis pursuit and

total variance minimization in addition to 
1
-Magic

(Candès and Romberg, 2005). For further works,

we will search out the theoretical supports for above

questions and apply to the other applications such

as signal recognition, remote sensing image, image

processing, etc.
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