

Methylene Blue Removal From Aqueous Solution by Manganese Octahedral Molecular Sieve (K-OMS2) Coated on Activated Alumina Ball

Pongnapa Poompang* Thitisuda Jarichanon* Jakkapop Phanthasri** Bhuckchanya Pangkumhang***
Visanu Tanboonchuy ^{1**** *****}

ABSTRACT

Manganese octahedral molecular sieve (K-OMS2) coated on activated alumina ball (Al_2O_3) by using a polyvinyl alcohol (PVA) as a binder for removal of methylene blue (MB). K-OMS2 powder was synthesized by the hydrothermal method followed by coating onto the activated alumina ball (K-OMS2/ Al_2O_3 -PVA). The K-OMS2 / Al_2O_3 -PVA was characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Point of zero charges (pHpzc), and Nitrogen adsorption-desorption. The results showed that K-OMS2 had a cryptomelane crystalline structure with fracturing of the K-OMS2 particle on K-OMS2/ Al_2O_3 -PVA and $\text{pHpzc} \approx 8$. The specific surface area was $212.65 \text{ m}^2/\text{g}$, $0.45 \text{ cm}^3/\text{g}$ of the pore volume, while pore size was 4.19 nm. The kinetics study of MB removal showed the reaction rate increased as temperature increased in the range of the temperature investigated (303 – 333 K), which expressed the pseudo-second-order kinetic model. For the thermodynamic study, the reaction involves spontaneous reactions ($-\Delta G^\circ$), in an endothermic nature ($+\Delta H^\circ$), and with increased randomness ($+\Delta S^\circ$).

Keywords: K-OMS2, Methylene blue, PVA

¹Corresponding author: visanu@kku.ac.th:

*Student, Master of Engineering Program in Environmental Engineering, Faculty of Engineering, Khon Kaen University, Thailand

**Student, Doctoral of Engineering Program in Environmental Engineering, Faculty of Engineering, Khon Kaen University, Thailand

***Researcher, Chronic Kidney Disease Prevention in The Northeast of Thailand (CKDNET), Faculty of Medicine, Khon Kaen University, Thailand

****Assistant Professor, Department of Environmental Engineering, Faculty of Engineering, Khon Kaen University, Thailand

*****Assistant Professor, Research Center for Environmental and Hazardous Substance Management (EHSM), Khon Kaen University, Thailand

Introduction

Presently, dyes are used in many industries such as textile, cosmetic, and paper, among others. In the processes of these industries, there is concern about the environment with respect to water being contaminated with synthetic dyes. The dye in water is visible and undesirable. Further, it may affect photosynthetic activity in aquatic life because the color will block the transmission of light into the water. Wastewater containing dyes are subjected to various methods of wastewater treatment such as coagulation, membrane filtration, oxidation, adsorption, etc. [1-2]. Amongst these techniques, adsorption is the most broadly used for color removal in the water due to several advantages including its low cost and the expedience of the operation process. Nevertheless, the effectiveness of the adsorption process is dependent on the performance of adsorbent, the concentration of pollutant and thermodynamics [2-3]. Although the adsorption process is convenient, the final step requires the disposal of adsorbents waste. Meanwhile, the removal process by oxidation can reuse oxidants. Consequently, oxidation is an interesting method.

Nowadays, oxidants are made to be suitable for use with features including highly specific surface area, elegant pore size, large pore volume, and stable structure, providing a variety of applications for use. Manganese octahedral molecular sieve (K-OMS2) is due to the presence of Mn^{2+} , Mn^{3+} , and Mn^{4+} ions in the octahedral framework. These materials have been used for many applications such as catalytic, oxidants, and adsorbent as they are highly porous, non-toxic, and environmentally friendly [4-7].

In this study, K-OMS2 powder was prepared using a hydrothermal process. In the next step, the K-OMS2 coating on alumina ball was done using polyvinyl alcohol (PVA) to improve the alumina ball surface. At the end of this process, the material received will be called K-OMS2/ Al_2O_3 -PVA. The K-OMS2/ Al_2O_3 -PVA has been studied for crystallinity, point of zero charges, and surface morphology, as well as surface area, kinetic and thermodynamic studies for methylene blue removal.

Materials and Methods

The chemicals used in this study were of chemical analysis grade. K-OMS2 was prepared from 0.25M of manganese acetate tetrahydrate (Mn (CH₃COO)₂ · 4H₂O, ACROS Organics) mixed with 0.33M potassium permanganate (KMnO₄, CARLO ERBA). The pH of the solution was adjusted to an acidic condition (pH ≤ 3.5) and stirred well for 1 hr, after which it was transferred to an autoclave for hydrothermal processing for 3 hrs. In the next process, black slurry was washed with Deionized water (DI) (pH ≈ 7) by centrifuge technique to separate the black sediment. The black sediment was then dried at 373 K for 4 hrs and then at 473 K for 2 hrs [5].

The K-OMS2 powder was characterized for crystallinity using an X-ray diffractometer (XRD) (Model D8 Discover, Bruker AXS Germany) using CuK α with wavelength ($\lambda = 1.51418^{\circ}\text{A}$) at 40 mA and 40 kV with 2 θ range of 10-80 degrees and increasing step of 0.02 degree. The support materials involved using an alumina ball 4 mm of diameter (Al_2O_3 68.50% SiO_2 28% other 3.5%, BPF 05). The ratio of substance to alumina ball was 2%. Polyvinyl alcohol (PVA) was used as a binder to improve the surface of alumina ball and the concentration of PVA used was 5%

and 10% w/v. Polyvinyl alcohol (PVA) was used as a binder to improve the surface of alumina ball and the concentration of PVA used were 5% and 10% w/v.

The PVA solution was prepared from PVA powder in distilled water under heating at 85°C and magnetic stirring for 2 hrs [8]. The next step was the coating process by mechanical orbital shaking technique using 250 rpm for 24 hrs. Subsequently, K-OMS2/Al₂O₃-PVA was dried at 373 K for 24 hrs. The K-OMS2/Al₂O₃-PVA was studied for crystallinity by XRD, identical to the conditions for characterization of K-OMS2 powder. Surface morphology was observed by scanning electron microscopy (SEM) (1450VP, LEO). The point zero of charge (pH_{pzc}) was defined as pH on the charge of the adsorbent surface being zero, used 0.1M solution of NaCl, which was taken in different titration flasks. The pH of the solutions was adjusted to 2-12 using 0.1 M of HCl and 0.1 M of NaOH solution following 2 g of K-OMS2/Al₂O₃-PVA was added in each flask and shaken by a Shakers Incubator at 150 rpm, 298 K of temperature and the final pH measure after 48 hrs by pH meter. The results were plotted as a function of the initial pH of the solution vs. Δ pH. The Brunauer Emmett Teller (BET) and Barrett, Joyner, and Halenda (BJH) methods were used to explain the surface area, pore size, pore-volume, and pore shape.

Kinetics and thermodynamic studies of the removal of Methylene blue (MB) by K-OMS2/Al₂O₃-PVA was tested in the batch experiment with 1 ppm of MB and 40 g of K-OMS2/Al₂O₃-PVA. The temperature used ranged from 303-333 K, with the concentration of MB measured by spectrophotometer using absorbance at $\lambda_{\text{max}} = 664$ nm. [9]. Kinetic models are used to describe the mechanism of reaction. To examine the potential rate-determining step, pseudo-first order and pseudo-second-order kinetic models were used [10]. The linear form of the pseudo first-order equation is given by :

$$\ln(q_e - q_t) = \ln q_e - k_1 t \quad (1)$$

The linear form of the pseudo second-order model is given by :

$$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e} \quad (2)$$

Where q_e and q_t are the amounts of MB removed by K-OMS2/Al₂O₃-PVA at equilibrium and at various time t (mg·g⁻¹); k_1 is the equilibrium rate constant of pseudo first-order kinetics (min⁻¹); t is the contact time (min); and k_2 is the equilibrium rate constant of the pseudo second-order kinetics (g·mg⁻¹min⁻¹)

Thermodynamics study was used to indicate the relationship between energy and entropy, which deals with considering the Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°). These are calculated to evaluate the thermodynamic possibility and oxidation process in nature [2,11]. ΔG° can be calculated in the equation as :

$$\Delta G^\circ = -RT\ln k_d \quad (3)$$

Where R is the gas constant ($8.314 \text{ J}\cdot\text{mol}^{-1} \text{ K}^{-1}$); T is the temperature (K) and k_d is the thermodynamic equilibrium constant of the oxidation process (L/g), reflecting MB distribution between the solid and liquid phases at equilibrium. Equilibrium constant is estimated as :

$$k_d = q_e / C_e \quad (4)$$

According to the van't Hoff equation:

$$\ln k_d = \frac{\Delta S^\circ}{R} - \frac{\Delta H^\circ}{RT} \quad (5)$$

The values for ΔH° ($\text{kJ}\cdot\text{mol}^{-1}$) and ΔS° ($\text{J}\cdot\text{mol}^{-1} \text{ K}^{-1}$) were evaluated from the slope and intercept of the van't Hoff plots.

Activation energy (E_a) is the amount of minimum energy that is needed for the chemical reaction (kJ/mol).[12]. The activation energy for a given reaction depends on the types of bonds broken and formed in the reaction.[13]. E_a for the methylene blue removal is calculated from Arrhenius equation [14].

Results and Discussion

1. Characterizations

In the coating process, PVA is used as a polymer binder to improve the surface of alumina ball. Comparison of PVA concentration is appropriated between 5%PVA and 10%PVA by the weighing method of K-OMS2/ Al_2O_3 -PVA after it is dried. The results showed that K-OMS2 can be coated on alumina ball with 10%PVA binder better than 5%PVA, determine from the weight of alumina ball after the coating process, which can be 86.40%, while 5%PVA can be coated at 80.26%. Therefore, 10%PVA was used for K-OMS2 coating in this study.

The suggested structures of K-OMS2 and K-OMS2/ Al_2O_3 -PVA were confirmed from XRD, as shown in Figure 1. The crystallinity of K-OMS2/ Al_2O_3 -PVA is decreased when compared to K-OMS2 powder because the coating process by mechanical orbital shaking technique affects the crystallinity of K-OMS2.

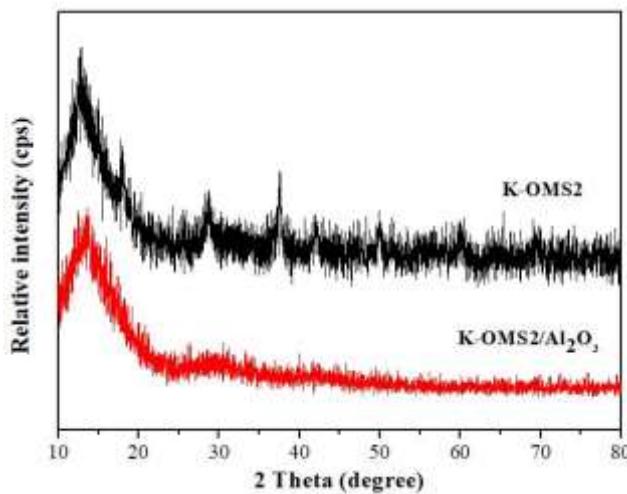
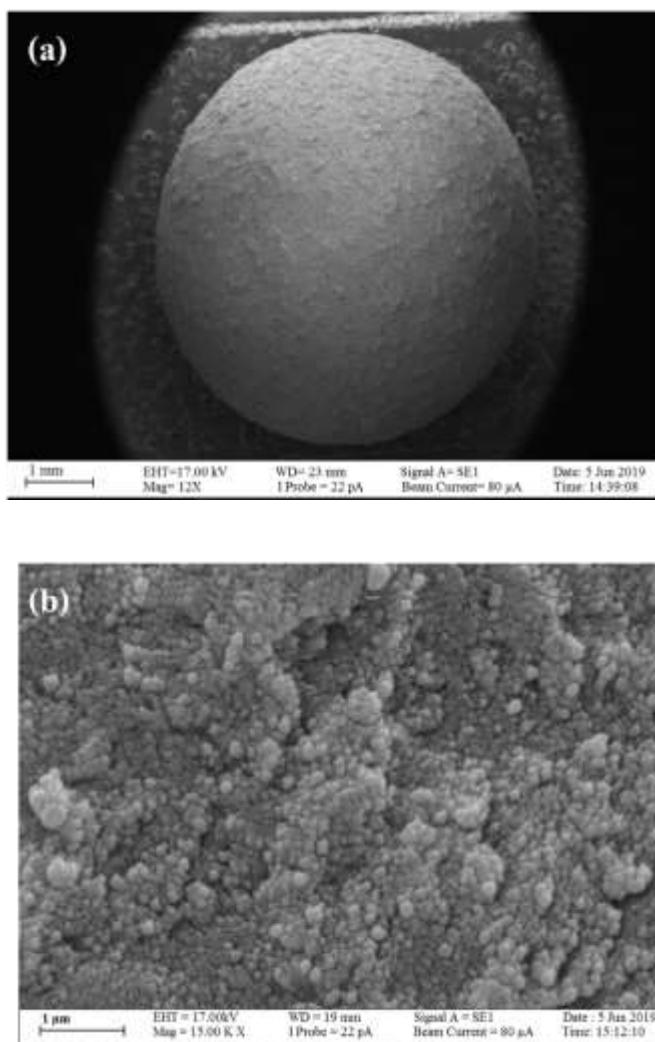
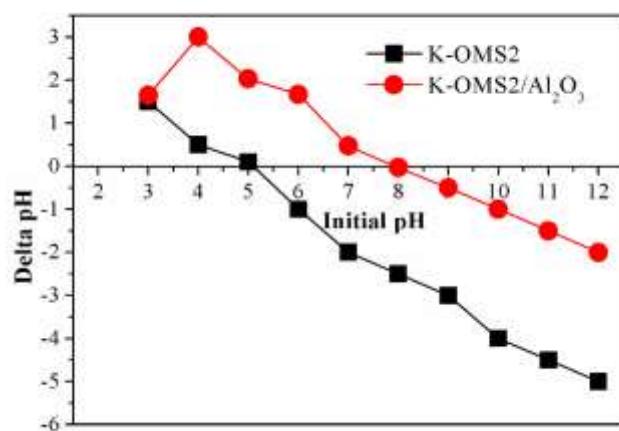




Figure 1 XRD pattern of K-OMS2 and K-OMS2/ Al_2O_3 -PVA

The surface morphology of K-OMS2/Al₂O₃-PVA was described by SEM, as seen in Figure 2, which found that the K-OMS2 particles have broken and combined agglomeration due to shaking from the coating process. For defining the surface charge of K-OMS2/Al₂O₃-PVA, as shown in Figure 3, the point zero of charge is 8. The pH is greater than 8, so the surface has negative charges. While pH was lower than 8, it will have a positive charge at the surface of K-OMS2/Al₂O₃-PVA. The pH_{pzc} of K-OMS2/Al₂O₃-PVA was different from K-OMS2 powder (pHzpc = 5) because Al₂O₃ have other elementals contents and functional groups of PVA induce to different functional groups thus a greater mass portion, which effect to active sites that will protonate excess H⁺ [15].

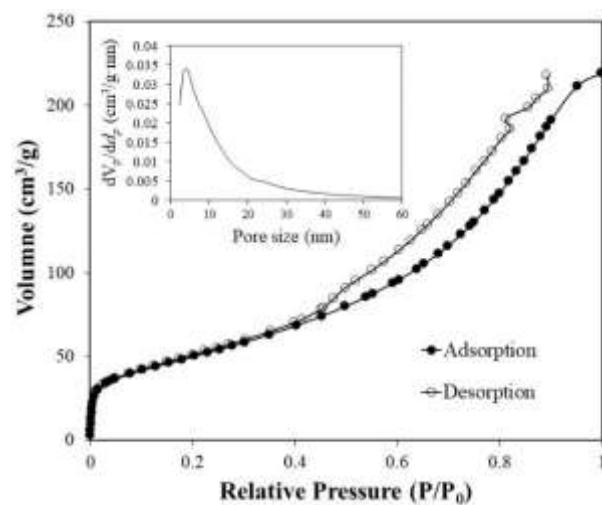


Figure 2 SEM image of K-OMS2/Al₂O₃-PVA (a) 12x and (b) 15,000x

Figure 3 Point of zero charge of K-OMS2 powder and K-OMS2/Al₂O₃-PVA

In addition to the above properties, this study also analyzed the specific surface area, pore- volume, and pore size. The BET surface area and pore volume of adsorbent are 212.65 m²/g and 0.45 cm³/g, respectively by BJH method. The diameters of the size of K-OMS2/Al₂O₃-PVA pore size distribution are the range of 2–50 nm and consisted of one sharp peak centered at 4.19 nm, with its mesopore following the IUPAC definition (2–50 nm) [16-17]. Figure 4 represents the N₂ adsorption/desorption isotherm for K-OMS2/Al₂O₃-PVA. According to the IUPAC classification of adsorption, the isotherm is a type IV isotherm, which is a hysteresis loop. This is associated with capillary condensation taking place in the mesopores [18-19]. The hysteresis loops are used to indicate pore shape, with the results showing the hysteresis loop is type H3, which is slit-shaped pores [18-20].

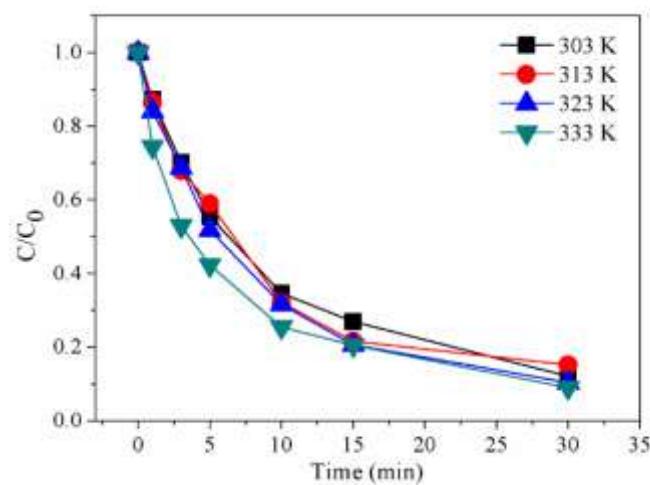


Figure 4 N₂ adsorption/desorption isotherm of K-OMS2/Al₂O₃-PVA, the insert shows the pore size distribution.

2. Kinetic and thermodynamic studies

2.1 Kinetic of MB removal by K-OMS2/Al₂O₃-PVA

Kinetic modeling allows the estimation of sorption rates and leads to a suitable condition rate of feasible reaction. The MB removal by K-OMS2/Al₂O₃-PVA was studied at different temperatures, as seen in Figure 5. It can be observed that the efficiency of MB removal increases as contact time and temperature increase. To determine the mechanism, the result is described with the kinetic model. Table 1 summarizes the calculated parameters for kinetic modeling. The R^2 value is used for deciding the model. According to results, the kinetics model for MB removal was fitted with the pseudo-second-order model. It implied that the process is controlled by the adsorption reaction at the liquid/solid interface in the adsorbent [10,21]. In addition, k_2 increased when temperature increased, meaning that the kinetic constant of this reaction depends on the temperature.

Figure 5 The relationship between contact time and concentration of MB at different temperature.

Table 1 Kinetic parameter for calculated

T (K)	Pseudo-first order			Pseudo-second order		
	k_1 (min ⁻¹)	q_1 (mg·g ⁻¹)	R^2	k_2 (g·mg ⁻¹ ·min ⁻¹)	q_2 (mg·g ⁻¹)	R^2
303	0.225	1.031	0.990	0.131	1.369	0.995
313	0.197	1.124	0.980	0.178	1.306	0.996
323	0.197	1.095	0.996	0.211	1.298	0.997
333	0.270	1.065	0.996	0.342	1.323	0.999

2.2 Thermodynamic of MB removal by K-OMS2/Al₂O₃-PVA

Thermodynamics can be used to describe the related parameters of standard free energy (ΔG°), as in Equation 3. Enthalpy change (ΔH°), and entropy change (ΔS°) were calculated to consider the nature of MB removal by K-

OMS2/Al₂O₃-PVA, by linear van't Hoff equation following Equation 5. The results of the thermodynamic calculations in Figure 6 show the relation of lnk_d between 1000/T, while Table 2 shows the thermodynamic parameters. The negative values of ΔG° indicate that the oxidation process can be spontaneous. Furthermore, an increase in the temperature causes a decrease in ΔG° , which reveals the increased reaction rate at higher temperature. The activation energy (E_a) is 25.522 kJ/mol related to ΔG° [22]. The positive value of ΔH° indicates that the reaction of the MB removal by K-OMS2/Al₂O₃-PVA can be endothermic. Positive ΔS° values indicate an increase of the randomness at the interface during the reaction of MB removal.

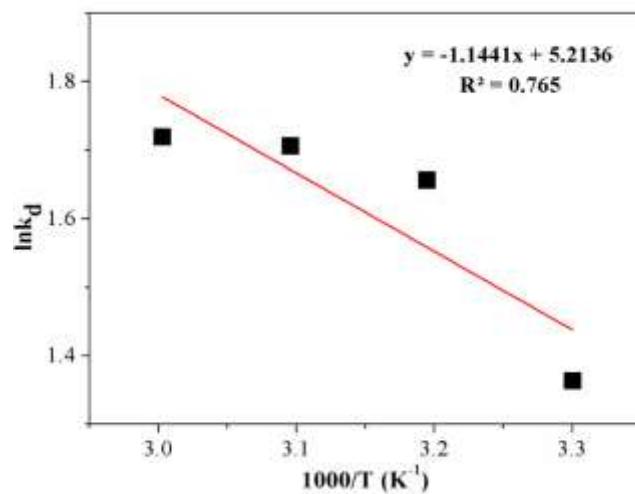


Figure 6 Plot of lnk_d vs 1000/T for MB removal by K-OMS2/Al₂O₃-PVA

Table 2 Thermodynamic parameter for MB removal by K-OMS2/Al₂O₃-PVA

Temp (K)	k _d (L·g ⁻¹)	ΔG (kJ·mol ⁻¹)	E _a (kJ·mol)	ΔS (J·mol ⁻¹ ·K ⁻¹)	ΔH (kJ·mol ⁻¹)
303	2.418	-3.434			
313	5.240	-4.310			
323	5.506	-4.581	25.522	43.346	11.980
333	5.580	-4.759			

Conclusions

K-OMS2/Al₂O₃-PVA has some features different from K-OMS2 powder. The results of pH_{pzc} clearly show that the characteristics of K-OMS2 in pH_{pzc} studies change from pH 5 to pH 8 after being coated on alumina ball with PVA. The kinetics of MB removal fitted well with the pseudo second-order kinetic model. The process of MB removal by K-OMS2/Al₂O₃-PVA occurred spontaneously (- ΔG°), in an endothermic nature (+ ΔH°), and increased randomness (+ ΔS°). According to the results, K-OMS2/Al₂O₃-PVA has potential for use in the removal of MB from wastewater.

Further studies on the adsorption isotherm and measurement of total organic carbon (TOC) are needed to explain the mechanism of MB removal by K-OMS2/Al₂O₃-PVA.

Acknowledgements

This work was financially supported by the Chronic Kidney Disease Prevention in The Northeast of Thailand (CKDNET), Faculty of Medicine, Khon Kaen University, the Thailand Research Fund (TRF) (MRG6180196) and Office of the Higher Education Commission., Research Program on Development of Appropriate Technologies for Coloring Agent Removal from Textile Dyeing, Pulp & Paper, and Sugar Industries for Sustainable Management, Center of Excellence on Hazardous Substance Management (HSM), and the Khon Kaen University's Graduate Research Fund Academic.

References

1. Ait Ahsaine H, Anfar Z, Zbair M, Ezahri M, El Alem N. Adsorptive removal of methylene blue and crystal violet onto micro-mesoporous Zr₃O/activated carbon composite: A Joint Experimental and Statistical Modeling Considerations. *J Chem.* 2018;2018:1–14.
2. El-bindary AA, Diab MA, Hussien MA, El-sonbati AZ, Eessa AM. Adsorption of acid red 57 from aqueous solutions onto polyacrylonitrile / activated carbon composite. *Spectrochim ACTA PART A Mol Biomol Spectrosc.* 2014;124:70–77.
3. Kannan N, Sundaram MM. Kinetics and mechanism of removal of methylene blue by adsorption on various carbons—a comparative study. *Dye Pigment.* 2001;51(1):25–40.
4. Mikac L, Marić I, Štefanić G, Jurkin T, Ivanda M, Gotić M. Radiolytic synthesis of manganese oxides and their ability to decolorize methylene blue in aqueous solutions. *Appl Surf Sci.* 2019;476:1086–1095.
5. Phanthasri J, Khamdahsag P, Jutaporn P, Sorachoti K, Wantala K, Tanboonchuy V. Enhancement of arsenite removal using manganese oxide coupled with iron (III) trimesic. *Appl Surf Sci.* 2018;427:545–552.
6. Yodsa-nga A, Millanar JM, Neramittagapong A, Khemthong P, Wantala K. Effect of manganese oxidative species in as-synthesized K-OMS 2 on the oxidation of benzene. *Surf Coatings Technol.* 2015;271:217–224.
7. Dharmarathna S, King'ondu CK, Pahalagedara L, Kuo C-H, Zhang Y, Suib SL. Manganese octahedral molecular sieve (OMS-2) catalysts for selective aerobic oxidation of thiols to disulfides. *Appl Catal B Environ.* 2014;147:124–131.
8. Akhlaghi EA, Badali Y, Altindal S, Azizian-Kalandaragh Y. Preparation of mixed copper/PVA nanocomposites as an interface layer for fabrication of Al/Cu-PVA/p-Si Schottky structures. *Phys B Condens Matter.* 2018;546(June):93–98.
9. Al-Rashed SM, Al-Gaid AA. Kinetic and thermodynamic studies on the adsorption behavior of Rhodamine B dye on Duolite C-20 resin. *J Saudi Chem Soc.* 2012;16(2):209–215.

10. Ibarz R, Garvín A, Ibarz A. Kinetic and thermodynamic study of the photochemical degradation of patulin. *Food Res Int.* 2017;99:348–354.
11. Bakhtiari N, Azizian S. Adsorption of copper ion from aqueous solution by nanoporous MOF-5: A kinetic and equilibrium study. *J Mol Liq.* 2015;206:114–118.
12. Khan U, Zaib A, Khan I, Nisar KS. Activation energy on MHD flow of titanium alloy (Ti_6Al_4V) nanoparticle along with a cross flow and streamwise direction with binary chemical reaction and non-linear radiation: Dual Solutions. *J Mater Res Technol.* 2019;
13. Ouellette RJ, Rawn JD. Introduction to Organic Reaction Mechanisms. In: *Organic Chemistry*. San diego: Elsevier; 2014. p. 75–110.
14. Kulczycki A, Kajdas C. A New Attempt to Better Understand Arrhenius Equation and Its Activation Energy. In: *Tribology in Engineering*. InTech; 2013.
15. Miyittah MK, Tsyawo FW, Kumah KK, Stanley CD, Rechcigl JE. Suitability of Two Methods for Determination of Point of Zero Charge (PZC) of Adsorbents in Soils. *Commun Soil Sci Plant Anal.* 2016;47(1):101–111.
16. Schultze-Jena A, Boon MA, de Winter DAM, Bussmann PJT, Janssen AEM, van der Padt A. Predicting intraparticle diffusivity as function of stationary phase characteristics in preparative chromatography. *J Chromatogr A.* 2020;1613:460688.
17. De Winter DAM, Meirer F, Weckhuysen BM. FIB-SEM Tomography Probes the Mesoscale Pore Space of an Individual Catalytic Cracking Particle. *ACS Catal.* 2016;6(5):3158–3167.
18. Zhang Y, Shao D, Yan J, Jia X, Li Y, Yu P, et al. The pore size distribution and its relationship with shale gas capacity in organic-rich mudstone of Wufeng-Longmaxi Formations, Sichuan Basin, China. *J Nat Gas Geosci.* 2016;1(3):213–220.
19. Sing R A W, Everett D H, Haul K S W. Provisional International Union of Pure and Applied Chemistry Commision on Colloid and Surface Chemistry Subcommittee on Reporting Gas Adsorption Data * Reporting Physisorption Data for Gas/ Solid System with Special Reference to the Determination of Surface area and Porosity. *Pure and Applied Chemistry.* 1985; 57(4): 603–619.
20. Qi L, Tang X, Wang Z, Peng X. Pore characterization of different types of coal from coal and gas outburst disaster sites using low temperature nitrogen adsorption approach. *Int J Min Sci Technol.* 2017;27:371–7.
21. Simonin J-P. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. *Chem Eng J.* 2016;300:254–263.
22. Helmenstine AM. Activation Energy (Ea) Chemistry Definition [Internet]. 2018 [update 2018 May 18; cite 2020 jan 14]. Available from <https://www.thoughtco.com/activation-energy-definition-ea-606348>.