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Classification Performance of Committee Networks Improvement
under Sparse Data Conditions
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ABSTRACT

In most real world applications, the data for modeling is normally sparse. This makes it difficult
for modelers to construct a neural network model. Eventually the training process may cause overfitting.
This paper proposes committee network methodology to deal with sparse data for a classification problem.
The committees are developed based on bootstrapped training sets and are called adjusted pair-wise
committee and adjusted random-mix committee. We test the committees’ performance against that of the
bootstrap committee and single neural network using the selected data sets from UCI Machine Learning
Repository, Center for Machine Learning and Intelligent System. The results reveal that the proposed

models perform as well as or better than the baseline models.
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Introduction

Under sparse data conditions where most
problem space is usually unknown, constructing
neural network models is very difficult. This is
because the amount of data is not enough to
determine neural networks’ topologies, e.g.,
number of hidden units, number of learning cycles,
and so on. In this matter, a particular neural
network usually learns the available data too well
but fails to generalize to the “unseen” data. Such
occurrence is referred to as “overfitting”.

There have been a number of published
papers attempting to improve neural networks’
performance under sparse data conditions. Many of
those use the committee network approach
(Parmanto et al., 1996; Lam, 1999; Siriphala,
2000; Chetchotsak and Twomey, 2007). Here,
the most promising but simple approaches are
proposed by Siriphala (2000). To be specific,
the committee networks in his work are constructed
based on one of the resampling method known as
the bootstrap. The rationale of using the bootstrap
method is to encourage each neural network in the
committee to learn different parts of data and thus
they all would have different expertises. If all of
them make a mistake, they would make a mistake
at different places, and eventually the errors would
be cancelled out. Such an approach is known as the
error decorrelation (Krogh and Vedelsby, 1995).
In addition to the use of the bootstrap method to
diversify each network in the committee, Siriphala
(2000)’s work also promotes and escalates even
more diversity among the networks in the
committee. His approaches are named as “pair-wise”
and “random-mix” algorithms and are to deal with

function approximation problems. However, there
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is no report on performance of the “pair-wise” and
“random-mix” algorithms when applied to a
classification problem.

The objective of this paper is to report our
attempt to improve classification performance of
committee networks under sparse data conditions.
Our proposed methods are developed based on
the “pair-wise” and “random-mix” algorithms.
Then the proposed methods are evaluated using a
simulation through different selected classification
problems. These methods may be applied to any
classification problems such as product classifica-

tion, yield improvement, and so on.

Background

Committee networks are constructed
based on the concept that “many heads are better
than one”. They consist of several neural networks
called committee members. According to Figure 1,
each neural network learns the data and helps one
another to solve or predict the same problem.
Each neural network’s output is combined through
a fusion rule to produce a committee output. The
most common fuser is known as the majority

voting scheme.
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Figure 1 Block diagram of a committee network

(Chetchotsak, 2004)
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Several papers have proposed a method to
train a committee network. Many of those use the
error decorrelation approach. In particular, each
network in the committee is trained using different
parts of data so as to have different expertises. When
those networks make a mistake, they would make a
mistake at different places and eventually each
mistake from the committee member would be
cancelled out. The most well known method to
decorrelate the training data is the bootstrap

method (Table 1).

Adjusted pair-wise committee (APW)

APW consists of seven network
architectures'and is based on the bootstrap
algorithm. The use of seven architectures attempts
to escalate the degree of diversity among the
committee members so as to encourage each
network to have different expertise and help each
other to predict the output. Figure 2 depicts the
diagram of APW algorithm. In this case, the fusion
rule (majority voting scheme) is used at two layers.
In the first layer, the fusion rule combines the
output of the neural networks with the same
architecture but different bootstrapped training sets.
In the second layer, the majority voting scheme
combines the final output to produce the committee
output. This decision mechanism helps to fitter out
the decisions made by each committee member.

The APW algorithm is presented in Table 2.

" Such a number is a proposed number in this experiment.
According to Parmanto et al. (1996), Siriphala (2000),
Chetchotsak and Twomey (2007) that the number of
committee members should be more than 20. For a
classification problem, the number of committee members

should be an odd number for consensus of decision.
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Table 1 The bootstrap algorithm.

N

Step i) Let F be the empirical probability
distribution where 7" with n observation is
drawn.

Step ii) Let t, oty st be a collection of training set
T wheret, = (x,,y, ).

Step iii) Specify the number of bootstrap samples,

B to produces T*] ,T*z,...,T*B

Step iv) Randomly choose ¢, from T for

i =1,...,n with replacement and equal

probability mass — to produces each T "
n

Step v) Repeat Step iv) B times to produce
T

Step vi) Train Network 1, Network 2,..., Networks

*B

B using T*l ,T*2 s

Step vii) Given the input x, for

N - A ‘g
i=1,n, f(T,x),.. f5(T " ,x,) are

i

the outputs of these networks.

Step viii) Majority voting is used as a fuser of this

committee network, as shown in Figure 1.

Adjusted random-mix committee

(ARM)

ARM also consists of seven network
topologies. In this case, all the committee
members’ outputs are combined through only one
fuser. This encourages each committee member to
have the same rank to vote for the output. Table 3

shows the ARM algorithm.
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Architecture 1

Architecture 2
P XA
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Figure 2 Adjusted pair-wise committee.

Table 2 Adjusted pair-wise algorithm

Table 3 Adjusted random-mix algorithm

Step i)

Step ii)

Step iii)

Let T”” ,Tn*2 ,...,T;B represent the bootstrap
samples of n observations randomly
generated, where B is the number of
bootstrap samples and total number of APW
members.

Train neural networks using the bootstrap
samples in Step i) with 7 different
architectures. Thus, the total number of
neural networks with the same architecture
is N=B/7.

Use the majority voting scheme as a fuser to
produce the committee’s output as described

in Figure 2.

Step i)

Step ii)

Step iii)

Let T”” ,Tﬂ‘2 ,...,Tﬂw represent the
bootstrap samples of n observations
randomly generated, where B is the
number of bootstrap samples and total
number of ARM members.

Train neural networks using the bootstrap
samples in Step i) with 7 different
architectures. Thus, the total number of
neural networks with the same architecture
is N=B/T7.

Use the majority voting scheme as a fuser to
produce the committee’s output as described

in Figure 3.
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Figure 3 Adjusted random-mix committee.

Method
Performance of APW and ARM is

evaluated through an empirical study (computer
simulation) which includes three data problems.
The training and test data sets are selected from the
synthetic data sets used by Parmanto et al. (1996)
and the UCI Machine Learning Repository, Center
for Machine Learning and Intelligent System.
To determine sparse data sets for training, we apply
the rule of thumb used by Chetchotsak and
Twomey (2007) in this experiment; that is the lower

bound of a sparse sample size is equal to five times

the number of input variables (attributes). Described
below are the data sets used in this experiment.
The sine wave problem
In this problem, the task is to separate the
data set into two regions according to the sine curve.

The functional form of the data is written as

. . 27
I, ifx,+2z 2 sm(T(x1 +2z,))
y= 5 , (M
. . 2
0, ifx,+2z < sm(T(x1 +2,))
where z and ZZ—N(O,O'). In this experiment,
we use two levels of noise to test the committee’s

performance: first noise-free and second noisy
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(0=0.3) as shown in Figure 4. Each training set
consists of 10 records (from the rule of thumb).

Then another separated data set of 3,000 records is
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used as a test set to evaluate the classification

performance.

x1

(b) noisy

Figure 4 Sine wave data sets with different levels of noise

Pima Indians diabetes problem

In this problem, we are to diagnose whether
the patients show signs of diabetes, given that the
patients’ clinical and history records such as dias—
tolic blood pressure, 2-hr serum insulin, and so on
are known. Thus, the prediction output is either
positive (patients show signs of diabetes) or
negative (patients show no sign of diabetes).
Totally, the number of instances is 768 with 8
attributes. From the rule of thumb, the size of sparse
training data in this experiment is set to be 5 x 8
= 40 instances.

BUPA liver disorders problem

In this problem, we are to classify patients
who have and do not have liver disease. The data
set consist of six factors that may contribute to
liver disease and has 345 records. Hence, the
classification output is either positive (patients have
liver disease) or negative (patients not have liver
disease). In this experiment, the sparse training set

size is set to be 6 x 5 = 30 records.

Experimental design

Performance of APW and ARM is
evaluated under varying factors of network
complexity levels and number of learning cycles
through a Monte Carlo simulation. Table 4
summarizes the experimental design. This helps to
investigate how each algorithm performs under
various conditions.

Network complexity levels: We use the
number of hidden units to represent levels of
complexity. Here SN stands for the single neural
network while BTC is for the bootstrap
committee. In Table 4 APW and ARM have 5, 10,
15, 20, 25, 30, and 35 hidden units. The
subscripts “min”, “avg”, and “max” symbolize the
minimum, average, and maximum of the set
{5, 10, 15, 20, 25, 30, 35}, respectively.

Number of learning cycles: This factor is
important for network construction. Choosing the
number of learning cycles to be too large may
lead to overfitting. In this experiment we will test
how each method performs when trained using

different numbers of learning cycles.
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Table 4 Experimental design
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Factors

Levels

1. Network complexity (number of hidden units)

Single neural networks (SNs) : SNmin 1. Minimum (5 hidden units)

: SNavg 2. Average (20 hidden units)

: SNmax 3. Maximum (35 hidden units)
Bootstrap committees (BTCs)  : BTCmin 1. Minimum (5 hidden units)

: BTCavg 2. Average (20 hidden units)

: BTCmax 3. Maximum (35 hidden units)
Adjusted pair-wise committee  : APW (5, 10, 15, 20, 25, 30, 35 hidden units)

Adjusted random-mix committee : ARM

(5, 10, 15, 20, 25, 30, 35 hidden units)

2. Number of learning cycles

1. 20,000 cycles
2. 50,000 cycles
3. 150,000 cycles

Here, the single neural network and
bootstrap committee are used as a baseline method
to compare against APW and ARM. Moreover, this
experiment is replicated for say 20 times to remove
dependency on sampling of training data. This is
done by re-sampling the training data sets of each
problem 20 times and each time all the networks
are trained and tested according to the experimental
design. Furthermore, performance of each method
is evaluated using a set of the remaining data,
exclusively separated from the training set.

Classification model construction

All the committee models in this experi-
ment are constructed based on the bootstrapped data.
The number of bootstrap networks or committee
members is chosen to be 21. This number is chosen
based on the experimental results in Parmanto et al.
(1996), Lam (1999), and Siriphala (2000) and
the number must be an odd number in order to make

a consensus decision for the majority voting scheme.

In this experiment, all the neural networks are
multilayer perceptrons trained with the
backpropagation algorithm and the sigmoid is used
as an activation function.

Performance assessments

Performance measures are defined in eqn
(2)-(4).

(error rate) measures how well a particular

Percentage of classification errors

classification model is in classifying the data. Fault
positive rate reflects how well the model classifies
the data labeled as “positive”. Finally, the fault
negative rate indicates the model’s accuracy in
classifying the data labeled as “negative”. In this
matter, a model that has a small error rate does not
necessarily have small fault positive or fault
negative rates. This is especially true when the
ratios between records labeled by “positive” and
“negative” are quite different. A model that is said
to be robust should have small rates in all

measures.
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%100 2

number of correct outputs|the outputs are positive

x100 3)

number of tatal samples| the targets are positive

number of corect outputs|the outputs are negative
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number of correct outputs
%Accuracy = P
number of total samples
% Fault Positive =
% Fault Negative =
Results

Experimental results demonstrate each
model performance at different conditions and
classification problems. The followings present
results in the form of a 95% confidence interval

(C.1L.) of the performance measures described above.

The sine wave problem

Simulation results for the noise-free data
are shown in Figure 5 and the results for the noisy
data are depicted in Figure 6. In both data cases,
all the committee networks outperform all SN types.
For the clean data set, using high network
complexity or a large number of learning cycles
does not help to improve SN’s performance. For the
committee types, BTCmax shows the best
performance only at small learning cycles. When
the data is noisy, performance difference among the
algorithms is quite clear. All SN types perform
much worse than the committee. In this case,
increasing the number of hidden units does not
improve the algorithms’ performance. It would rather
degrades the classification ability. Performance
difference is quite clear in the noisy data case. Here,
the committee types perform much better than
the single neural network. Among the committee
types, BTCrnax is the best, regarding all measures.
BTC  shows the best performance when they

max

trained using 20,000 cycles.

number of total samples|the targets are negative

x100 4)

The Pima Indian diabetes problem

The Pima Indian diabetes problem’s results
are shown in Figure 7. In general, the committee
types perform better than all the single neural
networks for all measures at all conditions. Among
the committee group, BTCmX seems to show less
performance variation. Other committee networks’
performance fluctuates along the learning cycles.
The result also shows that using either large
number of hidden units or large number of learning
cycles does not improve the algorithms’ performance.

In this data set, it can be noticed that the
rate of fault negative is greater than the rate of fault
positive. This implies that the number of records
labeled as “negative” (patients show no sign of
diabetes) is much smaller than that labeled by
“positive” (patients show sign of diabetes). The
data labeled as “negative” may be considered as a
very sparse data set and thus percentage of fault
negative would be the most appropriate performance
measure in this case. According to Figure 7(c),

BTCmin does not perform well compared to the

group.
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Figure 5 Simulation results for the sine wave
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BUPA liver disorders problem

Figure 8 demonstrates the experimental
results for the BUPA liver disorder data set. The
figure reveals that the results for this data set and
those for the Pima Indian data set follow the same
trend. In particular, the committee group still
outperforms all the single neural networks.
Additionally, BTCmaX shows less performance
variation among the group. Like the Pima Indian
diabetes problem, there is no evidence showing that
a large number of hidden units or number of

learning cycles helps to improve the classification

performance.
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Furthermore, the rate of fault negative is
generally larger than that of the fault positive, like
the case of the Pima Indian diabetes problem. This
also indicates that the number of negative data
(patients not have liver disease) is greater than the
number of positive data (patients have liver
disease). Hence, the percentage of fault negative
will also play an important role in monitoring
classification performance. In this case, BTCmax and

BTC seem to perform better than other
avg

methods in the group.
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Figure 7 Simulation results for the Pima Indian diabetes problem
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Figure 8 Simulation results for the BUPA liver disorder problem

Discussion and Conclusion

As mentioned earlier, the rationale of
using APW and ARM algorithms is to promote and
escalate diversity among the networks in the
committee in order to have each network help one
another to predict a reasonable classification,
according to the concept of the error decorrelation.
The simulation results from all data problems in
this paper however, appeared to contradict our
hypothesis on the error decorrelation approach and
even Siriphala (2000)’s results. In fact, the
pair-wise and random-mix algorithms in this

paper do not show any performance improvement

compared to the bootstrap committees, like BTCmaX,
BTCmm, and BTCavg. On the other hand, the
pair-wise and random-mix algorithms in Siriphala
(2000)’s work outperform the simple bootstrap
committee in most cases. It should be noted
that Siriphala (2000) uses the pair-wise and
random-mix committees with a function approxi-
mation problem while we use these algorithms
with a classification problem. Such difference
may be the cause of the contradicted results.

The rationale behind the APW and ARM

algorithms is to encourage each neural network in

the committees to have different expertise through
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the use of different network architectures in
addition to the use of the bootstrap algorithm.
We hypothesize that if levels of diversity among
the neural network increase, the total error would
cancel out since each network makes a mistake at
different places as mentioned before. For a function
approximation problem, Siriphala (2000)’s results
with the simple average as a fusion scheme confirm
such a hypothesis. However, the APW and ARM
algorithms have taught a lesson that increasing
levels of disagreement among the neural networks
may not help to reduce the error when using the
APW or ARM algorithm in a classification
problem. Indeed, the committees make a decision
in terms of classes, e.g., “positive” or “negative”,
via the majority voting scheme. Here, promoting
levels of disagreement among the committee
members would rather confuse the committees’
decision than improve the classification ability.
Our results from the simulation reveal that
all the committee networks outperform the single
networks in all conditions. However, the APW and
ARM algorithms perform as well as or worse than
the bootstrap committees. Among the group, BTCmalx
appears to be the most robust model. To be
specific, BTCmax performs better than other
methods in all conditions. Its robustness enable
modelers to construct a committee models without
having difficulty of choosing network topologies,
particularly for the number of hidden units and
learning cycles. This is true especially under sparse
data conditions where the problem space is mostly
unknown and network topologies are very difficult

to determine.
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