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Classification Performance of Committee Networks Improvement

under Sparse Data Conditions
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ABSTRACT

In most real world applications, the data for modeling is normally sparse. This makes it difficult

for modelers to construct a neural network model. Eventually the training process may cause overfitting.

This paper proposes committee network methodology to deal with sparse data for a classification problem.

The committees are developed based on bootstrapped training sets and are called adjusted pair-wise

committee and adjusted random-mix committee. We test the committeesû performance against that of the

bootstrap committee and single neural network using the selected data sets from UCI Machine Learning

Repository, Center for Machine Learning and Intelligent System. The results reveal that the proposed

models perform as well as or better than the baseline models.

∫∑§—¥¬àÕ

„π°√≥’∑’Ë¢âÕ¡Ÿ≈¡’®”π«π®”°—¥ °“√°”Àπ¥§à“æ“√“¡‘‡µÕ√å∑’Ë‡À¡“– ¡„π°“√ √â“ß·∫∫®”≈Õß ”À√—∫

·∫àß°≈ÿà¡¢âÕ¡Ÿ≈π—Èπ∑”‰¥â§àÕπ¢â“ß¬“° ∑”„Àâ·∫∫®”≈Õß∑’Ë‰¥â‡°‘¥°“√®¥®”¢âÕ¡Ÿ≈ ‰¡à‡°‘¥°“√‡√’¬π√Ÿâ º≈≈—æ∏å∑’Ë‰¥â¡’

§«“¡º‘¥æ≈“¥ ·≈–‰¡à‡À¡“– ¡µàÕ°“√π”‰ªª√–¬ÿ°µå„™â  ¥—ßπ—Èπß“π«‘®—¬π’È®÷ß‡ πÕ·π«∑“ß°“√ √â“ß·∫∫®”≈Õß

‚§√ß¢à“¬§Õ¡¡‘µµ’ ”À√—∫°“√·∫àß°≈ÿà¡¢âÕ¡Ÿ≈ ¥â«¬«‘∏’Õ–®— ∑‘∑·æ√å‰« å·≈–«‘∏’Õ–®— ∑‘∑·√π¥Õ¡¡‘° å ´÷Ëß‡ªìπ

·∫∫®”≈Õß∑’Ëª√–°Õ∫¥â«¬‚§√ß¢à“¬ª√– “∑‡∑’¬¡À≈“°À≈“¬‚§√ß¢à“¬ ·≈–„™â«‘∏’∫Ÿ∑ ·∑√ª‡æ◊ËÕ‡µ√’¬¡™ÿ¥¢âÕ¡Ÿ≈

„π°“√‡√’¬π√Ÿâ¢Õß·∫∫®”≈Õß º≈∑’Ë‰¥âæ∫«à“·∫∫®”≈Õß∑’Ëπ”‡ πÕ¡’ª√– ‘∑∏‘¿“æ„π°“√·∫àß°≈ÿà¡¢âÕ¡Ÿ≈‰¥â

‡∑’¬∫‡∑à“À√◊Õ Ÿß°«à“·∫∫®”≈Õß∫Ÿ∑ ·∑√ª§Õ¡¡‘µµ’·≈–·∫∫®”≈Õß‚§√ß¢à“¬ª√– “∑‡∑’¬¡‡¥’Ë¬«

Key Words : Committee network, Sparse data, Classifications

§” ”§—≠ :  ‚§√ß¢à“¬§Õ¡¡‘µµ’ ¢âÕ¡Ÿ≈®”π«π®”°—¥ °“√·¬°ª√–‡¿∑¢âÕ¡Ÿ≈

* Student, Department of Industrial Engineering, Faculty of Engineering, Khon Kaen University

** Assistant Professor, Department of Industrial Engineering, Faculty of Engineering, Khon Kaen University



66 «“√ “√«‘®—¬ ¡¢. (∫».) 9 (2) :  ‡¡.¬. - ¡‘.¬. 2552

Introduction

Under sparse data conditions where most

problem space is usually unknown, constructing

neural network models is very difficult. This is

because the amount of data is not enough to

determine neural networksû topologies, e.g.,

number of hidden units, number of learning cycles,

and so on. In this matter, a particular neural

network usually learns the available data too well

but fails to generalize to the çunseené data. Such

occurrence is referred to as çoverfittingé.

There have been a number of published

papers attempting to improve neural networksû

performance under sparse data conditions. Many of

those use the committee network approach

(Parmanto et al., 1996; Lam, 1999; Siriphala,

2000; Chetchotsak and Twomey, 2007). Here,

the most promising but simple approaches are

proposed by Siriphala (2000).  To be specific,

the committee networks in his work are constructed

based on one of the resampling method known as

the bootstrap.  The rationale of using the bootstrap

method is to encourage each neural network in the

committee to learn different parts of data and thus

they all would have different expertises.  If all of

them make a mistake, they would make a mistake

at different places, and eventually the errors would

be cancelled out.  Such an approach is known as the

error decorrelation (Krogh and Vedelsby, 1995).

In addition to the use of the bootstrap method to

diversify each network in the committee, Siriphala

(2000)ûs work also promotes and escalates even

more diversity among the networks in the

committee.  His approaches are named as çpair-wiseé

and çrandom-mixé algorithms and are to deal with

function approximation problems. However, there

is no report on performance of the çpair-wiseé and

çrandom-mixé algorithms when applied to  a

classification problem.

The objective of this paper is to report our

attempt to improve classification performance of

committee networks under sparse data conditions.

Our proposed methods are developed based on

the çpair-wiseé and çrandom-mixé algorithms.

Then the proposed methods are evaluated using a

simulation through different selected classification

problems. These methods may be applied to any

classification problems such as product classifica-

tion, yield improvement, and so on.

Background

Committee networks are constructed

based on the concept that çmany heads are better

than oneé. They consist of several neural networks

called committee members. According to Figure 1,

each neural network learns the data and helps one

another to solve or predict the same problem.

Each neural networkûs output is combined through

a fusion rule to produce a committee output. The

most common fuser is known as the majority

voting scheme.

Figure 1 Block diagram of a committee network

(Chetchotsak, 2004)
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Several papers have proposed a method to

train a committee network. Many of those use the

error decorrelation approach. In particular, each

network in the committee is trained using different

parts of data so as to have different expertises. When

those networks make a mistake, they would make a

mistake at different places and eventually each

mistake from the committee member would be

cancelled out. The most well known method to

decorrelate the training data is the bootstrap

method (Table 1).

Adjusted pair-wise committee (APW)

APW consists of seven network

architectures1and is based on the bootstrap

algorithm. The use of seven architectures attempts

to escalate the degree of diversity among the

committee members so as to encourage each

network to have different expertise and help each

other to predict the output. Figure 2 depicts the

diagram of APW algorithm. In this case, the fusion

rule (majority voting scheme) is used at two layers.

In the first layer, the fusion rule combines the

output of the neural networks with the same

architecture but different bootstrapped training sets.

In the second layer, the majority voting scheme

combines the final output to produce the committee

output. This decision mechanism helps to fitter out

the decisions made by each committee member.

The APW algorithm is presented in Table 2.

1 Such a number is a proposed number in this experiment.

According to Parmanto et al. (1996), Siriphala (2000),

Chetchotsak and Twomey (2007) that the number of

committee members should be more than 20. For a

classification problem, the number of committee members

should be an odd number for consensus of decision.

Table 1 The bootstrap algorithm.

Step  i) Let  F   be the empirical probability 

distribution where T  with n  observation is 

drawn. 

Step  ii)  Let 
1 2 ,...
, ,

n
t t t  be a collection of training set 

T where ( , )
i i i

t x y . 

Step  iii) Specify the number of bootstrap samples, 

B  to produces
*1 *2 *

, ,...,
B

T T T . 

Step  iv) Randomly choose 
i

t  from T  for 

1,...,i n  with replacement and equal 

probability mass 
1

n

   to produces each 
*i

T . 

Step  v) Repeat Step iv) B  times to produce 

*1 *2 *
, ,...,

B

T T T . 

Step  vi) Train Network 1, Network 2,…, Networks 

B  using 
*1 *2 *

, ,...,
B

T T T . 

Step  vii) Given the input 
i

x  for  

*1 *
1,..., , ( , ),..., ( , )

B

Bi i
i n f T x f T x  are 

the outputs of these networks. 

Step  viii) Majority voting is used as a fuser of this 

committee network, as shown in Figure 1. 

Adjusted random-mix committee

(ARM)

ARM also consists of seven network

topologies. In this case, all the committee

membersû outputs are combined through only one

fuser. This encourages each committee member to

have the same rank to vote for the output. Table 3

shows the ARM algorithm.
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Step i) Let 
*1 *2 *

, ,...,
B

n n n
T T T  represent the bootstrap 

samples of n  observations randomly 

generated, where B  is the number of 

bootstrap samples and total number of APW 

members. 

Step ii) Train neural networks using the bootstrap 

samples in Step i) with 7 different 

architectures.  Thus, the total number of 

neural networks with the same architecture 

is / 7N B . 

Step iii) Use the majority voting scheme as a fuser to 

produce the committee’s output as described 

in Figure 2. 

Step i) Let  
*1 *2 *

, ,...,
B

n n n
T T T  represent the 

bootstrap samples of n  observations 

randomly generated, where B  is the 

number of bootstrap samples and total 

number of ARM members. 

Step ii) Train neural networks using the bootstrap 

samples in Step i) with 7 different 

architectures.  Thus, the total number of 

neural networks with the same architecture 

is / 7N B . 

Step iii) Use the majority voting scheme as a fuser to 

produce the committee’s output as described 

in Figure 3. 

Table 3 Adjusted random-mix algorithmTable 2 Adjusted pair-wise algorithm

Figure 2 Adjusted pair-wise committee.
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Method

Performance of APW and ARM is

evaluated through an empirical study (computer

simulation) which includes three data problems.

The training and test data sets are selected from the

synthetic data sets used by Parmanto et al. (1996)

and the UCI Machine Learning Repository, Center

for Machine Learning and Intelligent System.

To determine sparse data sets for training, we apply

the rule of thumb used by Chetchotsak and

Twomey (2007) in this experiment; that is the lower

bound of a sparse sample size is equal to five times

the number of input variables (attributes). Described

below are the data sets used in this experiment.

The sine wave problem

In this problem, the task is to separate the

data set into two regions according to the sine curve.

The functional form of the data is written as

where z
1
 and z

2
-N(0,σ). In this experiment,

we use two levels of noise to test the committeeûs

performance: first noise-free and second noisy

1

*1

n
T

* 1b

n
T

*2

n
T

* 2b

n
T

*b

n
T

*b b

n
T

* 1b b

n
T

* 2b b

n
T

*B

n
T

 

Figure 3 Adjusted random-mix committee.
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(σ=0.3) as shown in Figure 4. Each training set

consists of 10 records (from the rule of thumb).

Then another separated data set of 3,000 records is

used as a test set to evaluate the classification

performance.
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Pima Indians diabetes problem

In this problem, we are to diagnose whether

the patients show signs of diabetes, given that the

patientsû clinical and history records such as dias-

tolic blood pressure, 2-hr serum insulin, and so on

are known. Thus, the prediction output is either

positive (patients show signs of diabetes) or

negative (patients show no sign of diabetes).

Totally, the number of instances is 768 with 8

attributes. From the rule of thumb, the size of sparse

training data in this experiment is set to be 5 x 8

= 40 instances.

BUPA liver disorders problem

In this problem, we are to classify patients

who have and do not have liver disease. The data

set consist of six factors that may contribute to

liver disease and has 345 records. Hence, the

classification output is either positive (patients have

liver disease) or negative (patients not have liver

disease).  In this experiment, the sparse training set

size is set to be 6 x 5 = 30 records.

(a) noise-free (b) noisy

 Figure 4 Sine wave data sets with different levels of noise

Experimental design

Performance of APW and ARM is

evaluated under varying factors of network

complexity levels and number of learning cycles

through a Monte Carlo simulation. Table 4

summarizes the experimental design. This helps to

investigate how each algorithm performs under

various conditions.

Network complexity levels: We use the

number of hidden units to represent levels of

complexity. Here SN stands for the single neural

network while BTC is for the bootstrap

committee. In Table 4 APW and ARM have 5, 10,

15, 20, 25, 30, and 35 hidden units. The

subscripts çminé, çavgé, and çmaxé symbolize the

minimum, average, and maximum of the set

{5, 10, 15, 20, 25, 30, 35}, respectively.

Number of learning cycles: This factor is

important for network construction. Choosing the

number of learning cycles to be too large may

lead to overfitting. In this experiment we will test

how each method performs when trained using

different numbers of learning cycles.
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Here, the single neural network and

bootstrap committee are used as a baseline method

to compare against APW and ARM. Moreover, this

experiment is replicated for say 20 times to remove

dependency on sampling of training data. This is

done by re-sampling the training data sets of each

problem 20 times and each time all the networks

are trained and tested according to the experimental

design.  Furthermore, performance of each method

is evaluated using a set of the remaining data,

exclusively separated from the training set.

Classification model construction

All the committee models in this experi-

ment are constructed based on the bootstrapped data.

The number of bootstrap networks or committee

members is chosen to be 21. This number is chosen

based on the experimental results in Parmanto et al.

(1996), Lam (1999), and Siriphala (2000) and

the number must be an odd number in order to make

a consensus decision for the majority voting scheme.

In this experiment, all the neural networks are

multilayer perceptrons trained with the

backpropagation algorithm and the sigmoid is used

as an activation function.

Performance assessments

Performance measures are defined in eqn

(2)-(4).  Percentage of classification errors

(error rate) measures how well a particular

classification model is in classifying the data.  Fault

positive rate reflects how well the model classifies

the data labeled as çpositiveé.  Finally, the fault

negative rate indicates the modelûs accuracy in

classifying the data labeled as çnegativeé.  In this

matter, a model that has a small error rate does not

necessarily have small fault positive or fault

negative rates.  This is especially true when the

ratios between records labeled by çpositiveé and

çnegativeé are quite  different. A model that is said

to be robust should have small rates in all

measures.

 

Factors Levels 

1. Network complexity (number of hidden units)  

Single neural networks (SNs)       : SNmin 1. Minimum (5 hidden units) 

: SNavg 2. Average (20 hidden units) 

: SNmax 3. Maximum (35 hidden units) 

        Bootstrap committees (BTCs)      : BTCmin 1. Minimum (5 hidden units) 

: BTCavg 2. Average (20 hidden units) 

: BTCmax 3. Maximum (35 hidden units) 

        Adjusted pair-wise committee      : APW (5, 10, 15, 20, 25, 30, 35 hidden units) 

        Adjusted random-mix committee : ARM (5, 10, 15, 20, 25, 30, 35 hidden units) 

2. Number of learning cycles  1. 20,000 cycles 

 2. 50,000 cycles 

 3. 150,000 cycles 

Table 4 Experimental design
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Results

Experimental results demonstrate each

model performance at different conditions and

classification problems.  The followings present

results in the form of a 95% confidence interval

(C.I.) of the performance measures described above.

The sine wave problem

Simulation results for the noise-free data

are shown in Figure 5 and the results for the noisy

data are depicted in Figure 6.  In both data cases,

all the committee networks outperform all SN types.

For the clean data set, using high network

complexity or a large number of learning cycles

does not help to improve SNûs performance. For the

committee types, BTC
max

 shows the best

performance only at small learning cycles. When

the data is noisy, performance difference among the

algorithms is quite clear. All SN types perform

much worse than the committee. In this case,

increasing the number of hidden units does not

improve the algorithmsû performance. It would rather

degrades the classification ability. Performance

difference is quite clear in the noisy data case.  Here,

the committee types perform much better than

the single neural network.  Among the committee

types, BTC
max

 is the best, regarding all measures.

BTC
max

 shows the best performance when they

trained using 20,000 cycles.

The Pima Indian diabetes problem

The Pima Indian diabetes problemûs results

are shown in Figure 7.  In general, the committee

types perform better than all the single neural

networks for all measures at all conditions. Among

the committee group, BTC
max

 seems to show less

performance variation. Other committee networksû

performance fluctuates along the learning cycles.

The result also shows that using either large

number of hidden units or large number of learning

cycles does not improve the algorithmsû performance.

In this data set, it can be noticed that the

rate of fault negative is greater than the rate of fault

positive. This implies that the number of records

labeled as çnegativeé (patients show no sign of

diabetes) is much smaller than that labeled by

çpositiveé (patients show sign of diabetes). The

data labeled as çnegativeé may be considered as a

very sparse data set and thus percentage of fault

negative would be the most appropriate performance

measure in this case. According to Figure 7(c),

BTC
min

 does not perform well compared to the

group.

  %Accuracy 100
samples  totalofnumber 

outputscorrect  ofnumber 
                                          (2) 

% Fault Positive 100
positive are  targetsthesamples  tatalofnumber 

positive are outputs theoutputscorrect  ofnumber 
      (3) 

% Fault Negative 100
negative are  targetsthesamples  totalofnumber 

negative are outputs theoutputscorect  ofnumber 
       (4) 
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Figure 5 Simulation results for the sine wave problem: noise-free data 
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Figure 6 Simulation results for the sine wave problem: noisy data

Figure 5 Simulation results for the sine wave       problem: noise-free data
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BUPA liver disorders problem

Figure 8 demonstrates the experimental

results for the BUPA liver disorder data set.  The

figure reveals that the results for this data set and

those for the Pima Indian data set follow the same

trend.  In particular, the committee group still

outperforms all the single neural networks.

Additionally, BTC
max

 shows less performance

variation among the group. Like the Pima Indian

diabetes problem, there is no evidence showing that

a large number of hidden units or number of

learning cycles helps to improve the classification

performance.

Furthermore, the rate of fault negative is

generally larger than that of the fault positive, like

the case of the Pima Indian diabetes problem. This

also indicates that the number of negative data

(patients not have liver disease) is greater than the

number of positive data (patients have liver

disease). Hence, the percentage of fault negative

will also play an important role in monitoring

classification performance. In this case, BTC
max

 and

BTC
avg

 seem to perform better than other

methods in the group.

Figure 7 Simulation results for the Pima Indian diabetes problem
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Discussion and Conclusion

As mentioned earlier, the rationale of

using APW and ARM algorithms is to promote and

escalate diversity among the networks in the

committee in order to have each network help one

another to predict a reasonable classification,

according to the concept of the error decorrelation.

The simulation results from all data problems in

this paper however, appeared to contradict our

hypothesis on the error decorrelation approach and

even Siriphala (2000)ûs results.  In fact, the

pair-wise and random-mix algorithms in this

paper do not show any performance improvement

Figure 8 Simulation results for the BUPA liver disorder problem
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compared to the bootstrap committees, like BTC
max

,

BTC
min

, and BTCavg.  On the other hand, the

pair-wise and random-mix algorithms in Siriphala

(2000)ûs work outperform the simple bootstrap

committee in most cases. It should be noted

that Siriphala (2000) uses the pair-wise and

random-mix committees with a function approxi-

mation problem while we use these algorithms

with a classification problem. Such difference

may be the cause of the contradicted results.

The rationale behind the APW and ARM

algorithms is to encourage each neural network in

the committees to have different expertise through
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the use of different network architectures in

addition to the use of the bootstrap algorithm.

We hypothesize that if levels of diversity among

the neural network increase, the total error would

cancel out since each network makes a mistake at

different places as mentioned before. For a function

approximation problem, Siriphala (2000)ûs results

with the simple average as a fusion scheme confirm

such a hypothesis. However, the APW and ARM

algorithms have taught a lesson that increasing

levels of disagreement among the neural networks

may not help to reduce the error when using the

APW or ARM algorithm in a classification

problem. Indeed, the committees make a decision

in terms of classes, e.g., çpositiveé or çnegativeé,

via the majority voting scheme. Here, promoting

levels of disagreement among the committee

members would rather confuse the committeesû

decision than improve the classification ability.

Our results from the simulation reveal that

all the committee networks outperform the single

networks in all conditions. However, the APW and

ARM algorithms perform as well as or worse than

the bootstrap committees. Among the group, BTC
max

appears to be the most robust model. To be

specific, BTC
max

 performs better than other

methods in all conditions.  Its robustness enable

modelers to construct a committee models without

having difficulty of choosing network topologies,

particularly for the number of hidden units and

learning cycles.  This is true especially under sparse

data conditions where the problem space is mostly

unknown and network topologies are very difficult

to determine.
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