

**Effects of 12 Weeks Aerobic Exercise by Applied Sakon Nakhon Traditional
Thai Boxing Dance Exercise Program on Insulin Resistance
and Lipid Profiles in Thai Elderly Females**

**ผลของการฝึกออกกำลังกายด้วยโปรแกรมมวยไทยโบราณสกัดนครประยุกต์
ใน 12 สัปดาห์ต่อระดับความตื้อต่อ อินซูลินและไขมันในเลือด
ในหญิงไทยวัยสูงอายุ**

Teera Piwngern (ธีระ พิวเงิน)^{1*} Dr.Tunda Suttitum (ดร.ธัญดา สุทธิธรรม)**

Orapin Pasurivong (อรพิน พาสุริวงศ์)**

ABSTRACT

Older people showed risk of various chronic diseases, such as diabetes mellitus, hypertension, atherosclerosis and stroke. However, it was believed that aerobic exercise might be improved those. So the objective of this study was to investigate insulin resistance and lipid profiles after 12 weeks of applied Sakon Nakhon Traditional Thai Boxing dance (SNTB) exercise training in Thai elderly female aged between 61–70 years old. All of volunteer subjects had body mass index (BMI) 23.0–29.9 kg/m² with good health, no chronic disease, no infection, and agreed to sign in consent form. They were divided into 2 groups; control group (n=15) and applied SNTB-exercise group (n=15). In control subjects behaved as their normal lifestyles while applied SNTB-exercise subjects were assigned applied SNTB aerobic exercise 30 min/session (5 min warm up, 20 min exercise of 60–75% HRmax and 5 min cool down) 3 days/week in 12 consecutive weeks. Results of fasting blood sugar (FBS), Insulin, HOMA-IR and lipid profiles such as high density lipoprotein-cholesterol (HDL-C), Low density lipoprotein-cholesterol (LDL-C), cholesterol (C) and triglyceride (TG) were assessed, In elderly control group, insulin, HOMA-IR and lipid profiles showed no significant difference. While FBS showed increase in high significant difference ($p<0.01$). In regard to elderly exercise groups, insulin and HOMA-IR showed decrease in highly significant difference ($p<0.001$). FBS showed decrease high significant difference ($p<0.01$). Cholesterol and triglyceride decreased significant difference ($p<0.05$). while HDL-C and LDL-C showed no significant difference. In conclusion, effect of 12 weeks aerobic exercise by SNTB exercise training could improve insulin resistance and decrease cholesterol and triglycerides that were risk of chronic diseases including diabetes mellitus, atherosclerosis, hypertension and stroke. Therefore, Applied SNTB exercise program was useful as health promotion exercise program in Thai elderly female.

¹Correspondent author: woody.2525@hotmail.com

*Student, Doctor of Philosophy Program in Exercise and Sport Science, Graduate School, Khon Kaen University

**Assistant Professor, Department of Physiology, Faculty of Medicine, Khon Kaen University

บทคัดย่อ

วัยสูงอายุเป็นวัยที่เสี่ยงต่อการเกิดโรคเรื้อรังในหลาย ๆ โรค เช่น เบาหวาน ความดันโลหิตสูง หลอดเลือดแดงแข็งตัว โรคหลอดเลือดสมอง วัตถุประยุกต์ของการศึกษาเพื่อศึกษา ผลของการฝึกออกกำลังกายด้วยโปรแกรมมวยไทยโบราณสกلنศรีประยุกต์ใน 12 สัปดาห์ต่อระดับความตื้อต่ออินชูลินและไขมันในเลือดในผู้ไทยวัยสูงอายุ อายุระหว่าง 6170- ปี มีค่าดัชนีมวลกาย 23.029.9- กก./ตรม. จำนวน 30 คน สุภาพทั่วไปแข็งแรงสมบูรณ์ ไม่มีโรคติดต่อหรือโรคเรื้อรังร้ายแรงใด ๆ เป็นอาสาสมัครที่ถูกคัดเลือกเข้าทำการศึกษาวิจัยในครั้งนี้โดยแบ่งเป็น 2 กลุ่ม กลุ่มควบคุม ($n=15$) ให้ดำเนินชีวิตด้วยความปกติ ส่วนกลุ่มออกกำลังกาย ($n=15$) จะได้รับการฝึกด้วย ท่ารำมวยไทยโบราณสกلنศรีประยุกต์ ผลการศึกษาพบว่ากลุ่มควบคุมค่า อินชูลิน HOMA-IR และค่าไขมันในเลือด ไม่มีการเปลี่ยนแปลงพงเพียงค่า ระดับน้ำตาลในเลือดที่มีการเปลี่ยนแปลงเพิ่มขึ้นอย่างมีนัยสำคัญทางสถิติที่ ($p<0.01$) ส่วนในกลุ่มทดลองค่า อินชูลิน และ HOMA-IR มีการเปลี่ยนแปลงลดลงอย่างมีนัยสำคัญทางสถิติที่ ($p<0.001$) ค่าระดับน้ำตาลในเลือดเปลี่ยนแปลงลดลงอย่างมีนัยสำคัญทางสถิติที่ ($p<0.01$) และค่า คลอเรสเทอโรล และ ไตรกลีเซอไรด์ เปลี่ยนแปลงลดลงอย่างมีนัยสำคัญทางสถิติที่ ($p<0.05$) ในขณะที่ค่า ไขมันในเลือดชนิดดี และ ค่าไขมันชนิดเลว ไม่มีการเปลี่ยนแปลงสรุป ผลของการฝึกการออกกำลังกายแบบแอโรบิกด้วยโปรแกรมมวยไทย โบราณสกلنศรีประยุกต์สามารถลดระดับความตื้อต่ออินชูลิน คลอเรสเทอโรลและไตรกลีเซอไรด์ซึ่งเสี่ยงต่อ โรคเรื้อรัง เบาหวาน ความดันโลหิตสูงและ หลอดเลือดแดงแข็งตัว ดังนั้นโปรแกรมมวยไทยโบราณสกلنศรีประยุกต์ เป็นโปรแกรมที่ช่วยในการส่งเสริมสุภาพในผู้ไทยวัยสูงอายุได้

Keywords: Sakon Nakhon Tradition Thai Boxing dance (SNTB), Insulin resistance, Lipid profile, Aerobic exercise, Elderly

คำสำคัญ : การออกกำลังกายด้วยท่ารำมวยไทยโบราณสกلنศรีประยุกต์ ระดับความตื้อต่ออินชูลิน ไขมันในเลือด การออกกำลังกายแบบแอโรบิก วัยสูงอายุ

Introduction

In almost every country, the proportion of people aged over 60 years is growing faster than any other age group, as a result of both longer life expectancy and declining fertility rates. In the next 20 years, the number of people over 60 years of age will double [1], raising the issue of finding feasible means for their independent living [2]. In fact, the aging populations are those who are in need of specific encouragement to engage in physical activity [3]. Exercise and physical activity have been suggested as effective means to maintain independent living in old age [5-4]. Diseases are a concern for the aging population as the recovery is longer, and most of the

time incomplete, often leading to hospitalization, complication, integration in specialized care centers and ultimately death. Older people is often associated with a deterioration in glucose tolerance [6] as a result of development of insulin resistance and abnormal function of the pancreatic betacell [7]. Even in those older people whose glucose tolerance is normal by National Diabetes Data Group (NDDG) standards [8], blood glucose and insulin levels tend to be higher than those of young people following an oral glucose challenge [9-11].

The factors that disturb lipid metabolism; hence put elderly subjects at risk of developing cerebrovascular and/or coronary heart diseases. Actually, previous

reports proposed that human with exceptional longevity have significantly larger high density lipoprotein (HDL) and low density lipoproteins (LDL) particle sizes [12-13]. Previous data reported the effect of age and gender in serum lipids levels gave mixed results. There were repeated evidences that LDL-cholesterol tend to rise with age in both sexes [14-15]. Conversely, considerable studies prove significantly negative correlation between total and/or LDL cholesterol and age [16-17].

Exercise is a readily available intervention that can increase insulin action [18-23] and prevent the onset of diabetes [24-27]. An important question is whether the effects of aerobic exercise on insulin action are diminished with advancing age. A recent study reported that a vigorous 7-day exercise program increased insulin sensitivity and muscle glucose transporter (GLUT4) content by a similar amount in younger (22 years) and older (61 years) people [28]. However, current health and fitness guidelines for healthy adults recommend exercising at more moderate intensities at least 3 days per week over long periods [29].

Moreover, research indicates that strength training is necessary either to stop or reverse sarcopenia—the age-associated loss of body protein—and to increase bone density. As one grows older, an active lifestyle is more important especially exercise. Exercise can improve and maintain health-quality of life (HQL) and increasing the HQL is one of the primary goals for health improvement in older persons [30]. There are many kinds of exercise using for health promotion in elders such as walking, running, cycling, yoga and Thai boxing dance. In Thai Boxing, nowadays is used as a sport and exercise. Thai boxing or Muay Thai is a kind of folk cultural heritage from antiquity. However, it has many forms and many

ways to perform tasks such as Muay Chaiya, Muay Korat, Muay Lopburi and Muay Thai Boran Sakon Nakhon. The last one type, Sakon Nakhon Traditional Thai Boxing is accepted as heritage boxing art of Thailand. The beginning of that Sakon Nakhon Traditional Thai boxing is established at Sakon Nakhon province which is one of an ancient province in Northeastern part of Thailand. Clay Ornament of Sakon Nakhon province is the first person to collect and convey the ancient art of boxing Sakon and has been regarded as an outstanding cultural, sports and recreation branch of the Office of the National Culture in the year 1986. However, exercise in elderly people are fragile and not stronger enough to use strengthen Thai boxing. Therefore, this study tries to modify applied SNTB exercise as new exercise program for those people in purpose of health promotion and improvement quality of life. This study investigated insulin resistance including FBS and lipid profile after 12 weeks of applied Sakon Nakhon Traditional Thai Boxing dance exercise.

Objective of this study

The objective of this study was to investigate insulin resistance and lipid profiles after 12 weeks of applied Sakon Nakhon Traditional Thai Boxing dance exercise in Thai elderly females.

Materials and Methods

Study design and population

This study was a quasi-experiment in humans and conducted by evaluating clinical baseline characteristics, anthropometry, and blood chemistry in elderly female Thais. Thirty elderly subjects, were assigned into control group and exercise group by random sampling. All subjects completed a confidential

health-screening questionnaire by a physician. Subjects had no history of chronic illness such as cardiovascular diseases, coronary heart disease, arrhythmia, chronic heart failure, hypertension, stroke, arthritis, neuromuscular disorders, pulmonary diseases, diabetes mellitus and other diseases. Subjects were asked to assess physical examination on physical performance, anthropometry, and blood chemistry of insulin resistance and lipid profiles at Vejvichakarn Building and Srinakarind Hospital, Faculty of Medicine, Khon Kaen University, Thailand. Number of participant in this study calculated sample size formula.

Study protocol

Thai elderly female, subjects aged between 61 to 70 years. BMI 23.00–29.9 kg/m², participated voluntary in this study. They were divided into 2 groups; control group and applied SNTB exercise group. Elderly control group (n=15) behaved as normal lifestyles with no aerobic exercise program and elderly exercise group (n=15) were assigned to practice aerobic exercise of applied Sakon Nakhon traditional Thai boxing 30 min/session (5 min warm-up, 20 min exercise of 60 to 75% HR max, 5 min cool-down), 3 days/week, in 12 consecutive weeks. All subjects also behaved as normal lifestyles in eating behaviors. Characteristics insulin resistance and lipid profiles were measured before and after 12 weeks of aerobic exercise program.

Ethical approval

A written informed consent from the participants was obtained before testing. The methods of this study has been reviewed and approved by the Khon Kaen University Ethics Committee for Human Research). HE 561426

Statistical Analyses

Data were expressed as mean \pm SD. The STATA 12 Statistical software was used to perform the statistical analysis. Unpaired t-test was used to compare differences in characteristics of all parameters between control group and exercise groups in elderly. Two-sample Wilcoxon rank-sum (Mann -Whitney) test was used when data deviated from normality, p value less than 0.05 was considered to be statistically significant.

Results

Baseline Characteristics of Subjects

Baseline clinical characteristics, vital signs and anthropometry of elderly subjects in control group (n=15) and exercise group (n=15) were shown in Tables 1. Data of baseline characteristics showed no significant differences at pre-exercise (week 0) in all parameters.

Blood Chemistry

In elderly control group, Data of insulin, HOMA-IR and lipid profiles showed no significant difference, while FBS shown increased high significant different ($p<0.01$). In regard to elderly exercise group, insulin and HOMA-IR showed decreased highly significant difference ($p<0.01$). FBS showed decrease high significantly difference ($p<0.01$). Cholesterol and triglyceride decreased significant difference ($p<0.05$). Consequently, while, HDL-C and LDL-C showed no significant difference (Fig. 1).

Discussion

SNTB exercise on blood chemistry

The result of this study in elderly exercise group HDL-c increased significant difference, including FBS, HOMA-IR decreased high significant difference and insulin decreased highly significant difference. Similarly, mechanism may be working in our subjects as a systematic review also found the effects of yoga training to be more prominent with regard to fasting blood glucose level and lipid profile [31]. Innes and Vincent [32] reviewed 12 studies and reported that yoga improves lipid profile. Reductions in TC, TG, and LDL and increase in HDL in our subjects are comparable with the findings of their review. The decrease in lipid profile seen in this study is in agreement with the earlier studies. Sahay [33] and Bijlani et al [34] reported a significant reduction in free fatty acids, LDL and an increase in HDL. The improvement in the lipid profile after yoga could be due to increased hepatic lipase and lipoprotein lipase at cellular level, which affects the metabolism of lipoprotein and thus increase uptake of triglycerides by adipose tissues [35-36]. These changes suggest improvement in the insulin sensitivity following yogic exercises.

Exercise is a major therapeutic modality in the treatment of diabetes mellitus [37]. Exercise training has been known to be effective in type 2 diabetes mellitus by increasing insulin sensitivity [38], and regular exercise can strengthen antioxidant defenses and may reduce oxidative stress [39]. Exercises including yoga postures have been

Some evidences have pointed that endurance exercise training can increase plasma HDL levels if the exercise training is sufficient [41-40]. Thus, not only endurance exercise, but also low-velocity and

low-impact exercise such as SNTB can increase the serum HDL-C in its practitioners. The mechanism underlying the increase in HDL-C after endurance exercise or 12 weeks of SNTB is not clear yet.

In addition, previous study suggested that long-term higher intensity exercise training provides more enduring benefits to insulin action compared with moderate- or low-intensity exercise, likely due to greater transient effects [42]. Stefanyk and Dyck suggested that glucose transport is stimulated by both insulin and insulin-independent mechanisms. The insulin-stimulated glucose uptake is found in skeletal muscle by increasing the regulation of GLUT4 expression and promoting the insulin signal transduction to glucose homeostasis. Insulin promotes glucose uptake through motivation of phosphoinositide 3 (PI3)-kinase, protein kinase B (Akt), and some protein kinase C [43].

Indeed, exercise is a tool to help older adults to overcome their disabilities and improve all aspects of health-quality of life particularly to maintain their health conditions and perform activities of daily living. Meta-analytic reviews have proven that exercise is associated with a variety of health improvements such as decreased risk of coronary heart disease and stroke [45-44] improved cognition in sedentary older adults [38], a modest benefit in health-quality of life for frail or older adults [46], and a positive association with successful aging [47].

This study investigated in females elderly Thais aged between 61 to 70 years old whether aerobic exercise training by SNTB improves insulin resistance and lipid profiles. Moreover, the number of exercise subjects increase and it should be trained in male Thai subjects, too.

Conclusions

After 12 weeks of SNTB exercise training, Thai elderly females, age 61–70 years old decrease in insulin resistance, cholesterol and triglycerides. Those are risk factors of atherosclerosis, diabetes mellitus, hypertension and stroke. Therefore, SNTB exercise program is a method to useful in health promotion of Thai elderly females.

Future Study

SNTB exercise training may be used as a model exercise in diabetic, hypertension and metabolic syndrome subjects. And it also used in menopause or pre-elderly subjects age 50–60 years old for further study.

Acknowledgements

This study was supported by a grant from the Graduate School of Khon Kaen University, Khon Kaen, Thailand.

References

- WHO. Health and development through physical activity and sport. 2006.
- Wallin M, Talvitie U, Cattan M, Karppi SL. Construction of group exercise sessions in geriatric inpatient rehabilitation. *Health Commun.* 2008 ; 23 (3) : 245–252.
- Grant S, Corbett K, Todd K, Davies C, Aitchison T, Mutrie N, et al. A comparison of physiological responses and rating of perceived exertion in two modes of aerobic exercise in men and women over 50 years of age. *Br J Sports Med.* 2002 Aug ; 36 (4) : 276–280 ; discussion 81.
- Bean JF, Vora A, Frontera WR. Benefits of exercise for community-dwelling older adults. *Arch Phys Med Rehabil.* 2004 Jul ; 85 (7 Suppl 3) : S31–42 ; quiz S3–4.
- Spirduso WW, Cronin DL. Exercise dose-response effects on quality of life and independent living in older adults. *Med Sci Sports Exerc.* 2001 Jun ; 33 (6 Suppl) : S598–608 ; discussion S9–10.
- Davidson MB. The effect of aging on carbohydrate metabolism: a review of the English literature and a practical approach to the diagnosis of diabetes mellitus in the elderly. *Metabolism.* 1979 Jun ; 28 (6) : 688–705.
- DeFronzo RA. Lilly lecture 1987. The triumvirate: beta-cell, muscle, liver. A collusion responsible for NIDDM. *Diabetes.* 1988 Jun ; 37(6) : 667–687.
- Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance. National Diabetes Data Group. *Diabetes.* 1979 Dec ; 28 (12) : 1039–1057.
- Chen M, Bergman RN, Pacini G, Porte D, Jr. Pathogenesis of age-related glucose intolerance in man: insulin resistance and decreased beta-cell function. *J Clin Endocrinol Metab.* 1985 Jan ; 60 (1) : 13–20.
- Fink RI, Kolterman OG, Olefsky JM. The physiological significance of the glucose intolerance of aging. *J Gerontol* 1984 ; 39 : 273–278.
- Gamblin GT, Galentine P, Chernow B, Smallridge RC, Eil C. Evidence of extraocular muscle restriction in autoimmune thyroid disease. *J Clin Endocrinol Metab.* 1985 Jul ; 61 (1) : 167–171.

12. Atzmon G, Rincon M, Rabizadeh P, Barzilai N. Biological evidence for inheritance of exceptional longevity. *Mech Ageing Dev.* 2005 ; 126 (2) : 341–345.
13. Barzilai N, Atzmon G, Schechter C, Schaefer EJ, Cupples AL, Lipton R, et al. Unique lipoprotein phenotype and genotype associated with exceptional longevity. *JAMA.* 2003 Oct 15 ; 290 (15) : 2030–2040.
14. Bacchi E, Negri C, Bonora E, Moghetti P. Influence of Acute Bouts of Exercise on Blood Glucose in Type 2 Diabetic Patients, as Measured by Continuous Glucose Monitoring Systems. *J Diabetes Metab.* 2013 ; 4 (9).
15. Suh SH, Paik IY, Jacobs K. Regulation of blood glucose homeostasis during prolonged exercise. *Mol Cells.* 2007 Jun 30 ; 23 (3) : 272–279.
16. Corwell B, Knight B, Olivieri L, Willis GC. Current diagnosis and treatment of hyperglycemic emergencies. *Emerg Med Clin North Am.* 2014 May ; 32 (2) : 437–452.
17. Fukuoka Y, Yamada Y. [Lifestyle of elderly patients with diabetes mellitus]. *Nihon Rinsho.* 2013 Nov ; 71 (11) : 1965–1969.
18. Cox JH, Cortright RN, Dohm GL, Houmard JA. Effect of aging on response to exercise training in humans: skeletal muscle GLUT-4 and insulin sensitivity. *J Appl Physiol.* 1999 ; 86 : 2019–2025.
19. Houmard JA, Tyndall GL, Midyette JB, Hickey MS, Dolan PL, Gavigan KE, et al. Effect of reduced training and training cessation on insulin action and muscle GLUT-4. *J Appl Physiol* (1985). 1996 Sep ; 81 (3) : 1162–1168.
20. Hughes VA, Fiatrone MA, Fielding RA, Kahn BB, Ferrara CM, Shepherd P, et al. Exercise increases muscle GLUT-4 levels and insulin action in subjects with impaired glucose tolerance. *Am J Physiol* 264 : E855–E862, 1993 1993 ; 264 (E855–E862).
21. Kahn SE, Larson VG, Beard JC, Cain KC, Fellingham GW, Schwartz RS, et al. Effect of exercise on insulin action, glucose tolerance, and insulin secretion in aging. *Am. Am J Physiol* 258. 1990 : E937–E43.
22. Kirwin JP, Khort WM, Wojta DM, Bourey RE, Holloszy JO. exercise training reduces glucose-stimulated insulin levels in 60- to 70-year old men and women. *J Gerontol.* 1993 ; 48 : M84–M90.
23. Seals DR, Hagberg JM, Hurley BF, Ehsani AA, Holloszy JO. Effects of endurance training on glucose tolerance and plasma lipid levels in older men and women. *JAMA.* 1984 (252) : 645–649.
24. Eriksson KF, Lindgarde F. Prevention of type 2 (non-insulin-dependent) diabetes mellitus by diet and physical exercise. The 6-year Malmo feasibility study. *Diabetologia.* 1991 Dec ; 34 (12) : 891–898.
25. Hu FB, Manson JE, Stampfer MJ, Colditz G, Liu S, Solomon CG, et al. Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. *N Engl J Med.* 2001 Sep 13 ; 345(11) : 790–797.
26. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. *N Engl J Med.* 2002 Feb 7 ; 346 (6) : 393–403.

27. Tuomilehto J, Lindstrom J, Eriksson JG, Valle TT, Hamalainen H, IlanneParikka P, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. *N Engl J Med* 2001 ; 344 : 1343-13450.

28. Cox JH, Cortright RN, Dohm GL, Housard JA. Effect of aging on response to exercise training in humans: skeletal muscle GLUT-4 and insulin sensitivity. *J Appl Physiol* (1985). 1999 Jun ; 86 (6) : 2019-2025.

29. American College of Sports Medicine Position Stand. The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness, and flexibility in healthy adults. *Med Sci Sports Exerc*. 1998 Jun ; 30 (6) : 975-991.

30. Aljasir B, Bryson M, Al-Shehri B. Yoga Practice for the Management of Type II Diabetes Mellitus in Adults: A systematic review. *Evid Based Complement Alternat Med*. 2010 Dec ; 7 (4) : 399-408.

31. Madanmohan, Bhavanani AB, Dayanidhi G, Sanjay Z, Basavaraddi IV. Effect of yoga therapy on reaction time, biochemical parameters and wellness score of peri and post-menopausal diabetic patients. *Int J Yoga*. 2012 Jan ; 5 (1) : 10-15.

32. Innes KE, Vincent HK. The influence of yoga-based programs on risk profiles in adults with type 2 diabetes mellitus: a systematic review. *Evid Based Complement Alternat Med*. 2007 Dec; 4 (4) : 469-486.

33. Sahay BK. Role of yoga in diabetes. *J Assoc Physicians India*. 2007 Feb ; 55 : 121-126.

34. Bijlani RL, Vempati RP, Yadav RK, Ray RB, Gupta V, Sharma R, et al. A brief but comprehensive lifestyle education program based on yoga reduces risk factors for cardiovascular disease and diabetes mellitus. *J Altern Complement Med*. 2005 Apr ; 11 (2) : 267-274.

35. Delmonte MM. Biochemical indices associated with meditation practice : a literature review. *Neurosci Biobehav Rev*. 1985 Winter ; 9 (4) : 557-561.

36. Yang K, Bernardo L, Sereika SM, Conroy MB, Balk J. Utilization of 3-month yoga program for adults at high risk for type 2 diabetes: a pilot study. *Evid Based Complement Alternat Med* 2011.

37. Laaksonen DE, Atalay M, Niskanen LK, Mustonen J, Sen CK, Lakka TA, et al. Aerobic exercise and the lipid profile in type 1 diabetic men: a randomized controlled trial. *Med Sci Sports Exerc*. 2000 Sep ; 32 (9) : 1541-1548.

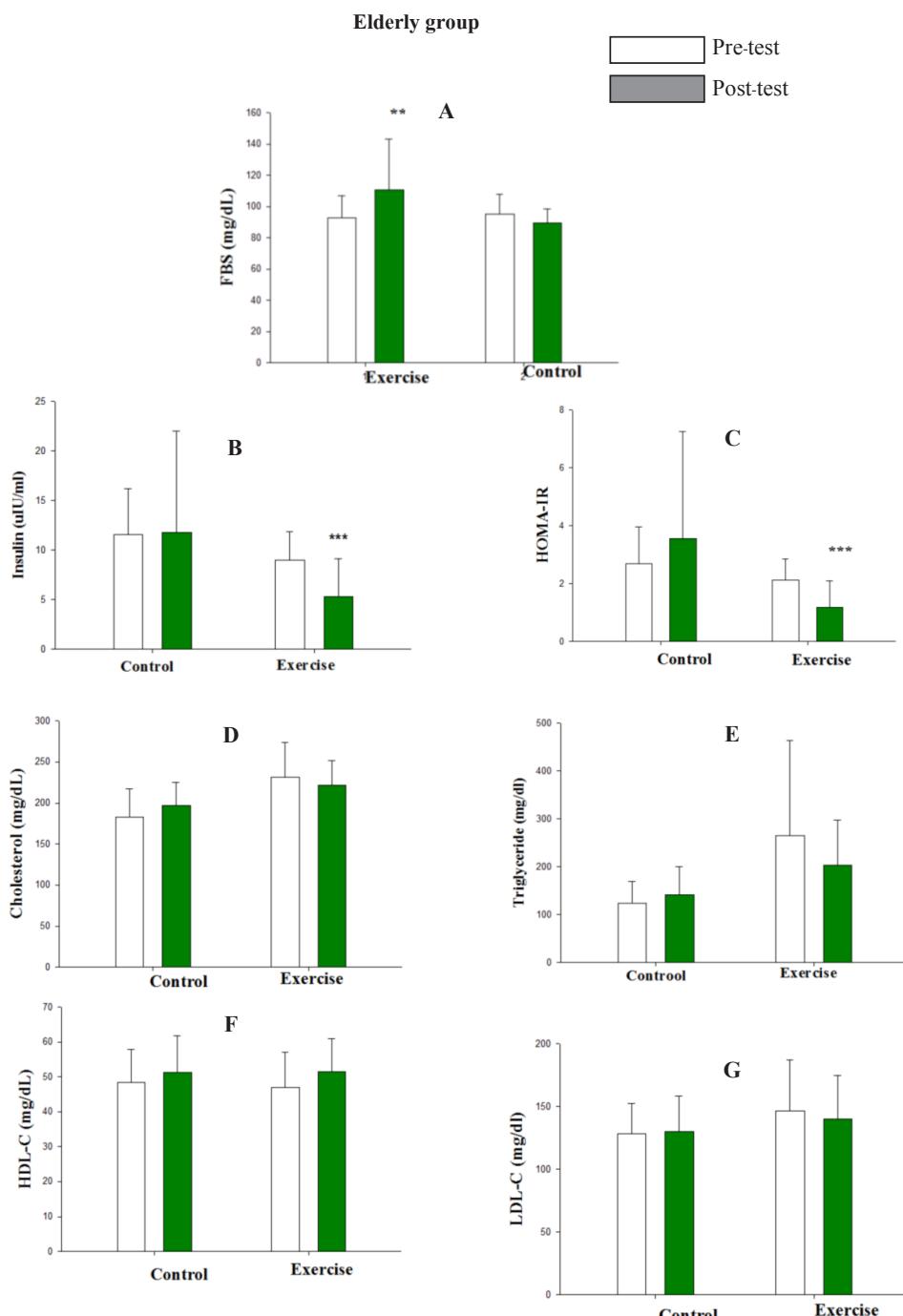
38. Ibanez J, Izquierdo M, Arguelles I, Forga L, Larrión JL, García-Unciti M, et al. Twice-weekly progressive resistance training decreases abdominal fat and improves insulin sensitivity in older men with type 2 diabetes. *Diabetes Care*. 2005 Mar ; 28 (3) : 662-667.

39. Kim JD, Yu BP, McCarter RJ, Lee SY, Herlihy JT. Exercise and diet modulate cardiac lipid peroxidation and antioxidant defenses. *Free Radic Biol Med*. 1996 ; 20 (1) : 83-88.

40. Durstine JL, Haskell WL. Effects of exercise training on plasma lipids and lipoproteins. *Exerc Sport Sci Rev*. 1994 ; 22 : 477-521.

41. Jafari M, Leaf DA, Macrae H, Kasem J, O'Conner P, Pullinger C, et al. The effects of physical exercise on plasma prebeta-1 high-density lipoprotein. *Metabolism*. 2003 Apr; 52 (4) : 437-442.
42. DiPietro L, Dziura J, Yeckel CW, Neufer PD. Exercise and improved insulin sensitivity in older women: evidence of the enduring benefits of higher intensity training. *J Appl Physiol* (1985). 2006 Jan ; 100 (1) :142-149.
43. Stefanyk LE, Dyck DJ. The interaction between adipokines, diet and exercise on muscle insulin sensitivity. *Curr Opin Clin Nutr Metab Care*. 2010 May ; 13 (3) : 255-259.
44. Singh NA, Stavrinos TM, Scarbek Y. A randomized controlled trial of high versus low intensity weight training versus general practitioner care for clinical depression in older adults. *J Gerontol Series A Biol Sci Med Sci* 2005 : 768.
45. Cornelissen VA, Fagard RH. Effect of resistance training on resting blood pressure: A meta-analysis of randomized controlled trials. *J Hyper* 2005. 2005 : 251-259.
46. Colcombe S, Kramer AF. Fitness effects on the cognitive function of older adults: a meta-analytic study. *Psychol Sci*. 2003 Mar ; 14 (2) : 125-130.
47. Schechtman KB, Ory MG. The effects of exercise on the quality of life of frail older adults: a preplanned meta-analysis of the FICSIT trials. *Ann Behav Med*. 2001 Summer ; 23 (3) : 186-197.

Table 1 Baseline clinical characteristics, vital signs and anthropometry of elderly subjects in control group (n=15) and exercise group (n=15) at pre-exercise (week 0).


Variables	Elderly group (n=30)		% Mean Difference	P-Value
	Control (n=15)	Exercise (n=15)		
	$\bar{X} \pm SD$	$\bar{X} \pm SD$		
Age (years)	64 ± 3.35	64 ± 3.46	0	0.660 NS
BW (kg)	56.59 ± 7.74	56.54 ± 9.52	0.44	0.490 NS
Height (cm)	149.00 ± 5.88	150.71 ± 4.58	0.67	0.690 NS
BMI (kg/ m ²)	25.11 ± 3.58	24.81 ± 3.35	1.19	0.470 NS
Total body fat (%)	36.25 ± 5.88	37.04 ± 5.66	2.18	0.770 NS
Total body water (%)	52.62 ± 6.08	50.24 ± 7.84	12.21	0.430 NS
WC (cm)	86.27 ± 10.17	87.72 ± 8.36	2.34	0.410 NS
HC (cm)	100.33 ± 11.76	95.28 ± 10.98	4.69	0.060 NS
WHR	0.84 ± 0.07	0.88 ± 0.11	4.76	0.180 NS
SBP (mmHg)	123 ± 7.8	129 ± 12.9	4.30	0.130 NS
DBP (mmHg)	74 ± 10.1	76 ± 10.57	2.58	0.540 NS
MAP (mmHg)	90 ± 7.40	93 ± 9.35	3.35	0.310 NS
HR (beats/min)	77 ± 9.9	70 ± 8.62	9.17	0.060 NS

BW, Body weight; BMI, Body mass index; WC, Waist circumference; HC, Hip circumference; WHR, Waist to hip ratio; SBP, Systolic blood pressure; DBP, Diastolic blood pressure; MAP, Mean arterial pressure; HR, Heart rate. Data are presented as mean (\bar{X}) ± SD and tested by unpaired t-test, significant difference in control versus exercise group; NS, No significant difference.

Table 2 Blood chemistry of elderly subjects (n=30) in control group (n=15) and exercise group (n=15) at pre-exercise (week 0) and at post-exercise (week 12).

	Control (n=15)			Elderly group (n=30)			Exercise (n=15)		
	pre-test week.0	post-test week.12	% Mean Difference	P-Value	pre-test week.0	post-test week.12	% Mean Difference	P-Value	
FBS (mg/dL)	93.0±13.8	110.5±37	18.81	0.005**	95.2 ± 12.4	89.5 ± 9.1	5.98	0.005**	
Insulin (uIU/ml)	11.5 ± 4.5	11.7±10.2	1.73	0.934 NS	9.0 ± 2.8	5.3 ± 3.7	41.11	0.000***	
HOMA-IR	2.6 ± 1.2	3.5 ± 3.6	34.6	0.570 NS	2.1± 0.7	1.1 ± 0.9	47.61	0.000**	
Cholesterol(mg/dL)	214.7±21.7	213.4 ± 19.62	0.61	0.744 NS	226.8±41.39	216.2 ± 23.49	4.67	0.217 NS	
Triglyceride (mg/dL)	133.8 ±62.3	141.0 ± 59.3	5.38	0.146 NS	227±148.00	196.4±86.16	13.48	0.277 NS	
HDL-C (mg/dL)	48.5 ± 9.2	51.2 ± 10.6	5.56	0.056 NS	47.0 ± 10.1	51.5± 9.3	9.57	0.029*	
LDL-C (mg/dL)	128.5 ±24.0	130.1 ± 28.3	1.24	0.815 NS	146.3 ± 40.7	139.8 ± 34.7	4.44	0.333 NS	

Data are presented as mean (\bar{X}) ± SD and tested by unpaired t-test, *p<0.05 significant difference **p<0.01 significant difference ***p<0.001 significant difference in control versus exercise group; NS, No significant difference.

Figure 1 The measurements of (A) FBS, (B) Insulin, (C) HOMA-IR (D) Cholesterol, (E) Triglyceride, (F) HDL-C, (G) LDL-C during pre-test and post-test after 12 weeks of SNTB exercise in elderly group (control, $n = 15$; exercise, $n = 15$) Data present as mean (\bar{X}) \pm SD and test by paired t-test
 ** $p < 0.01$ High significant difference and *** $p < 0.001$ Highly significant difference in pre-versus post-test by paired t-test.