การคัดเลือกปัจจัยที่ส่งผลต่อกระบวนการทอร์รีแฟคชันของทะลายปาล์มโดยใช้การออกแบบการทดลองด้วย

ผู้แต่ง

  • Panadda Indum นิสิต หลักสูตรวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมพลังงาน คณะวิศวกรรมศาสตร์ มหาวิทยาลัยทักษิณ วิทยาเขตพัทลุง
  • Chokchai Mueanmas อาจารย์ สาขาวิชาวิศวกรรมพลังงาน คณะวิศวกรรมศาสตร์ มหาวิทยาลัยทักษิณ วิทยาเขตพัทลุง
  • Sukritthira Ratanawilai อาจารย์ สาขาวิชาวิศวกรรมเคมี คณะวิศวกรรมศาสตร์ มหาวิทยาลัยสงขลานครินทร์ วิทยาเขตหาดใหญ่

คำสำคัญ:

กระบวนการทอร์รีแฟคชัน, ทะลายปาล์ม, การออกแบบการทดลอง, Plackett-Burman Design

บทคัดย่อ

ทอร์รีแฟคชัน เป็นกระบวนการเคมีเชิงความร้อนสำหรับการผลิตเชื้อเพลิงแข็ง เพื่อปรับปรุงคุณสมบัติทางด้านเชื้อเพลิงของชีวมวลโดยใช้อุณหภูมิในช่วง 200-320 องศาเซลเซียสในสภาวะที่อับอากาศ ซึ่งการสลายตัวของเซลลูโลส เฮมิเซลลูโลส และลิกนิน จะขึ้นอยู่กับหลาย ๆ ปัจจัย ดังนั้นบทความวิจัยนี้จึงเป็นการศึกษาการคัดเลือกปัจจัยที่ส่งผลต่อ กระบวนการทอร์รีแฟคชันของทะลายปาล์มซึ่งเป็นวัสดุเหลือทิ้งจากปาล์มน้ำมัน โดยการประยุกต์ใช้การออกแบบการทดลองด้วย Plackett - Burman Design เพื่อคัดเลือกปัจจัยต่าง ๆ ได้แก่ อุณหภูมิ เวลา ปริมาณออกซิเจน อัตราการให้ความร้อน และขนาดของทะลายปาล์ม ที่ส่งผลต่อผลได้เชิงมวล ปริมาณความชื้น ปริมาณสารระเหย ปริมาณคาร์บอนคงตัว ปริมาณเถ้า และค่าพลังงานความร้อน ซึ่งนัยสำคัญของปัจจัยต่าง ๆ จะแสดงด้วยผลการวิเคราะห์ความแปรปรวน (analysis of variance, ANOVA) ซึ่งผลการทดลองพบว่าปัจจัยที่มีผลกระทบอย่างมีนัยสำคัญ ได้แก่ อุณหภูมิ และเวลา

References

1. Department of Alternative Energy Development and Efficiency, Ministry of Energy. Potential of renewable energy [Internet]. 2017. Retrieved December, 2018, form http://biomass.dede.go.th/biomass_web/index.html

2. Acharya B, Sule I, Dutta A. A review on advances of torrefaction technologies for biomass processing. Biomass Conversion and Biorefinery. 2012; (2): 349–369.

3. Cardona S, Gallego LJ, Valencia V, Martínez E, Rios LA. Torrefaction of eucalyptus-tree residues: A new method for energy and mass balances of the process with the best torrefaction conditions. Sustainable Energy Technologies and Assessments. 2019; (31): 17-24.

4. Gan YY, Ong HC, Ling TC, Chen W-H, Chong CT. Torrefaction of de-oiled Jatropha seed kernel biomass for solid fuel production. Energy. 2019; (170): 367-374.

5. Sukiran MA, Abnisa F, Daud WMAW, Bakar NA, Loh SK. A review of toreefaction of oil palm solid wastes for biofuel production. Energy Conversion and Management. 2017; (149): 101-120.

6. Peng JH, Bi XT, Sokhansanj S, Lim CJ. Torrefaction and densification of different species of softwood residues. Fuel. 2013; (111): 411-421.

7. Faizal HM, Shamsuddin HS, Heiree MHM, Hanaffi MFMA, Rahman MRA, Rahman MM, Latiff ZA. Torrefaction of densified mesocarp fiber and palm kernel shell. Renewable Energy. 2018; (122): 419-428.

8. Sabil KM, Aziz MA, Lal B, Uemura Y. Synthetic indicator on the severity of torrefaction of oil palm biomass residues through mass loss measurement. Applied Energy. 2013; (111): 821-826.

9. Han J, Yao X, Zhan Y, Oh SY, Kim LH, Kim HJ. A method for estimating higher heating value of biomass-plastic fuel. Energy institute. 2017; (90): 331-335.

10. Qi J, Zhao J, Xu Y, Wang Y, Han K. Segmented heating carbonization of biomass: Yields, property and estimation of heating value of chars. Energy. 2018; (144): 301-311.

11. Uemura Y, Omar W, Othman NA, Yusup S, Tsutsui T. Torrefaction of oil palm EFB in the presence of oxygen. Fuel. 2013; (103): 156-160.

12. Azizi D, Gharabaghi M, Saeedi N. Optimization of the coal flotation procedure using the Plackett–Burman design methodology and kinetic analysis. Fuel Processing Technology. 2014; (128): 111-118.

13. Leea HV, Yap YHT. Optimization study of binary metal oxides catalyzed transesterification system for biodiesel production. Process Safety and Environmental Protection. 2015; (94): 430-440.

14. Mueanmas C, Nikhom R, Petchkaew A, Iewkittayakorn J, Prasertsit K. Extraction and esterification of waste coffee graounds oil as non-edible feedstock for biodiesel production. Renewable energy. Forthcoming 2018.

15. Zahid M, Shafiq N, Isa MH, Gil L. Statistical modeling and mix design optimization of fly ash based engineered geopolymer composite using response surface methodology. Cleaner Production. 2018; (194): 483-498.

16. Bimakr M, Rahman RA, FS Taip, Adzahan NM, Sarker MZI, Ganjloo A. Supercritical Carbon Dioxide Extraction of Seed Oil from Winter Melon (Benincasa hispida) and Its Antioxidant Activity and Fatty Acid Composition. Molecules. 2013; (18): 997-1014.

Downloads

เผยแพร่แล้ว

2019-12-14

ฉบับ

บท

บทความวิจัย