Source Apportionment of Particulate Matter Size Less Than 2.5 Micron in Nakhon Ratchasima City by PMF Model

Authors

  • Phakkawat Thongsaeng นักศึกษา หลักสูตรวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมสิ่งแวดล้อม สำนักวิชาวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีสุรนารี
  • Sudjit Karuchit ผู้ช่วยศาสตราจารย์ สาขาวิชาวิศวกรรมสิ่งแวดล้อม สำนักวิชาวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีสุรนารี
  • Prapat Pongkriatkul ผู้ช่วยศาสตราจารย์ ภาควิชาวิศวกรรมสิ่งแวดล้อม คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี

Keywords:

PM2.5, Source apportionment, PMF model

Abstract

This research analyzed the source apportionment of  PM2.5 in Nakhon Ratchasima city using the receptor model called Positive Matrix Factorization (PMF). It used primary data on PM2.5 and its chemical compositions – ionic species, elemental species, and black carbon. The study identifies 5 emission sources in the urban area – traffic emission, biomass burning, soil dust, construction dust, and industry – which account for 35%, 31%, 15%, 14%, and 5% contribution, respectively. On the other hand, the industrial area has 5 emission sources – traffic emission, industry, soil dust, biomass burning, and residual oil combustion – which account for 42%, 25%, 18%, 13%, and 1%, respectively. Traffic emission is the highest contributor in both areas. The construction dust which is found only in the urban area comes from construction activities around the city central district. The residual oil combustion which is found only in the industrial area comes from its usage as fuel in the production process of the factories.

References

1. Forouzanfar MH, Alexander L, Anderson HR, Bachman VF, Biryukov S, Braoer M, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. The Lancet. 2015; 386(10010): 2287-2323.

2. WHO. Burden of disease from the joint effects of Household and Ambient Air Pollution for 2012 [Internet]. 2016 [updated 2016 Sep 27; cited 2016 Nov 2]. Available from: https://goo.gl/mceuDN

3. US EPA. Receptor Modeling [Internet]. 2015 [updated 2015 Jan 15; cited 2015 Jul 27]. Available from: https://bit.ly/2P7WKRx

4. WHO. Database on source apportionment studies for particulate matter in the air (PM10 and PM2.5) [Internet]. 2015 [Update 2015 September 26; cited 2016 November 2]. Available from: http://www.who.int/quantifying_ehimpacts/global/source_apport/en/

5. Wangkiat A. Mathematical models calculated from sources for air quality management. RUS JET. 2007; 10: 13-16. Thai.

6. Wimolwattanapum W, Hopke PK, Pongkiatkul P. Source apportionment and potential source locations of PM2.5 and PM2.5-10 at residential sites in metropolitan Bangkok. Atmospheric Pollution Research. 2011; 2: 172-181.

7. Nakhon Ratchasima City Municiplity. Annual Report on Civil Registration 2015 [Internet]. 2015 [updated 2016 Jan 1; cited 2016 Nov 1]. Available from: http://www.koratcity.go.th/page/population58

8. US EPA. Quality Assurance Guidance Document 2.12.; Monitoring PM2.5 in Ambient Air Using Designated Reference or Class I Equivalent Methods [Internet]. 2016 [updated 2016 Jan 1; cited 2016 May 30]. Available from: https://bit.ly/2DSQb41

9. Chow JC, Watson JG. Ion chromatography in elemental analysis of airborne particles. Elemental Analysis of Airborne Particles. 1999; 1: 97-137.

10. US EPA. Method IO-3.4 Determination of Metals in Ambient Particulate Matter Using Inductively Coupled Plasma (ICP) Spectroscopy [Internet]. 2015 [update 2015 Dec 28; cited 2016 May 30]. Available from: https://bit.ly/2QlX0g2

11. Kim Oanh NT, Pongkiatkul P, Upadhyay N, Hopke PK. Designing ambient particulate matter monitoring program for source apportionment study by receptor modeling. Atmospheric Environment. 2009; 43: 3334-3344.

12. Thongsaeng P, Karuchit S, Pongkiatkul P, editors. Analyses of PM2.5 in Urban and Industrial Zones of Nakhon Ratchasima City. Proceeding of the 16th National Environmental Conference; 2017 May 17-18; Bangkok, Thailand.

13. Thongsaeng P, Karuchit S, Pongkiatkul P. Concentration levels and chemical composition of PM2.5 in Nakhon Ratchasima city. Engineering journal of research and development. Forthcoming 2018. Thai.

14. US EPA. EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide [Internet]. 2014 [updated 2014 Apr 1; cited 2014 Aug 30]. Available from: https://bit.ly/2Ro11SC

15. Thonsaeng P. Source apportionment of particulate matter size less than 2.5 micron in Nakhon Ratchasima city area by PMF model [Meng thesis]. Nakhon Ratchasima: Suranaree University of Technology; 2017. Thai.

16. Chow JC. Measurement Methods to Determine Compliance with Ambient Air Quality Standards for Suspended Particles. Journal of the Air and Waste Management Association. 1995; 45; 320-382.

17. Watson JG, Chow JC. Introduction to Environmental Forensics. 3rd ed. California: Academic Press; 2015.

18. Gugamsetty B, Wei H, Liu CN, Awasthi A, Hsu SC, Tsai SC, et al. Source characterization and apportionment of PM10, PM2.5 and PM0.1 by using Positive Matrix Factorization. Aerosol and Air Quality Research. 2012; 12: 476-491.

19. Zikova N, Wand Y, Yang F, Li X, Tian M, Hopke PK. On the source contribution to Beijing PM2.5 concentrations. Atmospheric Environment 2016; 134: 84-95

20. Lestari P, Mauliadi YD. Source apportionment of particulate matter at urban mixed site in Indonesia using PMF. Atmospheric Environment. 2009; 43: 1760-1770.

21. Orogade SA, Owoase KO, Hopke PK, Adie DB, Ismail A, et al. Source apportionment of fine and coarse particulate matter in industrial areas of Kaduna, Northern Nigeria. Aerosol and Air Quality Research. 2016; 16: 1179-1190.

22. Choi JK, Heo JB, Ban SJ, Yi SM, Zoh KD. Source apportionment of PM2.5 at the coastal area in Korea. Science of the Total Environment. 2013; 447: 370-380.

23. Han F, Kota SH, Wang Y, Zhang H. Source apportionment of PM2.5 in Baton Rouge, Louisiana during 2009-2014. Science of the Total Environment. 2017; 5(86): 115-126.

24. Hjortenkrans DST, Bergback BG, Gaggerud AV. Metal Emission from Brake Linings and Tires: Case Studies of Stockholm, Sweden 1995/1998 and 2005. Environmental Science and Technology. 2007; 41: 5224-5230.

25. Chen Y, Engling G, He K, Duan F, Du Z, Ma Y, et al. The characteristics of Beijing aerosol during two distinct episodes: Impacts of biomass burning and fireworks. Environmental Pollution. 2014; 185: 149-157.

26. Sharma KS, Sharma A, Saxena M, Choudhary N, Masiwal R, Mandal KT, et al. Chemical characterization and source apportionment of aerosol at an urban area of Central Delhi, India. Atmospheric Pollution Research. 2016; 7: 110-121.

27. Chow JC, Watson JG, Kuhns H, Etyemezian V, Lowenthal DH, Crow D, et al. Source profiles for industrial, mobile, and area sources in the Big Bend Regional Aerosol Visibility and Observational study. Chemosphere. 2004; 54: 185-208.

28. Linak WP, Meller CA, Snatoianni DA, King CJ, Shinagawa T, Wendt JL, et al. Formation of Fine Particles from Residual Oil Combustion: Reducing Nuclei through the Addition of Inorganic Sorbent. Korean Journal Chemical Engineering. 2003; 20: 664-669.

29. Peltier RE, Lippmann M. Residual oil combustion: 2. Distributions of airborne nickel and vanadium within New York City. Journal of Exposure Science and Environmental Epidemiology. 2010; 20: 342-350.

30. Hagler GSW, Bergin MH, Salmon LG, Yu JZ, Wan ECH, Zhen M, et al. Local and regional anthropogenic influence on PM2.5 elements in Hong Kong. Atmospheric Environment. 2007; 41: 5994-6004.

31. Murillo JH, Roman SR, Marin JFR, Ramos AC, Jimenez SB, Gonzalez EC, et al. Chemical characterization and source apportionment of PM10 and PM2.5 in the metropolitan area of Costa Rica. Atmospheric Pollution Research. 2013; 4: 181-190.

Downloads

Published

2019-12-14

Issue

Section

บทความวิจัย