CO2 Photocatalytic Reduction to Solar Fuels Over Platinum/TiO2 and Nickel/TiO2 Heterojunction Under UV Light Irradiation

Authors

  • Jetsadakorn Wilamat นักศึกษา หลักสูตรวิศวกรรมศาตรมหาบัณฑิต สาขาวิชาวิศวกรรมสิ่งแวดล้อม คณะวิศวกรรมศาสตร์ มหาวิทยาลัยขอนแก่น
  • Pakpoom Atikaphan นักศึกษา หลักสูตรวิศวกรรมศาตรมหาบัณฑิต สาขาวิชาวิศวกรรมเคมี คณะวิศวกรรมศาสตร์ มหาวิทยาลัยขอนแก่น
  • Darika Permporn นักศึกษา หลักสูตรปรัชญาดุษฏีบัณฑิต สาขาวิชาวิศวกรรมสิ่งแวดล้อม คณะวิศวกรรมศาสตร์ มหาวิทยาลัยขอนแก่น
  • Rattabal Khunphonoi อาจารย์ สาขาวิชาวิศวกรรมสิ่งแวดล้อม คณะวิศวกรรมศาสตร์ มหาวิทยาลัยขอนแก่น

Keywords:

CO2 Photoreduction, Photodeposition, metal/TiO2

Abstract

The photocatalytic reduction of CO2 is an artificial photosynthesis process to produce hydrocarbon fuels by using a semiconductor as photocatalyst. Modification of anatase TiO2 by metal doping (0.04 mol% M/TiO2, M=Pt and Ni) was used in this reaction to enhance the photocatalytic efficiency by photodeposition technique. The materials were characterized by X-ray Absorption Near Edge Spectroscopy (XANE), Transmission Electron Microscope (TEM) and UV-visible diffuse reflectance spectra (UV-DRs). The CO2 photoreduction was conducted in liquid phase under UVA light irradiation. It was found methanol as main product. The presence of metal over TiO2 resulted in enhancement of photoreduction of CO2.

References

Baral SS, Singh K, Sharma P. The potential of sustainable algal biofuel production using CO2 from thermal power plant in India. Renew Sustain Energy Rev. 2015; 49:1061–1074.

Edwards JH. Potential sources of CO2 and the options for its large-scale utilization now in the future. Catal Today. 1995; 23(94): 59–66.

Li K, An X, Hyeon K, Khraisheh M, Tang J. A critical review of CO2 photoconversion : Catalysts and reactors. Catal Today. 2014; 224: 3–12.

Ganesh I. Conversion of carbon dioxide into methanol - A potential liquid fuel: Fundamental challenges and opportunities (a review). Renew Sustain Energy Rev. 2014;31: 221–257.

Singhal N, Kumar U. Noble metal modified TiO2: selective photoreduction of CO2 to hydrocarbons. Mol Catal. 2017; 439: 91–99.

Gupta SM, Tripathi M. A review of TiO2 nanoparticles. Chinese Sci Bull. 2011; 56(16): 1639–57.

Liu L, Li Y. Understanding the Reaction Mechanism of Photocatalytic Reduction of CO2 with H2O on TiO2 -Based Photocatalysts : A Review. 2014; 2(3): 453–469.

Daghrir R, Drogui P, Robert D. Modified TiO2 for environmental photocatalytic applications: A review. Ind Eng Chem Res. 2013; 52(10): 3581–3599.

Lee Y, Kim E, Park Y, Kim J, Ryu WH, Rho J, et al. Photodeposited metal-semiconductor nanocomposites and their applications. J Mater. 2018; 4(2): 83–94.

Ambrus Z, Balázs N, Alapi T, Wittmann G, Sipos P, Dombi A, et al. Synthesis, structure and photocatalytic properties of Fe(III)-doped TiO2 prepared from TiCl3. Appl Catal B Environ. 2008; 81(1–2): 27–37.

Subramanian M, Vijayalakshmi S, Venkataraj S, Jayavel R. Effect of cobalt doping on the structural and optical properties of TiO2 films prepared by sol-gel process. Thin Solid Films. 2008; 516(12): 3776–3782.

Martínez T LM, Montes de Correa C, Odriozola JA, Centeno MA. Synthesis and characterization of xerogel titania modified with Pd and Ni. J Mol Catal A Chem. 2006; 253(1–2): 252–260.

Mohamed MM, Othman I, Mohamed RM. Synthesis and characterization of MnOx/TiO2 nanoparticles for photocatalytic oxidation of indigo carmine dye. J Photochem Photobiol A Chem. 2007; 191(2–3): 153–161.

Tsuyumoto I, Nawa K. Thermochromism of vanadium-titanium oxide prepared from peroxovanadate and peroxotitanate. J Mater Sci. 2008; 43(3): 985–988.

Singhal N, Kumar U. Noble metal modified TiO2 : selective photoreduction of CO2 to hydrocarbons. Mol Catal. 2017; 439: 91–99.

Kwak BS, Vignesh K, Park NK, Ryu HJ, Baek JI, Kang M. Methane formation from photoreduction of CO2 with water using TiO2 including Ni ingredient. Fuel. 2015; 143: 570–576.

Šiljegović M, Kačarević-Popović ZM, Krklješ AN, Stojanović Z, Jovanović ZM. Effect of N4+ and C4+ ion beam bombardment on the optical and structural characteristics of ethylene-norbornene copolymer (TOPAS). Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms. 2011; 269(7): 708–715.

Kozlova EA, Lyubina TP, Nasalevich MA, Vorontsov A V., Miller A V., Kaichev V V., et al. Influence of the method of platinum deposition on activity and stability of Pt/TiO2 photocatalysts in the photocatalytic oxidation of dimethyl methylphosphonate. Catal Commun. 2011; 12(7): 597–601.

Ishitani O, Inoue C, Suzuki Y, Ibusuki T. Photocatalytic reduction of carbon dioxide to methane and acetic acid by an aqueous suspension of metal-deposited TiO2. J Photochem Photobiol A Chem. 1993; 72(3): 269–271.

Mogyorósi K, Kmetykó Á, Czirbus N, Veréb G, Sipos P, Dombi A. Comparison of the substrate dependent performance of Pt, Au and Ag-doped TiO2 photocatalysts in H2-production and in decomposition of various organics. React Kinet Catal Lett. 2009; 98(2): 215–225.

Downloads

Published

2021-05-18

Issue

Section

บทความวิจัย