Photocatalytic Behavior of Various Pt Content/TiO2 in CO2 Photoreduction Under UV Light Irradiation
Keywords:
Photoreduction CO2, Photodeposition, Platinum, Platinum/TiO2Abstract
Photocatalytic reduction of CO2 to solar fuels is promising technology to reduce global warming problem. Various Pt contents, 0.1-1.0 %wt Pt were doped into TiO2 by photodeposition technique. The synthesized catalysts were characterized by X-ray Absorption Near Edge Spectroscopy (XANES), Transmission Electron Microscope (TEM) and UV-visible diffuse reflectance spectra (UV-DRs). The photocatalytic efficiency was performed in liquid phase of batch reactor under UV light irradiation. Main product of CO2 photoreduction was methanol. Pt-doped TiO2 showed affecting on the enhancement of CO2 photoreduction, corresponding to methanol production. The highest amount of methanol was found over 0.1 %wt Pt/TiO2.
References
Chen P-Y, Chen S-T, Hsu C-S, Chen C-C. Modeling the global relationships among economic growth, energyconsumption and CO2 emissions. Renew Sustain Energy Rev. 2016 Nov 1;65:431.
Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew Chem Int Ed Engl. 2013 Jul 15;52(29):7372–408.
Pasten Cesar SJC. Energy and quality of life. Energy Policy. 2012 Oct 1;49:476.
Edelmannová M, Lin K-Y, Wu JCS, Troppová I, Čapek L, Kočí K. Photocatalytic hydrogenation and reduction of CO2 over CuO/ TiO2 photocatalysts. Appl Surf Sci. 2018 Oct 1;454:31.
Zhu D, Long L, Sun J, Wan H, Zheng S. Highly active and selective catalytic hydrogenation of p-chloronitrobenzene to p-chloroaniline on Pt@Cu/TiO2. Appl Surf Sci. 2020 Feb 28;504:144329.
Li M, Sun Y, Tang Y, Sun J, Xu Z, Zheng S. Efficient removal and recovery of copper by liquid phase catalytic hydrogenation using highly active and stable carbon-coated Pt catalyst supported on carbon nanotube. J Hazard Mater. 2019 Nov 22;121745.
Diaz-Real JA, Elsaesser P, Holm T, Mérida W. Electrochemical reduction on nanostructured TiO2 for enhanced photoelectrocatalytic oxidation. Electrochimica Acta. 2020 Jan 1;329:135162.
Ao C, Feng B, Qian S, Wang L, Zhao W, Zhai Y, et al. Theoretical study of transition metals supported on g-C3N4 as electrochemical catalysts for CO2 reduction to CH3OH and CH4. J CO2 Util. 2020 Feb 1;36:123.
Khalilzadeh A, Shariati A. Photoreduction of CO2 over heterogeneous modified TiO2 nanoparticles under visible light irradiation: Synthesis, process and kinetic study. Sol Energy. 2018 Apr 1;164:261.
Chen H, Cao Y, Wei E, Gong T, Xian Q. Facile synthesis of graphene nano zero-valent iron composites and their efficient removal of trichloronitromethane from drinking water. Chemosphere. 2016 Mar 1;146:3.
Zhao Q, Li H, Zhang L, Cao Y. Study of PdO species on surface of TiO2 for photoreduction of CO2 into CH4. J Photochem Photobiol Chem. 2019 Nov 1;384:112032.
Jin J, Chen S, Wang J, Chen C, Peng T. SrCO3-modified brookite/anatase TiO2 heterophase junctions with enhanced activity and selectivity of CO2 photoreduction to CH4. Appl Surf Sci. 2019 May 15;476:947.
Khalilzadeh A, Fatemi S. Spouted bed reactor for VOC removal by modified nano-TiO2 photocatalytic particles. Chem Eng Res Des. 2016 Nov 1;115:250.
Tan L-L, Ong W-J, Chai S-P, Mohamed AR. Visible-light-activated oxygen-rich TiO2 as next generation photocatalyst: Importance of annealing temperature on the photoactivity toward reduction of carbon dioxide. Chem Eng J. 2016 Jan 1;283:1263.
Ovcharov ML, Mishura AM, Shcherban ND, Filonenko SM, Granchak VM. Photocatalytic reduction of CO2 using nanostructured Cu2O with foam-like structure. Sol Energy. 2016 Dec 1;139:45.
Lin L-Y, Nie Y, Kavadiya S, Soundappan T, Biswas P. N-doped reduced graphene oxide promoted nano TiO2 as a bifunctional adsorbent/photocatalyst for CO2 photoreduction: Effect of N species. Chem Eng J. 2017 May 15;316:460.
Larimi A, Rahimi M, Khorasheh F. Carbonaceous supports decorated with Pt–TiO2 nanoparticles using electrostatic self-assembly method as a highly visible-light active photocatalyst for CO2 photoreduction. Renew Energy. 2020 Jan 1;145:182.
Li X, Zhuang Z, Li W, Pan H. Photocatalytic reduction of CO2 over noble metal-loaded and nitrogen-doped mesoporous TiO2. Appl Catal Gen. 2012 Jul 2;429–430:3.
Liu Y, Miao C, Yang P, He Y, Feng J, Li D. Synergetic promotional effect of oxygen vacancy-rich ultrathin TiO2 and photochemical induced highly dispersed Pt for photoreduction of CO2 with H2O. Appl Catal B Environ. 2019 May 5;244:930.
Ambrožová N, Reli M, Šihor M, Kuśtrowski P, Wu JCS, Kočí K. Copper and platinum doped titania for photocatalytic reduction of carbon dioxide. Appl Surf Sci. 2018 Feb 1;430:487.
Monga A, Bathla A, Pal B. A Cu-Au bimetallic co-catalysis for the improved photocatalytic activity of TiO2 under visible light radiation. Sol Energy. 2017 Oct 1;155:1410.
Sreeja S, Shetty K V. Photocatalytic water disinfection under solar irradiation by Ag@TiO2 core-shell structured nanoparticles. Sol Energy. 2017 Nov 15;157:243.
Kometani N, Hirata S, Chikada M. Photocatalytic reduction of CO2 by Pt-loaded TiO2 in the mixture of sub- and supercritical water and CO2. J Supercrit Fluids. 2017 Feb 1;120:44.
Tasbihi M, Kočí K, Edelmannová M, Troppová I, Reli M, Schomäcker R. Pt/TiO2 photocatalysts deposited on commercial support for photocatalytic reduction of CO2. J Photochem Photobiol Chem. 2018 Nov 1;366:780.
Thompson WA, Perier C, Maroto-Valer MM. Systematic study of sol-gel parameters on TiO2 coating for CO2 photoreduction. Appl Catal B Environ. 2018 Dec 15;238:146.
Tseng I-H, Wu JCS, Chou H-Y. Effects of sol–gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction. J Catal. 2004 Jan 25;221(2):440.
Jin J, Chen S, Wang J, Chen C, Peng T. One-pot hydrothermal preparation of PbO-decorated brookite/anatase TiO2 composites with remarkably enhanced CO2 photoreduction activity. Appl Catal B Environ. 2020 Apr 1;263:118353.
Lee Y, Kim E, Park Y, Kim J, Ryu W, Rho J, et al. Photodeposited metal-semiconductor nanocomposites and their applications. J Materiomics. 2018 Jun 1;4(2):83–94.
López R, Gómez R. Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. J Sol-Gel Sci Technol. 2011;61(1):1–7.
Suwannaruang T, Kamonsuangkasem K, Kidkhunthod P, Chirawatkul P, Saiyasombat C, Chanlek N, et al. Influence of nitrogen content levels on structural properties and photocatalytic activities of nanorice-like N-doped TiO2 with various calcination temperatures. Mater Res Bull. 2018 Sep 1;105:276.
Sadeghi M, Liu W, Zhang T-G, Stavropoulos P, Levy B. Role of Photoinduced Charge Carrier Separation Distance in Heterogeneous Photocatalysis: Oxidative Degradation of CH3OH Vapor in Contact with Pt/TiO2 and Cofumed TiO2−Fe2O3. J Phys Chem. 1996 Jan 1;100(50):19474.
Xie S, Wang Y, Zhang Q, Deng W, Wang Y. MgO- and Pt-Promoted TiO2 as an Efficient Photocatalyst for the Preferential Reduction of Carbon Dioxide in the Presence of Water. ACS Catal. 2014 Oct 3;4(10):3653.
Khalil M, Gunlazuardi J, Ivandini TA, Umar A. Photocatalytic conversion of CO2 using earth-abundant catalysts: A review on mechanism and catalytic performance. Renew Sustain Energy Rev. 2019 Oct 1;113:109246.