Modeling Axial Compression Behavior of Cold-Formed Steel Sections

Authors

  • Kasidet Leelasukharom นักศึกษา หลักสูตรวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมโยธา คณะวิศวกรรมศาสตร์ มหาวิทยาลัยขอนแก่น
  • Tanyada Pannachet รองศาสตราจารย์ ศูนย์วิจัยและพัฒนาโครงสร้างมูลฐานอย่างยั่งยืน สาขาวิชาวิศวกรรมโยธา คณะวิศวกรรมศาสตร์ มหาวิทยาลัยขอนแก่น
  • Maetee Boonpichetvong รองศาสตราจารย์ ศูนย์วิจัยและพัฒนาโครงสร้างมูลฐานอย่างยั่งยืน สาขาวิชาวิศวกรรมโยธา คณะวิศวกรรมศาสตร์ มหาวิทยาลัยขอนแก่น

Keywords:

Cold-formed steel, Axial compression, Geometric imperfection

Abstract

This paper was conducted in order to investigate behavior of cold-formed steel members under axial compression loading using the finite element analysis. The numerical results were compared with the results from some existing laboratory experiments and the predicted load from the effective width method. The samples consisted of the channel sections and the lipped channel sections for which the laboratory test results were available. The numerical results, including the axial compression capacity of the samples and their mechanical behavior during the loading, indicated that geometric imperfection affected the nonlinear behavior, the buckling modes and the failure patterns of the cold-formed steel sections. Applying effect of geometric imperfection in the nonlinear finite element analysis could provide the more realistic behavior of the axially loaded cold formed steel sections.

References

American Iron and Steel Institute. Supplement 2004 to the North American specification for the design of cold formed steel structure members, Design of cold-formed steel structural members using direct strength method. Washington: USA; 2004.

American Iron and Steel Institute. Specification for the cold-formed steel structural member (AISI 2007). Washington, USA; 2007.

Chou SM, Chai GB, Ling L. Finite element technique for design of stub columns. Thin-walled structure. 2000; 37(2): 97-112.

Gardner L, Nethercot DA. Numerical modeling of stainless steel structural components. Journal of Structural Engineering. 2004; 130(10): 1586-1601.

Camotin D, Silvestre N, Dinis PB. Numerical analysis of cold-formed steel members. International Journal of Steel Structure. 2005; 5(1): 63-78.

Ashraf M, Gardner L, Nethercot DA. Finite element modelling of structural strainless steel cross-sections. Thin-walled structures. 2007; 44(10): 1048-1062.

Dinis PB, Camotim D, Silvestre N. FEM-based analysis of the local-plate/distortional mode interaction in cold-formed steel lipped channel columns. Computers and structure. 2007; 85(19-20): 1461-1474.

Schafer BW, Li Z, Moen CD. Computational modeling of cold-formed steel. Thin-walled Structures. 2010; 48(10-11): 752-762.

Bernard ES. Flexural behavior of cold-formed profiled steel decking [PhD thesis]. Cydney, Australia: University of Sydney; 1993.

Schafer BW. Cold formed steel behavior and design: analytical and numerical modeling of element and member with longitudinal stiffeners [Ph.D.Thesis]. Ithaca, New York: Cornel university; 1997

Young B. The behaviour and design of cold-formed channel columns [PhD thesis]. Sydney, Australia: University of Sydney; 1997.

Shifferaw Y, Vieira LCM, Schafer BW. Compression testing of cold-formed steel columns with different sheathing configurations. In: Proceedings of Structural Stability Research Council - Annual Stability Conference (SSRC2010); 2010; 593-612.

Zeinoddini V, Schafer BW. Global imperfection and dimensional variations in cold-formed steel members. International journal of structure stability conference, Structural stability research council. 2011; 11(5): 829-854.

Gendy BL, Hanna MT. Effect of geometric imperfections in the ultimate moment capacity of cold-formed sigma-shape sections. HBRC Journal. 2015; 13(2): 163-170.

Schafer BW, Pekoz T. Computational modeling of cold-formed steel: characterizing geometric imperfection and residual stresses. Journal of Constructional Steel Research. 1998; 47(3): 193-210.

Zeinoddini V, Schafer BW. Simulation of geometric imperfections in cold-formed steel members using spectral representation approach. Thin-Walled Structures. 2012; 60: 105-117.

Engineering Institute of Thailand under H.M. the King’s Patronage. Design Standards for Cold Formed Steel Buildings (EIT1024-53). Bangkok: Thailand; 2010. Thai.

Shanmuganathan G, Yasintha B, Mahen M. Local buckling studies of cold-formed steel compression members at elevated temperatures. Journal of Constructional Steel Research. 2015; 108: 31-45.

Dinis PB, Batista EM, Camotim D, dos Santos ES. Local-distortional-global interaction in lipped channel columns: Experimental result, numerical simulations and design considerations. Thin-Walled Structures. 2012; 61: 2-13.

Downloads

Published

2022-08-05

Issue

Section

บทความวิจัย