Bioactive Paper Coated with Green Synthesized Nanosilver/Magnetic oxide
Keywords:
Silver nanoparticle, Magnetic oxide, Bioactive packagingAbstract
This research focused on the development of bioactive packaging. The papers are coated with Nanosilver/Magnetic oxide (AgNPs/Fe3O4) at 0 %wt/v, 0.1 %wt/v and 0.2 %wt/v. The AgNPs were doped on Fe3O4 via green synthesis using extracted spent coffee ground (ex-SCG) as a bio-based reducing agent. The paper coated with AgNPs/Fe3O4 at 0.1 %wt/v showed the uniform dispersion of AgNPs/Fe3O4 that improved the water resistance, antibacterial activities, and mechanical properties. The paper coated with AgNPs/Fe3O4 at 0.1 %wt/v has a high potential to apply as bioactive packaging.
References
Ramkumar PL, Kulkarni DM, Abhijit VVR, Cherukumudi A. Investigation of Melt Flow Index and 1. Impact Strength of Foamed LLDPE for Rotational Moulding Process. Procedia Mater Sci [Internet]. 2014;6(Icmpc):361–367.
Seligra PG, Medina Jaramillo C, Famá L, Goyanes S. Biodegradable and non-retrogradable eco-films based on starch-glycerol with citric acid as crosslinking agent. Carbohydr Polym [Internet]. 2016;138:66–74.
Tang X, Alavi S. Structure and physical properties of starch/poly vinyl alcohol/laponite RD nanocomposite films. J Agric Food Chem. 2012;60(8):1954–1962.
Contat L, Ribes A. Thermal degradation of polypropylene / starch-based materials with enhanced . biodegradability. 2004;86.
Jin K, Tang Y, Liu J, Wang J, Ye C. Nanofibrillated cellulose as coating agent for food packaging 5. paper. Int J Biol Macromol [Internet]. 2021;168:331–338.
Herrera MA, Mathew AP, Oksman K. Barrier and mechanical properties of plasticized and cross-6. linked nanocellulose coatings for paper packaging applications. Cellulose. 2017;24(9):3969–3980.
Priya B, Kumar V, Pathania D, Singh A. Synthesis , characterization and antibacterial activity of 5 . biodegradable starch / PVA composite films reinforced with cellulosic fibre. Carbohydr Polym 5 . [Internet]. 2014;109:171–179.
Vermeiren L, Devlieghere F, Beest M Van, Kruijf N De, Debevere J. Developments in the active 6. packaging of foods. 1999;10:77–86.
Reddy N, Yang Y. Citric acid cross-linking of starch films. Food Chem [Internet]. 2010;118(3):702–711.
Ounkaew A, Kasemsiri P, Kamwilaisak K, Saengprachatanarug K, Mongkolthanaruk W, Souvanh M, 0. et al. Polyvinyl Alcohol (PVA)/Starch Bioactive Packaging Film Enriched with Antioxidants from . Spent Coffee Ground and Citric Acid. J Polym Environ [Internet]. 2018;26(9):3762–3772.
Trongchuen K, Ounkaew A, Kasemsiri P, Hiziroglu S, Mongkolthanaruk W, Wannasutta R, et al. 11. Bioactive Starch Foam Composite Enriched With Natural Antioxidants from Spent Coffee Ground 9. and Essential Oil. 2018;1700238:1–9.
Vilchis-nestor AR, Sánchez-mendieta V, Camacho-lópez MA, Gómez-espinosa RM, Camacho-lópez . MA, Arenas-alatorre JA. Solventless synthesis and optical properties of Au and Ag nanoparticles 12. using Camellia sinensis extract. 2008;62:3103–3105.
Dhand V, Soumya L, Bharadwaj S, Chakra S, Bhatt D, Sreedhar B. Green synthesis of silver . nanoparticles using Coffea arabica seed extract and its antibacterial activity. Mater Sci Eng C 11. [Internet]. 2016;58:36–43.
Bakar NHHA, Ismail J, Bakar MA. Synthesis and characterization of silver nanoparticles in natural 12. rubber. 2007;104:276–283.
Nadagouda MN, Varma RS. Green synthesis of silver and palladium nanoparticles at room 13. temperature using coffee and tea extract. 2008;859–862.
Tomke PD, Rathod VK. Facile fabrication of silver on magnetic nanocomposite (Fe3O4@Chitosan-14. AgNP nanocomposite) for catalytic reduction of anthropogenic pollutant and agricultural 14. pathogens. Int J Biol Macromol [Internet]. 2020;149:989–999.
Huang Y, Yang Y, Huan W, Yuan H, Wang L, Carlini R. Preparation of Magnetic Pearlescent Pigment . Mica / Fe 3 O 4 by Thermally Decomposing Ferric Formate Composite Containing Hydrazine. J Inorg 15. Organomet Polym Mater [Internet]. 2018;28(3):651–670.
Mehata MS. Green synthesis of silver nanoparticles using Kalanchoe pinnata leaves ( life plant ) and their antibacterial and photocatalytic activities. Chem Phys Lett [Internet]. 2021;778(April):138760.
Søltoft-jensen J, Hansen F. Biochemical Hurdles [Internet]. Emerging Technologies for Food 16. Processing: An Overview. Elsevier Ltd; 2005. 0–12 p.
López-De-Dicastillo C, Gómez-Estaca J, Catalá R, Gavara R, Hernández-Muñoz P. Active antioxidant . packaging films: Development and effect on lipid stability of brined sardines. Food Chem. 17. 2012;131(4):1376–1384.
Srikhao N, Kasemsiri P, Ounkaew A, Lorwanishpaisarn N, Okhawilai M, Pongsa U, et al. Bioactive Nanocomposite Film Based on Cassava Starch/Polyvinyl Alcohol Containing Green Synthesized Silver Nanoparticles. J Polym Environ [Internet]. 2021;29(2):672–684.
Ounkaew A, Kasemsiri P, Srichiangsa N, Hiziroglu S, Maraphum K, Posom J, et al. Green synthesis of nanosilver coating on paper for ripening delay of fruits under visible light. J Environ Chem Eng 22. [Internet]. 2021;9(2):105094.
Wang X, Han B, Yu RP, Li FC, Zhao ZY, Zhang QC, et al. Magnetic-responsive Fe3O4 nanoparticle 8. impregnated cellulose paper actuators. Extrem Mech Lett [Internet]. 2018;25:53–59.
Jung J, Kasi G, Seo J. Amini2016_Article_Silver-nanoparticle-impregnate. Int J Biol Macromol 24. [Internet]. 2018;112:530–536.
Amini E, Azadfallah M, Layeghi M, Talaei-Hassanloui R. Silver-nanoparticle-impregnated cellulose 5. nanofiber coating for packaging paper. Cellulose. 2016;23(1):557–570.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 KKU Research Journal (Graduate Studies)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.