An Analysis of Stopping Locations of Motorcycle Riders at Signalized Urban Intersection Approaches by Decision Tree Model


  • Thanapol Promraksa นักศึกษา หลักสูตรปรัชญาดุษฎีบัณฑิต สาขาวิชาวิศวกรรมโยธา คณะวิศวกรรมศาสตร์ มหาวิทยาลัยขอนแก่น
  • Thaned Satiennam ศาสตราจารย์ สาขาวิชาวิศวกรรมโยธา คณะวิศวกรรมศาสตร์ มหาวิทยาลัยขอนแก่น
  • Phongphan Tankasem ผู้ช่วยศาสตราจารย์ สาขาวิชาวิศวกรรมโยธา คณะวิศวกรรมศาสตร์ มหาวิทยาลัยมหาสารคาม
  • Wuttikrai Chaipanha ผู้ช่วยศาสตราจารย์ สาขาวิชาวิศวกรรมโยธา คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลอีสาน วิทยาเขตขอนแก่น
  • Trust Satiennam อาจารย์ สาขาวิชาวิศวกรรมโยธา คณะเทคโนโลยีอุตสาหกรรม มหาวิทยาลัยราชภัฏวไลยอลงกรณ์ในพระบรมราโชว์ปถัมภ์


Motorcycle rider, Stopping locations, Decision tree model


Appropriate stopping locations of motorcycles at signalized urban intersection approaches can decrease conflict between motorcycles and other vehicles. This study aimed to identify factors influencing stopping locations of motorcycle riders at signalized urban intersection approaches. This study observed stopping behavior of motorcycle riders at 24 signalized urban intersection approaches in Khon Kaen city by using Unmanned Aerial Vehicles. Data from 1,413 motorcycle riders were analyzed by a decision tree model to examine factors influencing stopping locations. The results showed that factors significantly influencing to stopping locations are peak period, motorcycle riders’ intending direction, type of motorcycle, a presence of larger vehicle in queue, motorcycle riders’ helmet wearing. The finding of this study can be recommendations for traffic management for safer motorcyclists on approaches of signalized urban intersections.


Tosi JD, Poó FM, Ledesma RD, Firsenko E. Safety of child passengers who ride to school on a motorcycle: An observational study in two Argentine cities. IATSS Res [Internet]. 2021 Jul;45(2): 176–181. Available from:

Irawan MZ. A joint choice decision model of intra-household interaction-based motorcycle mode and departure time in Yogyakarta, Indonesia. IOP Conf Ser Mater Sci Eng [Internet]. 2019 Oct 1;650(1):012042. Available from:

Abrari Vajari M, Aghabayk K, Sadeghian M, Shiwakoti N. A multinomial logit model of motorcycle crash severity at Australian intersections. J Safety Res. 2020;73:17–24.

Yao R, Zeng W, Chen Y, He Z. A deep learning framework for modelling left-turning vehicle behaviour considering diagonal-crossing motorcycle conflicts at mixed-flow intersections. Transp Res Part C Emerg Technol [Internet]. 2021 Nov;132:103415. Available from:

Ramlan R, Irawan MZ, Munawar A. Behavioral factors of motorcyclists in right-turn movements at unsignalized intersections: An insight from Yogyakarta, Indonesia. IATSS Res [Internet]. 2021 Apr;45(1):116–22. Available from:

Jantosut P, Satiennam W, Satiennam T, Jaensirisak S. Factors associated with the red-light running behavior characteristics of motorcyclists. IATSS Res [Internet]. 2021 Jul;45(2):251–7. Available from:

Promraksa T, Satiennam T, Satiennam W, Kaewwichian P, Kronprasert N. Factors Influencing Stopping Locations of Motorcycle Riders on Signalized Urban Intersection Approaches. Sustainability [Internet]. 2022 Nov 16;14(22):15236. Available from:

Van Schagen I, Sagberg F. The Potential Benefits of Naturalistic Driving for Road Safety Research: Theoretical and Empirical Considerations and Challenges for the Future. Procedia - Soc Behav Sci [Internet]. 2012;48:692–701. Available from:

Yamaguchi T. The need for building role models for motorcycle riders’ education in the kingdom of Cambodia. IATSS Res [Internet]. 2018 Dec;42(4):190–6. Available from:

Minh CC, Sano K, Matsumoto S. Maneuvers of motorcycles in queues at signalized intersections. J Adv Transp [Internet]. 2012 Jan;46(1):39–53. Available from:

Hajjej F, Alohali MA, Badr M, Rahman MA. A Comparison of Decision Tree Algorithms in the Assessment of Biomedical Data. Rokaya D, editor. Biomed Res Int [Internet]. 2022 Jul 7;2022:1–9. Available from:

Gunduz M, Al-Ajji I. Employment of CHAID and CRT decision tree algorithms to develop bid/no-bid decision-making models for contractors. Eng Constr Archit Manag [Internet]. 2021 Aug 12; Available from:

Anvari MB, Tavakoli Kashani A, Rabieyan R. Identifying the Most Important Factors in the At-Fault Probability of Motorcyclists by Data Mining, Based on Classification Tree Models. Int J Civ Eng [Internet]. 2017 Jun 4;15(4):653–62. Available from:

Althuwaynee OF, Pradhan B, Park H-J, Lee JH. A novel ensemble decision tree-based CHi-squared Automatic Interaction Detection (CHAID) and multivariate logistic regression models in landslide susceptibility mapping. Landslides [Internet]. 2014 Dec 24;11(6):1063–78. Available from:

Wang L, Chen F, Yin H. Detecting and tracking vehicles in traffic by unmanned aerial vehicles. Autom Constr [Internet]. 2016 Dec;72:294–308. Available from:

Khan M, Ectors W, Bellemans T, Janssens D, Wets G. Unmanned Aerial Vehicle-Based Traffic Analysis: A Case Study for Shockwave Identification and Flow Parameters Estimation at Signalized Intersections. Remote Sens [Internet]. 2018 Mar 14;10(3):458. Available from:

Freeman BS, Al Matawah JA, Najjar M Al, Gharabaghi B, Thé J. Vehicle stacking estimation at signalized intersections with unmanned aerial systems. Int J Transp Sci Technol [Internet]. 2019 Jun;8(2):231–49. Available from:

Champahom T, Jomnonkwao S, Chatpattananan V, Karoonsoontawong A, Ratanavaraha V. Analysis of Rear-End Crash on Thai Highway: Decision Tree Approach. J Adv Transp [Internet]. 2019 Nov 27;2019:1–13. Available from: