

การศึกษาผลผลกระทบจากการสั่นแบบอัลตราโซนิกต่อคุณสมบัติทางกลของงานเชื่อมระหว่างวัสดุ 25Cr-35Ni ไม่ผ่านการใช้งานกับ 25Cr-35Ni ผ่านการใช้งาน

The effect of Ultrasonic vibration on mechanical properties of welding between new 25Cr-35Ni and aged 25Cr-35Ni.

พลากร สมิตวิลัย^{1*} บวรวชุด พูปัตตัน²

^{1,2}ภาควิชาวิศวกรรมอุตสาหการ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี

กรุงเทพมหานคร 10140

E-mail: sa.palakorn@yahoo.com^{1*} bpoopat@yahoo.com²

Palakorn Satitwilai^{1*} Bovornchok Poopat²

^{1,2}Department of Production Engineering, Faculty of Engineering,

King Mongkut's University of Technology Thonburi, Bangkok 10140

E-mail: sa.palakorn@yahoo.com^{1*} bpoopat@yahoo.com²

บทคัดย่อ

การเชื่อมชื่อมวัสดุทุนความร้อนที่อุณหภูมิสูงบางครั้งจำเป็นต้องมีการเชื่อมต่อระหว่างวัสดุที่ไม่ผ่านการใช้งานกับวัสดุที่ผ่านการใช้งานซึ่งเกิดการเสื่อมสภาพจากการใช้งานที่อุณหภูมิสูงมาเป็นเวลานาน จากการศึกษาพบว่าได้มีการประยุกต์นำการสั่นแบบอัลตราโซนิกมาใช้สำหรับการปรับปรุงเนื้อเชื่อมระหว่างการเชื่อมด้วยกระบวนการปกติซึ่งสามารถช่วยในการปรับปรุงคุณสมบัติทางกลของการเชื่อมวัสดุได้ในหลายชนิด แต่อย่างไรก็ตามในการศึกษาทั้งหมดได้มีการเพิ่มประสิทธิภาพวัสดุที่ไม่ถูกใช้งานมา ก่อน ดังนั้นจุดประสงค์ของการศึกษาเพื่อที่จะศึกษาทำการสั่นแบบอัลตราโซนิกมาปรับปรุงคุณสมบัติทางกลของการเชื่อมระหว่างวัสดุ 25Cr-35Ni ที่ไม่ผ่านการใช้งานกับ 25Cr-35Ni ที่ผ่านการใช้งาน กระบวนการเชื่อมแก๊สหั้งสูญ (GTAW) และผลของการเชื่อมที่เป็นวัสดุชนิดเดียวกับชิ้นงานได้ถูกนำมาใช้ในการศึกษา การสั่นแบบอัลตราโซนิกที่ใช้ความถี่ 20 kHz ได้ถูกนำมาใช้กับชิ้นงานเชื่อมระหว่างการเย็บตัวของปืนหยอดม การทดสอบแรงดึง การทดสอบความเย็บจุลภาคและการวิเคราะห์โครงสร้างทางโลหะวิทยา ได้ถูกนำมาเปรียบเทียบผลของชิ้นงานที่ใช้และไม่ใช้การสั่นแบบอัลตราโซนิกในการปรับปรุงคุณสมบัติ ผลของการทดสอบปรากฏว่าโครงสร้างทางจุลภาคมีการเปลี่ยนแปลงไปอย่างเห็นได้ชัดซึ่งมีการตัดเรียงแบบมีหลักทิศทางและขนาดเดียวกันที่ลดลงแต่ผลการทดสอบคุณสมบัติทางกลมีผลต่างในชิ้นงานที่มีการสั่นแบบอัลตราโซนิกนีองจากการตกหลักของโครงเมียวมาร์บีนที่เปลี่ยนแปลง

คำหลัก 25Cr-35Ni การสั่นแบบอัลตราโซนิก เนื้อเชื่อม คุณสมบัติทางกล

Abstract

Welding repair of heat resistant steels has sometimes involved in joining of new materials and in-service materials which might be degraded from its long high temperature service. Ultrasonic vibration applied to weld metal during welding has been known that it can help improve mechanical properties of certain type of weld metal. However, most of the studies focused on welding of new materials. The objective of this work is to study the effect of ultrasonic vibration on mechanical properties of welding between new 25Cr-35Ni and aged 25Cr-35Ni heat resistant steel. Gas Tungsten Arc Welding (GTAW) with matching filler metal (25Cr-35Ni) was used in this study. Ultrasonic vibration with a frequency of 20 kHz was applied to the samples during welding pool solidification. Tensile strength, micro hardness, and microstructure

analysis of weld with and without assisting ultrasonic vibration were compared. The results showed that ultrasonic vibration applied during solidification promoted grain refinement but mechanical properties of weld with assisting ultrasonic vibration could not be improved due to redistribution of rounded chromium carbide precipitation in weld metal.

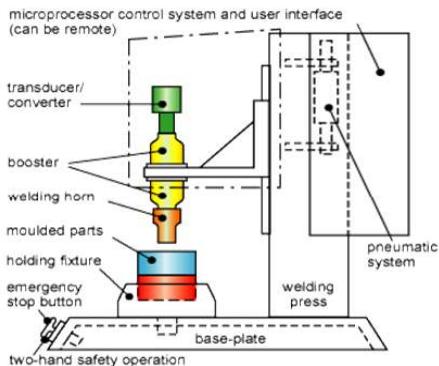
Keywords: 25Cr-35Ni, Ultrasonic vibration, Weld metal, Mechanical properties

1. บทนำ

ปัจจุบันในชีวิตประจำวันมีการใช้งานวัสดุที่ผลิตมาจากการรีดอุตสาหกรรมบีโตรเมทแทบทั้งสิ้นไม่ว่าจะเป็นวัสดุก่อสร้างพลาสติก กลุ่มอุตสาหกรรมสารเคมีเพื่อการอุตสาหกรรม เป็นต้นจากความต้องการดังกล่าวจึงเป็นที่มาของการเกิดการขยายกำลังการผลิต โดยหัวใจของการผลิตอุตสาหกรรมบีโตรเมทนั้น จะต้องมีอุปกรณ์ที่เรียกว่า Cracking Furnace ซึ่งเป็นอุปกรณ์การผลิตบีโตรเมทนั้นจะขาดไม่ได้ซึ่งหลังจากมีการพัฒนาอุปกรณ์ Cracking Furnace ที่ให้กำลังการผลิตที่สูงกว่าต้องนำมารีซึ่งชิ้นส่วนภายในที่ต้องมีความคงทนเหมาะสมกับการอุปกรณ์ Cracking Furnace นั้นๆและชิ้นส่วนภายในที่ขาดไม่ได้ของ Cracking Furnace คือ Heater Tube ที่ทำจากวัสดุที่มีความร้อนสูงซึ่งมักผลิตมาจากวัสดุจัมพ์ Nickel Based Alloy เพราะใช้ในการทนการเกิดการคีบ (Creep) สำหรับการใช้กับหุ่มยนต์เป็นเวลานานโดย Heater Tube นี้จะมีอายุการใช้งานและจำเป็นต้องเปลี่ยนเมื่อถึงอายุที่ผู้ผลิตแนะนำ หรืออาจจะจำเป็นต้องมีการเปลี่ยนเนื่องจากเกิดความเสียหายบางส่วน เช่น การเกิดการบวมเฉพาะจุด (Bulging) เนื่องจากเกิดการรีซูโรเชชันขึ้นภายใน Tube จนกลายเป็นจุดอ่อนสำหรับการเชื่อมซึ่งนี้จะต้องทำการบวมในข้อจำกัดที่จะต้องนำ Tube ใหม่มาต่อ กับ Tube ที่ใช้งานมาแล้วซึ่งมีปริมาณการเกิดการรีซูโรเชชันที่เกิดขึ้นมาแล้วและเมื่อทำการเชื่อมซึ่งในสภาวะดังกล่าว ดังนั้นจึงได้มีความสนใจในการหากระบวนการซ่อมแซมในการเชื่อมซึ่งมีในกระบวนการรีบบาร์บีโตรเมท คุณสมบัติของเนื้อเชื่อมนี้ได้โดยได้มีการศึกษาการใช้การสั่นแบบอัลตราโซนิกมาช่วยซึ่งเป็นการเพิ่มพลังงานที่ได้จากแหล่งพลังงานภายนอกเพิ่มเติมจากแรงกระแทกที่เกิดจากกระบวนการเชื่อมเองเพียงอย่างเดียว โดยทำการศึกษาการจัดเรียงตัวของโครงสร้างทางจุลภาคหลังการใช้งานการสั่นแบบอัลตราโซนิกซึ่งอาจนำมาซึ่งเทคนิคการเชื่อมซึ่งแบบใหม่ที่ทำให้เกิด

การลดเวลาและค่าใช้จ่ายที่มาจากการเชื่อมซึ่งมีประโยชน์ต่อตัวนี้ ในการวิจัยที่ผ่านมา R.Dehmolaei, M.shamanian และ A. Kermanpur [1] ได้ทำการศึกษาและประยุกต์ใช้พลังงานการสั่นที่เกิดจากคลื่นแม่เหล็กไฟฟ้ากับปอหลอมน้ำโลหะของชิ้นงานเชื่อมวัสดุ 25Cr – 35Ni กับวัสดุ Alloy 800 ซึ่งการทดลองได้พิจารณาการเชื่อมโดยใช้ลวดเชื่อมเป็นประเภท Alloy 800 และใช้กระบวนการเชื่อมแบบ GTAW ที่ทำการเชื่อมลงบนชิ้นงานที่มีการเปลี่ยนเที่ยบระหว่างการให้และไม่ให้พลังงานจากการสั่นด้วยคลื่นแม่เหล็กไฟฟ้า หลังจากการให้พลังงานการสั่นแล้วจึงมีการสังเกตที่บริเวณที่ไม่เกิดการหลอมระหว่างบริเวณจุดต่อสัมผัสของเนื้อโลหะวัสดุ 25Cr – 35Ni กับเนื้อเชื่อมที่ถูกป้อนเดิมจากตลาดเชื่อม จากการศึกษาพบว่าหลังจากการให้พลังงานการสั่นด้วยคลื่นแม่เหล็กไฟฟ้ามีผลทำให้บริเวณที่ไม่เกิดการหลอมสมควรห่วงดูเชื่อมกับชิ้นงานหรือที่เรียกว่า Unmixed Zone นั้นลดลงอีกทั้งการให้พลังงานการสั่นที่ยังสูงขึ้นจะสามารถช่วยกำจัดบริเวณ Unmixed zone ได้มากขึ้น โดยปรากฏการณ์ดังกล่าวเกิดจาก การที่พลังงานการสั่นด้วยคลื่นแม่เหล็กไฟฟ้าไปทำ การกระตุ้นและกวนให้น้ำโลหะเกิดการไหลวนที่บริเวณเนื้อเชื่อมระหว่างตลาดเชื่อมป้อนเดิมกับเนื้อโลหะฐานจึงทำให้บริเวณที่ Unmixed zone ถูกกำจัดไปที่บริเวณรอยต่อของโลหะฐานและวัสดุป้อนเดิม Y.Cui, C.L. Xu และ Q.Han [2] ได้มีการศึกษาเกี่ยวกับการนำพลังงานการสั่นแบบอัลตราโซนิกมาใช้ในการเชื่อมวัสดุประเภท Super austenitic stainless โดยกระบวนการเชื่อมที่นำมาใช้คือ Shielded metal arc welding (SMAW) โดยจุดประสงค์ที่ทำการวิจัยคือศึกษาผลกระทบของพลังงานการสั่นแบบอัลตราโซนิกว่าสามารถลดการเกิด Unmixed zone ของวัสดุดังกล่าวได้หรือไม่ โดยการทดลองได้มีการนำชิ้นงานมาให้พลังงานการสั่นจากด้านล่างและทำการเชื่อมบัน

แผ่น Plate ที่ด้านบน หลังจากการเชื่อมทดสอบแล้ว ได้มีการวิเคราะห์โดยการใช้การพิจารณาทาง โครงสร้างจุลภาครวมไปถึงพิจารณาชาตุประกอบ ต่างๆด้วย Electron dispersive spectrometry (EDS) เพื่อใช้ในการพิจารณาถึงบริเวณ Unmixed zone ซึ่ง ขึ้นงานที่ทดสอบจะมีห้องแบบให้และไม่ให้พลังงานการ สั่นจากคลื่นอัลตราโซนิกและประกอบกับผลการวัด ปริมาณธาตุค่ารับอนุสมพเพื่อใช้ในการยืนยันผลของ บริเวณ Unmixed zone จากผลการทดสอบทั้งหมด พบว่าการใช้พลังงานการสั่นแบบอัลตราโซนิกมาช่วย ในการลดและกำจัดบริเวณ Unmixed zone นั้น สามารถทำได้และถ้าปริมาณความเข้มของคลื่นอัล ตราโซนิกมากขึ้นก็ช่วยทำให้การกำจัดสามารถทำได้ ดีมากยิ่งขึ้นตามไปด้วย T.Methong และ B.Poopat [3] ได้ทำการศึกษาเกี่ยวกับผลผลกระทบของการสั่น แบบอัลตราโซนิกต่อคุณสมบัติของแนวเชื่อม จุดประสงค์หลักคือการนำการสั่นแบบอัลตราโซนิกเข้า ไปทำการร่วนหรือสันทำให้บ่อหลอมเกิดการเคลื่อน ตัวแบบมีศักดิ์ทางที่ไม่คงที่ซึ่งเป็นการปรับเปลี่ยนการ แข็งด้วยของน้ำโลหะในบ่อหลอมที่ทำให้เกิดการ เปลี่ยนแปลงโครงสร้างและคุณสมบัติ โดยวัสดุที่ นำมาใช้ในการศึกษานี้คือเหล็กกล้าคาร์บอนและลวด เชื่อมที่ใช้คือ ER-70S-G ที่มีกระบวนการเชื่อมชนิด แก๊สทั้งสี่เดน (GTAW) โดยการทดลองแบ่งคับให้มีการ เย็นตัวในแบบหล่อเย็นทองแดงที่ถูกให้การสั่นแบบอัล ตราโซนิกที่ 20 KHz ในขั้นตอนการเย็นตัวของบ่อ หลอม การวิเคราะห์โครงสร้างทางจุลภาคและ วิเคราะห์คุณสมบัติทางกลได้ถูกนำมาใช้ในการศึกษา เปรียบผลการทดลองที่มีการสั่นและไม่มีการสั่น แบบอัลตราโซนิกที่ส่งผลกระทบกับบ่อหลอม จากผล การทดสอบได้พบว่าเมื่อมีการสั่นแบบอัลตราโซนิก เข้ามานั้นบ่อหลอมจะทำให้เกิดการร่อนที่ละเอียดมากขึ้น และผลกระทบทดสอบคุณสมบัติทางกลก็ให้ค่าที่สูงขึ้น เช่นกัน ซึ่งจะเห็นได้ว่ามีการใช้พลังผลกระทบการสั่นแบบอัลตรา โซนิกมาช่วยในการปรับปรุงคุณสมบัติของเนื้อเชื่อม เพิ่มเติมระหว่างการใช้กระบวนการเชื่อมปกติอย่าง แพร่หลายแต่อย่างไรก็ตามยังไม่มีการประยุกต์ใช้กับ วัสดุที่ผ่านการใช้งานมาแล้วและเกิดการสูญเสีย คุณสมบัติบางประการมากทดลองใช้วิธีการสั่นแบบอัล ตราโซนิกปรับปรุงคุณสมบัติ ซึ่งในการวิจัยนี้จึงได้มี การศึกษาขึ้นงานที่ผ่านการใช้งานมาแล้วเชื่อมต่อกับ


ขึ้นงานที่ไม่ผ่านการใช้งานโดยใช้ตัวแปรการเชื่อมที่ เหมาะสมมาทำการทดลองและได้มีการทดสอบผลการ ทดลองโดยการศึกษาโครงสร้างทางจุลภาคและการ ทดสอบคุณสมบัติทางกล

2. ทฤษฎี

2.1 เครื่องกำเนิดการสั่นแบบอัลตราโซนิก [4]

การใช้หลักการอัลตราโซนิกเป็นการใช้หลักการสั่น ทางกล (Mechanical vibration) ที่ความถี่สูง ในระดับ 10-70 KHz และแอมป์ลิจูดในการสั่นอยู่ที่ 10-250 μm ให้กับขั้นงานที่จะรับพลังงานในการส่งผ่านจะถูกแบ่ง เป็นพลังงานทางกลและพลังงานความร้อนทำให้ ขึ้นงานเกิดการสั่นสะเทือนหรือเกิดความร้อนขึ้นซึ่ง ความร้อนที่เกิดขึ้นสามารถนำมาทำให้เกิดการหลอม ละลายได้เช่นกัน โดยอุปกรณ์ของเครื่องอัลตราโซนิก ประกอบไปด้วย

1. แหล่งจ่ายไฟ (Power supply) ทำหน้าที่ในการ แบ่งความถี่ที่ 50-60 Hz ไปเป็นความถี่อัลตราโซนิก ที่ความต่างศักย์ที่สูง โดยทั่วไปพลังงานจะอยู่ในช่วง 100-6000 Watt
2. ตัวแปลงสัญญาณ (Transducer) มีหน้าที่ในการ แปลงสัญญาณทางไฟฟ้าเป็นพลังงานทางกลตัวแปลง สัญญาณประกอบไปด้วยชุดของ Piezoelectric ceramic ที่เกิดขบยดตัวและเกิดการสั่นขึ้นในช่วง 15-70 Hz
3. บูสเตอร์ (Booster) มีหน้าที่ในการแปลงแอมป์ลิจูด ในการสั่นแบบอัลตราโซนิกที่ได้รับจากด้านบนตัว แปลงสัญญาณและส่งผ่านไปยังหัวเชื่อมการแปลง แอมป์ลิจูดในการสั่นของบูสเตอร์อาศัยหลักการความ แตกต่างของขนาดห้องด้านของบูสเตอร์
4. หัวเชื่อม (Horn) ทำหน้าที่ส่งผ่านคลื่นการสั่น แบบอัลตราโซนิกจากบูสเตอร์ไปสู่ขั้นงาน การส่งผ่าน การสั่นของหัวเชื่อมเกิดจากการสั่นสะเทือนของ อนุภาคของหัวเชื่อมในทิศทางตามแนวยาวไปกับ ทิศทางของหัวเชื่อม

รูปที่ 1 ลักษณะเครื่องกำเนิดการสั่นแบบอัตโนมัติ [4]

2.2 การสั่นสภาพสั่นจากการนูโรเชชั่น [5]

การนูโรเชชั่นคือการเกิดปริมาณขนาดการนูนแพร์เช้าสู่สัตว์ที่อุณหภูมิสูงขนาดที่วัสดุถูกนำไปใช้งานที่อุณหภูมิสูงและมีสภาพแวดล้อมที่มีปริมาณของชาดุ คาร์บอนเพสอยู่สัตว์ที่มีผลกระทบต่อการเกิดการนูโรเชชั่นคือ Carbon steel, low alloy steel, Stainless steel Grade 300 and 400 รวมไปถึงกลุ่ม Nickel Based alloy และ HK/HP alloys

1. ปัจจัยและลักษณะของการนูโรเชชั่น

1.1 สภาพแวดล้อมที่มีความเสี่ยง บริเวณที่มีสภาพแวดล้อมที่มีการบอนเพสรวมไปถึงสัตว์มีปริมาณการบอนที่สูงอุณหภูมิที่ใช้งานมากกว่า 593 องศาเซลเซียสที่เป็นกลุ่มวัสดุที่ซึมความเสี่ยงต่อการเกิด

1.2 สภาพแวดล้อมที่มักพบ เช่น กระบวนการผลิต Gas ,hydrocarbon ,Coke ,Methane ,Ethane ช่วงแรก คาร์บอนจะแพร์เช้าไปในวัสดุได้รวดเร็วและสร้างชั้นผิวของคาร์บอนในเนื้อโลหะขึ้น การเกิดการนูโรเชชั่น ทำให้วัสดุมีความแข็งและเปราะ และอาจเกิดการะเทาะออกเมื่อเย็นตัวลง ซึ่งการนูโรเชชั่นจะทำให้เกิดการหัก Creep ที่อุณหภูมิสูงได้ต่ำลงและมีความสามารถในการรีซอมที่ต่ำลงรวมไปถึงการป้องกันการกัดกร่อนที่ต่ำลงอีกด้วย

2. อุปกรณ์ที่เสี่ยงต่อการเกิด

2.1 อุปกรณ์เจ้า火 Fire Heater

2.2 อุปกรณ์ที่เกิด Coke เกาะที่ผิวของวัสดุจะทำให้เกิด Carburization ได้เมื่อใช้งานที่อุณหภูมิสูงกว่าปกติ

2.3 การนูโรเชชั่นอาจถูกพบใน Heater tube ได้

เนื่องจากการกระบวนการทำ Decoking process

2.4 คาร์บูโรเชชั่นมักถูกพบในอุปกรณ์ผลิต Ethylene และ Steam reformer มากโดยมีผลกระทบจากช่วงการ Decoking

3. คุณลักษณะของการนูโรเชชั่น

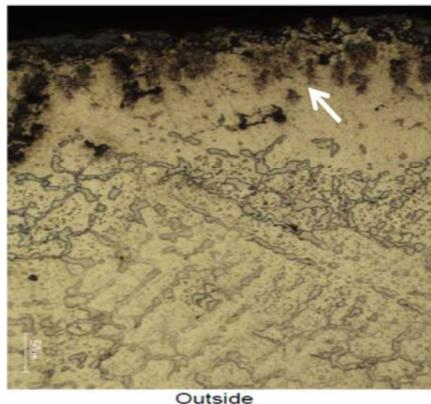
3.1 ความหนาของการนูโรเชชั่นสามารถวัดได้จากการทำโครงสร้างทางจุลภาค

3.2 คาร์บูโรเชชั่นจะทำให้เกิดความแข็งที่เพิ่มขึ้นแต่ความเหนียวลดลง

3.3 สามารถทำให้วัสดุบางประเภทเป็น Ferromagnetic ได้

3.4 เมื่อเกิดการนูโรเชชั่นมักทำให้เกิดการแตกหลักอื่นได้

3.5 คาร์บูโรเชชั่นจะทำให้มีปริมาณของวัสดุเพิ่มมากขึ้น


4. การป้องกันและข้อแก้ไข

4.1 ทำการเลือกชาตผลที่ทนต่อการเกิดการนูโรเชชั่นโดยอาจมีผิวสัตว์ที่สามารถกระตุ้นให้เกิด Oxide หรือ Sulfide ได้

4.2 ทำการลดปริมาณการบอนในสภาพแวดล้อมใช้งานรวมถึงลดอุณหภูมิในการใช้งานลง

รูปที่ 2 ขั้นของการนูโรเชชั่นจากด้านในหลังกัดกรด [5]

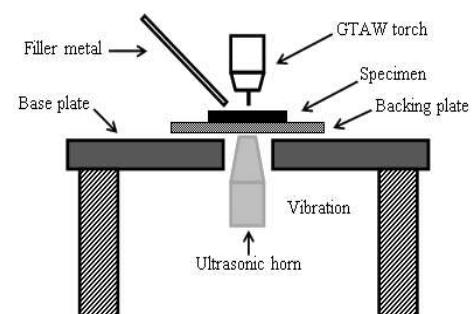
รูปที่ 3 ขั้นของความรุนแรงซึ่งจากกล้องจุลทรรศน์[5]

3. วิธีการทดลอง

3.1 วัสดุที่ใช้ในการทดลอง

วัสดุ 25Cr - 35Ni% มีข้อห้องการค้าว่า KHR35CT เป็นวัสดุที่จัดอยู่ในกลุ่ม High Pressure Heat resistance Alloys(HP alloys)ซึ่งมีโครงสร้างเป็นแบบอสเทนเนติกเนื่องจากมีธาตุผสมจำพวก นิเกล โครเมียมและนาโนเบียมที่ปริมาณค่อนข้างสูงเพื่อใช้ในการทนความร้อนสูงและป้องกันหรือลดอัตราการเกิดการคีบ(Creep)ที่อุณหภูมิสูง โดยมีการนิยมนำมาใช้ประโยชน์ในกระบวนการการผลิตจำพวก Reformer furnace เช่น ethane feed naphtha และจำพวก Methanol feed เป็นหลัก ในการกระบวนการผลิต Heater Tube ชนิดนี้ได้มีการใช้วิธีการหล่อเหลว(Centrifugal Casting)มาใช้ในการขึ้นรูปเป็น Tube เนื่องจากการขึ้นรูปแบบปกติจะทำได้ยากเนื่องจากมีปริมาณธาตุผสมที่สูง โดยปริมาณธาตุผสมเป็นไปตามตารางที่ 1

ตารางที่ 1 ปริมาณธาตุผสม 25Cr - 35Ni[w%]


ชนิด	C	Mn	Si	Cr	Ni
ปริมาณ	0.45-0.55	2.0 max	1.5 max	24-27	33-37
ชนิด	Nb	Ti	P	S	Mo
ปริมาณ	0.4-1.0	Add.	0.03 max	0.03 max	0.5 max

3.2 การเตรียมชิ้นงานทดลอง

ในการเข้มทดสอบสำหรับทำการทดลองนั้นได้มีการ

นำวัสดุประเภท KHR 35CT ที่มีลักษณะเป็นท่อขนาดเส้นผ่าศูนย์กลาง 4 นิ้วความหนา 0.5 นิ้ว มาทำการตัดให้เป็นชิ้นงานตามยาวของแนวท่อขนาด กว้าง 1.5 นิ้ว ยาว 5 นิ้วโดยทำการตัดตามแนวยาวของท่อจึงทำให้ส่วนโถงมีขนาดไม่มาก โดยประกอบด้วยชิ้นงานที่ได้ผ่านการใช้งานมาแล้วกับชิ้นงานใหม่ที่ไม่ผ่านการใช้งานเพื่อเชื่อมต่อเข้าด้วยกันในการทดสอบโดยมีขั้นตอนการเชื่อมคือ

1. นำชิ้นงานที่ได้ผ่านการตัดมาแล้วด้วยเครื่องตัดใบเลื่อยมาทำการบากร่องเป็นรูปตัววีให้ได้ลุ่มที่ 70 องศา
2. ในชิ้นงานที่ไม่ต้องการใช้อัลตราโซนิกให้กับการเชื่อมต่อด้วยกระบวนการ GTAW โดยใช้กระแสที่ 120A ที่ปริมาณตำแหน่งแนวเชื่อมแนวแรก (Root) และที่ 140A ที่ตำแหน่งชั้นของแนวเชื่อมต่อมาโดยทำการเชื่อมต่อเป็นจำนวน 5 ชิ้นทดสอบใช้แก๊สอาร์กอนรองหลังแนวเชื่อม
3. สำหรับชิ้นงานที่ต้องใช้คลิ่นอัลตราโซนิกให้ทำการติดตั้งชิ้นงานกับเครื่องสั่นด้วยอัลตราโซนิกและทำการเชื่อมด้วยแทร์เพรเดียกับข้อสองเพียงแต่เบิดเครื่องสั่นไปพร้อมกันเพื่อที่จะศึกษาผลกระบวนการสั่นต่อแนวเชื่อมซ้อม โดยทำการเชื่อมเป็นจำนวน 5 ชิ้นทดสอบใช้แก๊สอาร์กอนรองหลังแนวเชื่อม
4. ตรวจสอบแนวเชื่อมหลังการเชื่อมด้วยวิธีการพินิจ(Visual Test) เพื่อดูร่องรอยกพร่องที่อาจเกิดขึ้นกับชิ้นงาน

รูปที่ 4 ภาพจำลองการทดลองเชื่อมแบบมีการสั่นแบบอัลตราโซนิก

3.3 การทดสอบ

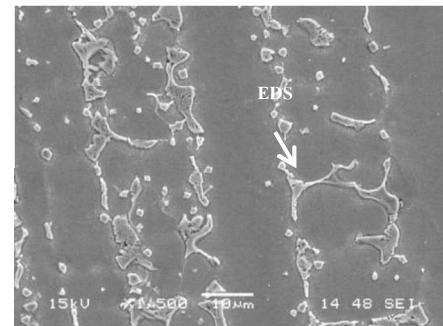
ในการทดสอบชิ้นงานหลังการเชื่อมของชิ้นงานที่มีการสั่นแบบอัลตราโซนิกเปลี่ยนเทียบผลกับชิ้นงานที่ไม่ได้รับการสั่นแบบอัลตราโซนิกของวัสดุ 25Cr-35Ni

เพื่อใช้ในการวิเคราะห์ถึงผลกระทบที่เกิดขึ้นต่อปัจจัยระหว่างการเย็บตัวของบ่อหลอมดังกล่าว การวิเคราะห์โครงสร้างทางจุลภาคได้ถูกนำมาใช้ในการเปรียบเทียบของชิ้นงานที่ได้รับการสั่นและไม่ได้รับการสั่นแบบอัลตราโซนิกโดยชิ้นงานได้ถูกทำการเตรียมและกัดกรด ซึ่งกรดที่ใช้ในการทดสอบนี้คือ $30\% \text{H}_2\text{O}_2 + \text{HCl} + \text{H}_2\text{O}$ ซึ่งสามารถกัดกรดกับวัสดุชนิด $25\text{Cr}-35\text{Ni}$ ได้ดีอนข้างหน้าสม หลังจากการกัดกรดชิ้นงานได้ทำการวิเคราะห์จุลภาคและการใช้ Scanning electron microscope (SEM) และ Energy dispersive spectroscopy (EDS)

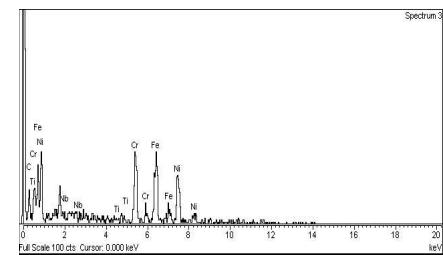
การทดสอบคุณสมบัติทางกลของชิ้นงานที่ได้รับผลกระทบจากการสั่นแบบอัลตราโซนิกและกับชิ้นงานที่ไม่ได้รับผลกระทบจากการสั่นแบบอัลตราโซนิก ได้เปรียบเทียบโดยการทดสอบแรงดึงและการทดสอบค่าความแข็งระดับจุลภาคเพื่อนำผลที่ได้มาพิจารณาเปรียบเทียบผลกระทบที่เกิดขึ้น ซึ่งการทดสอบแรงดึงได้มีการใช้การเตรียมชิ้นงานพิเศษคือ Double reduce tensile เพราะชิ้นงานได้ถูกตัดมาจากชิ้นส่วนที่เป็นท่อตั้งน้ำการที่จะบังคับให้ขาดจะต้องทำ Double reduce tensile ความกว้างที่บริเวณแนวเชื่อมให้เหลือ 10 มม. จาก 19 มม. เป็นอย่างละ 4 ชิ้นดังรูปที่ 5 และการทดสอบค่าความแข็งที่ใช้ในการทดสอบการทดสอบนี้ได้มีการนำการวัดค่าความแข็งระดับจุลภาค (Vickers's hardness) ที่ใช้แรงกด 100 gmf

รูปที่ 5 ลักษณะชิ้นงานเชื่อมและการทำ Reduce tensile test

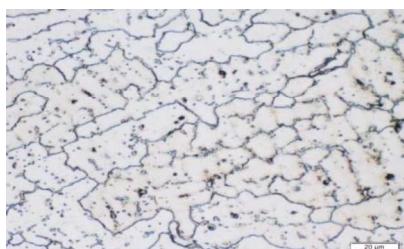
4. ผลการทดลอง

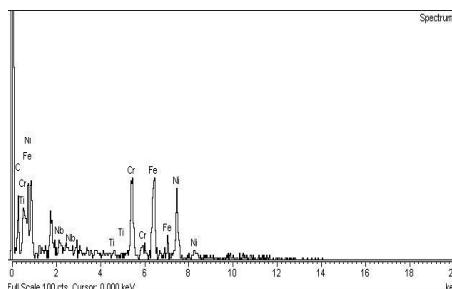

4.1 การวิเคราะห์โครงสร้างทางจุลภาค

ในการวิเคราะห์โครงสร้างทางจุลภาคของการทดสอบพบว่าดังรูปที่ 5 เป็นรูปโครงสร้างทางจุลภาคของชิ้นงานที่ไม่ได้รับผลกระทบจากการสั่นแบบอัลตราโซนิกที่มีกำลังขยาย 500 เท่าจะเห็นได้ว่าการแข็งตัวของน้ำโลหะและมีการเกิดการแตกผลึกของโครงเมี่ยมcarbide

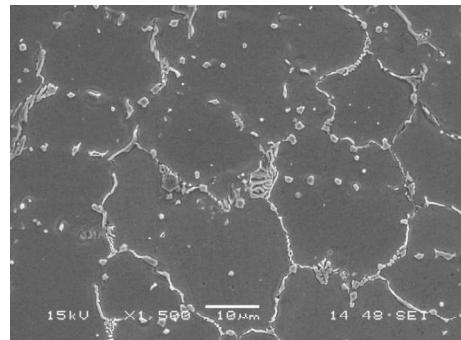

เป็นไปในรูปแบบที่เป็นทิศทางเดียวกัน โดยจะพบว่าส่วนบริเวณพื้นของชิ้นงานมีโครงสร้างเป็นอสังกะไนต์เป็นหลักและบริเวณของขอบเกรนพบการแตกผลึกของโครงเมี่ยมcarbide มากและเป็นชั้นหนารวมตัวกันที่มีการแข็งตัวไปในแนวเดียวกันคือบริเวณเข้าสู่ศูนย์กลางของบ่อหลอม

รูปที่ 6 โครงสร้างจุลภาคชิ้นงานที่ไม่มีการสั่นแบบอัลตราโซนิก กำลังขยาย 500 เท่า


รูปที่ 7 ภาพ SEM ชิ้นงานที่ไม่มีการสั่นแบบอัลตราโซนิก กำลังขยาย 1500 เท่า


รูปที่ 8 ภาพ EDS บริเวณพื้นของโครงสร้างชิ้นงานที่ไม่มีการสั่นแบบอัลตราโซนิก

และเมื่อทำการพิจารณาด้วย SEM ดังรูปที่ 7 ซึ่งเป็นการใช้กำลังขยายที่สูงขึ้นคือที่ 1500 เท่าจะเห็นได้ชัดว่าการแข็งตัวของน้ำโลหะมีทิศทางไปในแนวทาง


เดียวกันอย่างชัดเจนอีกทั้งพบว่าที่พื้นของชิ้นงานมีโครงสร้างหลักเป็นอสเทไนต์ที่มีการตกผลึกของโครงเมียมคาร์บไบด์ที่ขอบเกรนอย่างชัดเจนจากผลทดสอบด้วย EDS ในรูปที่ 8 ที่พบว่ามีปริมาณของนิกเกิลต่อกันข้างสูง โดยการตกผลึกที่พบรากการทดสอบมีลักษณะรวมตัวกันเป็นกลุ่มไม่กระจายเข้าสู่เนื้อเกรน แต่ในขณะที่มีการพิจารณาวิเคราะห์โครงสร้างทางจุลภาคในรูปที่ 9 ซึ่งเป็นชิ้นงานที่ได้รับผลกระทบจากการสั่นแบบอัลตราโซนิกระหว่างการเย็บตัวของบ่อหลอมมีกำลังขยาย 500 เท่า พบว่าลักษณะของการแข็งตัวของน้ำ้โลหะมีทิศทางที่ไม่แน่นอนและขนาดของเกรนที่เกิดขึ้นเล็กลงอย่างเห็นได้ชัดเจนเมื่อเปรียบเทียบกับกรณีที่ชิ้นงานไม่มีผลกระทบจากการสั่นแบบอัลตราโซนิกและเมื่อทำการวิเคราะห์ด้วย SEM ใน


รูปที่ 9 โครงสร้างจุลภาคชิ้นงานที่มีการสั่นแบบอัลตราโซนิกกำลังขยาย 500 เท่า

รูปที่ 11 ภาพ EDS บริเวณพื้นของโครงสร้างชิ้นงานที่มีการสั่นแบบอัลตราโซนิก

รูปที่ 10 ภาพ SEM ชิ้นงานที่มีการสั่นแบบอัลตราโซนิกกำลังขยาย 1500 เท่า

รูปที่ 12 ตำแหน่งการวัดค่าความแข็งระดับจุลภาค

ที่ 10 ที่มีกำลังขยาย 1500 เท่าพบว่าบริเวณพื้นของชิ้นงานมีโครงสร้างของอสเทไนต์ที่มีการตกผลึกของโครงเมียมคาร์บได้ขนาดเล็กและค่อนข้างกਮตากผลึกกระจายทั่วชิ้นงานจากผลของ EDS ดังรูปที่ 11 ที่พบปริมาณนิกเกิลสูง ซึ่งขนาดของเกรนที่เกิดขึ้นมีขนาดที่เล็กลงจึงพบว่าการตกผลึกของโครงเมียมคาร์บได้ที่ขอบเกรนมีขนาดที่ลดลงเมื่อเปรียบเทียบกับชิ้นงานที่ไม่มีผลกระทบจากการสั่นแบบอัลตราโซนิกซึ่งขนาดที่ลดลงเนื่องมาจากการที่ปริมาณโครงเมียมคาร์บได้ตกผลึกเข้าไปในเนื้อเกรนมากขึ้นและปริมาณของเกรนที่สูงขึ้นแต่ในกรณีของชิ้นงานที่ไม่ได้รับผลกระทบจากการสั่นแบบอัลตราโซนิกมีการตกผลึกในเนื้อเกรนน้อยจึงทำให้เกิดการตกผลึกที่ขอบเกรนจำนวนมาก

4.2 การทดสอบค่าความแข็งจุลภาค

จากการทดสอบค่าความแข็งจุลภาคที่บริเวณเนื้อเชื่อมหลังการเย็บตัวโดยได้มีการกำหนดจุดการทดสอบทั้งหมด 9 จุดแบ่งเป็นการทดสอบแบบแนวตั้งจำนวน 5 จุดและแนวนอนจำนวน 4 จุดดังรูปที่ 12 เพื่อเปรียบเทียบผลกระทบการเย็บตัวเนื่องจากวัสดุมี

ส่วนผสมที่แตกต่างกันเนื่องจากขั้นงานวิถีการใช้งาน และเสื่อมสภาพบางส่วน ผลการทดสอบดังรูปที่ 13 พบว่าชิ้นงานที่ไม่ได้รับผลกระทบการสั่นแบบอัลตราโซนิกมีค่าความแข็งเฉลี่ยในแนวตั้งเท่ากับ 13.40 HV และค่าความแข็งเฉลี่ยในแนวนอนเท่ากับ 283.10 HV ค่าเบี่ยงเบนเท่ากับ 10.70 HV และค่าความแข็งเฉลี่ยในแนวนอนเท่ากับ 286.93 HV ค่าเบี่ยงเบนเท่ากับ 5.63 HV ส่วนชิ้นงานที่ได้รับผลกระทบการสั่นแบบอัล

ตราโซนิกมีค่าความแข็งเฉลี่ยในแนวตั้งเท่ากับ 255.72 HV ค่าความเบี่ยงเบนเท่ากับ 10.20 HV และค่าความแข็งเฉลี่ยในแนวนอนเท่ากับ 243.93 HV ค่าความเบี่ยงเบนเท่ากับ 4.86 HV ซึ่งเห็นได้ว่าผลกระทบวัดค่าความแข็งของแนวตั้งและแนวนอนมีแนวโน้มไปในทิศทางเดียวกันและค่าไกลส์คีียงกัน แต่ถ้ามีเปรียบเทียบระหว่างชิ้นงานที่ได้รับและ

ตารางที่ 2 ค่าเฉลี่ยผลกระทบการทดสอบแรงดึง

Specimen	UTS[Mpa]	Gauge length[l_0]	Length after reactivation[l_1]	Elongation[%]
Without ultrasonic vibration	468.37	11.40	11.75	3.07
With ultrasonic vibration	409.05	11.40	12.25	7.46

ผลกระทบการสั่นแบบอัลตราโซนิกพบว่าชิ้นงานที่ได้รับผลกระทบการสั่นแบบอัลตราโซนิกมีค่าความแข็งที่ลดลง เพราะการเกิดการแตกผลึกโครงเมียมкар์ไบด์กระจายตัวเข้าไปในเนื้อเกรนมากขึ้นและเป็นลักษณะก้อนกลม อีกทั้งที่ขบวนเกรนการเกิดโครงเมียมкар์ไบด์มีขนาดไม่ใหญ่มากเมื่อเทียบกับชิ้นงานที่ไม่ได้รับผลกระทบการสั่นแบบอัลตราโซนิก เนื่องจากเกิดขบวนเกรนมากขึ้นจึงทำให้ค่าความแข็งลดลง

จากกับแนวเชื่อมมีค่าเท่ากับ 468.37 Mpa ค่าเบี่ยงเบนเท่ากับ 26.67 Mpa (ค่าแรงดึงอยู่ในช่วง 445.75 – 503.85 Mpa) และมีค่า Elongation เฉลี่ยที่ 3.07% และค่าแรงดึงเฉลี่ยของชิ้นงานที่ได้รับผลกระทบการสั่นแบบอัลตราโซนิกเท่ากับ 409.09 Mpa ค่าเบี่ยงเบนเท่ากับ 13.24 Mpa (ค่าแรงดึงอยู่ในช่วง 395.03 – 426.94 Mpa) และมีค่า Elongation เฉลี่ยที่ 7.46% ซึ่งได้แสดงไว้ในตารางที่ 2 ซึ่งจากผลกระทบจะเห็นได้ว่าชิ้นงานที่ได้รับผลกระทบการสั่นแบบอัลตราโซนิกมีค่าแรงดึงที่ลดต่ำลงแต่มีค่า Elongation ที่สูงขึ้นซึ่งเป็นผลมาจากการแตกผลึกเข้าไปในเนื้อเกรนที่มากขึ้นและเป็นลักษณะก้อนกลมจึงมีค่าแรงดึงที่ต่ำลงแต่ก็ให้ความหนืดหยดของชิ้นงานที่สูงขึ้นเปรียบเทียบกับชิ้นงานที่ไม่ได้รับผลกระทบการสั่นแบบอัลตราโซนิก

รูปที่ 13 ค่าความแข็ง Vickers's ของชิ้นงานทดสอบ

4.3 การทดสอบแรงดึง

การทดสอบแรงดึงของชิ้นงานที่มีการเตรียมชิ้นงานทดสอบเป็นแบบ Double reduce tensile เพื่อเป็นการบังคับให้เกิดการขาดตัวที่แนวเชื่อมของชิ้นงานที่ได้รับและไม่ได้รับผลกระทบการสั่นแบบอัลตราโซนิก พบว่าผลกระทบทดสอบแรงดึงเฉลี่ยของชิ้นงานไม่ได้รับผลกระทบการสั่นแบบอัลตราโซนิกที่แรงดึงมีค่าตั้ง

5. สรุปผลการทดลอง

จากการทดลองที่มีการพิจารณาการเชื่อมวัสดุที่ผ่านการใช้งานและเกิดการเสื่อมสภาพนำมาเชื่อมกับชิ้นงานที่ไม่เกิดการเสื่อมสภาพของวัสดุ 25Cr – 35Ni ซึ่งจุดประสงค์หลักของการทดลองนี้คือการให้ผลกระทบการสั่นแบบอัลตราโซนิกเข้าไปในป้องกัน ระหว่างการเชื่อมและแข็งตัวของโลหะที่มีการเกิดปริมาณการรับอนพเร่เข้ามาในเนื้อวัสดุจากการใช้งานโดยการทดลองเชื่อมนั้นได้จำลองการเชื่อมชิ้นงาน

โดยติดตั้งชุดการสั่นแบบอัลตราโซนิกเข้ากับชิ้นงานที่ใช้ลวดเชื่อมชนิดเดียวกับวัสดุ ในการประเมินผลของ การทดลองได้นำการวิเคราะห์โครงสร้างทางจุลภาค แบบจุลทรรศน์และ Scanning electron microscopy (SEM) และ Energy dispersive spectroscopy (EDS) มาใช้ในการประเมินพร้อมห้องทดลองแรงดึงและวัดค่า ความแข็งระดับจุลภาคเพื่อนำมาเปรียบเทียบ คุณสมบัติทางกลของชิ้นงานที่ได้รับและไม่ได้รับ ผลกระทบจากการสั่นแบบอัลตราโซนิก ซึ่งผลกระทบจากการ สั่นแบบอัลตราโซนิกเกิดการแข็งตัวของเกรนที่ไม่ เป็นทิศทางและขนาดเกรนมีขนาดที่เล็กลง อีกทั้งการ เกิดการตกลงของโครงเมียมคาร์บไบด์ที่ขอบเกรนมี ขนาดลดลงและกระจายเข้าสู่เนื้อเกรนมากขึ้นเมื่อ เปรียบเทียบกับชิ้นงานที่ไม่ได้รับผลกระทบซึ่งเป็นผล มาจากการที่เกรนมีขนาดเล็กลงจึงทำให้ขอบเกรนมี พื้นที่มากขึ้นอีกทั้งยังเกิดการตกลงลึกเข้าไปในเนื้อ เกรนอีกจำนวนมากพื้นที่การตกลงลึกจึงกระจายตัว มากขึ้น สำหรับคุณสมบัติทางกลเมื่อชิ้นงานได้รับ ผลกระทบจากการสั่นแบบอัลตราโซนิกมีค่าต่ำลงทั้งการ ทดสอบแรงดึงและค่าความแข็งระดับจุลภาค เนื่องมาจากการที่โครงสร้างเกิดการตกลงของ โครงเมียมคาร์บไบด์กระจายเข้าสู่เนื้อเกรนมากขึ้นและ ตกลงลึกเป็นลักษณะก้อนกลมซึ่งทำให้ค่าความแข็ง ลดลงแต่ทำให้เกิดความหนึบมากขึ้นในชิ้นงานที่ ได้รับผลกระทบจากการสั่นแบบอัลตราโซนิก

เอกสารอ้างอิง

- [1] R. Dehmlaei, M. Shamanian, A. Kermanpur, Effect of Electromagnetic Vibration on the Unmixed Zone Formation in 25Cr-35Ni Heat Resistant Steel/Alloy 800 Dissimilar Welds, Material's Characterization 59(2008) 1814-1817.
- [2] Y. Cui, C.L. Xu and Q. Hua. Effect of Ultrasonic Vibration on Unmixed Zone Formation, Scripta Materialia 55(2006) 975-978.
- [3] Titinan Methong, Bovornchok Poopat, The effect of Ultrasonic Vibration on Properties of Weld Metal, Key Engineering Materials Vol.545(2013) pp 177-181.
- [4] Michael J. Troughton, 2008, Handbook of

Plastics Joining, 2nd ed., William Andrew Inc., Norwich, New York, pp. 23-30.

[5] API 571 Damage Mechanisms Affecting Fixed Equipment in the Refining Industry. December 2003.

[6] R. Dehmlaei, M. Shamanian, A. Kermanpur, Microstructure Characterization of Dissimilar Welds Between Alloy 800 and HP Heat-Resistant Steel, Material's Characterization 59(2008) 1447-1454.

[7] W. A. Baeslack, J.C. Lippold and W.F. Savage, Unmixed Zone Formation in Austenitic Stainless Steel Weldments, Welding Research Supplement(1979) 168s-176s.

[8] Qingmei Liu, Qijie Zhai, Feipeng Qi, Yong Zhang, Effects of Power Ultrasonic Treatment on Microstructure and Mechanical Properties of T10 Steel, Material Letters(2007) 2422-2425.

[9] Saeed Reza Allahkaram, Sadegh Borjali, Hamed Khosravi, Investigation of Weldability and Property Changes of High Pressure Heat-Resistant Cast Stainless Steel Tubes Used in Pyrolysis Furnaces After a Five-Year Service, Material and Design33(2012) 476-484.

[10] J.N. Dupont, S. W. Banovic and A. R. Marder, Microstructural Evolution and Weldability of Dissimilar Welds Between a Super Austenitic Stainless Steel and Nickel-Based Alloys, Welding Journal(2003) 125s-135s.

[11] G.I. Eskin, Ultrasonic Treatment of Light Alloy Melts, Gordon and Breach, London, 1998, p.18.

[12] H.M. Tawancy, Degradation of Mechanical Strength of Pyrolysis Furnace Tubes by High-Temperature Carburization in a Petrochemical Plant, Engineering Failure Analysis 16(2009) 2171-2178.