

การเพิ่มประสิทธิภาพการบำรุงรักษาของระบบผลิตน้ำเย็นด้วยระบบการ

บำรุงรักษาที่มุ่งเน้นความ naïve ที่อีกได้เป็นสำคัญ :

กรณีศึกษาระบบผลิตน้ำเย็นสำหรับการขึ้นรูปพลาสติก

Maintenance efficiency improvement for chilled water system by reliability

centered maintenance :

A case study of chilled water system for plastic injection molding

จันทร์ฯ นาครชิรตรัตน์^{1*} มาโนช จันทร์ครุฑ²

^{1,2}ภาควิชาวิศวกรรมอุตสาหการ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยบูรพา ชลบุรี

E-mail: chantran@buu.ac.th*

Chantra Nakvachiratrakul^{1*} Manoch Junkrut²

^{1,2}Department of Industrial Engineering, Faculty of Engineering, Burapha University, Chonburi

E-mail: chantran@buu.ac.th*

บทคัดย่อ

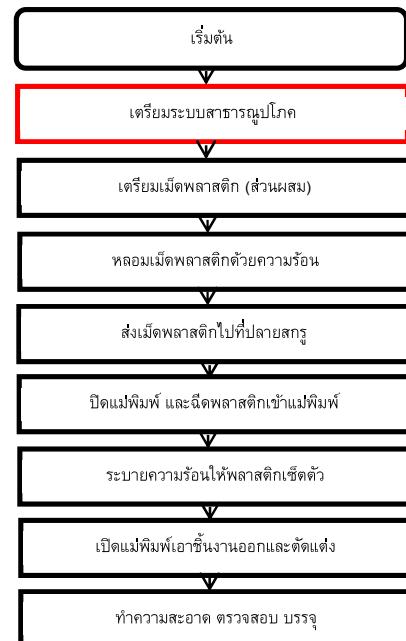
การวิจัยนี้มีวัตถุประสงค์เพื่อปรับปรุงประสิทธิภาพการบำรุงรักษาของระบบผลิตน้ำเย็นสำหรับโรงงานกรณีศึกษาในอุตสาหกรรมฉีดพลาสติก เนื่องจากปัญหาการหยุดชะงักของระบบผลิตน้ำเย็นส่งผลทำให้กระบวนการผลิตต้องหยุดทั้งโรงงาน โดยประยุกต์ใช้แนวคิดการบำรุงรักษาที่มุ่งเน้นความ naïve ที่อีกได้เป็นสำคัญ (Reliability Centered Maintenance: RCM) เพื่อกำหนดภารกิจซ่อมบำรุงที่จำเป็นสำหรับแต่ละชิ้นส่วนองค์ประกอบอยู่ที่มีอิทธิพลต่อหน้าที่สำคัญของระบบจำนวน 59 ภารกิจ ในขณะที่การออกแบบระบบการซ่อมบำรุงเดิมที่ใช้เพียงประสบการณ์ในการคาดคะเนแผนบำรุงรักษามีรายการบำรุงรักษาเพียง 16 ภารกิจ ถึงแม้ว่าภารกิจบำรุงรักษาตามแผนใหม่ที่มีมากกว่าภารกิจบำรุงรักษาตามแผนเดิม แต่กลับมีความต้องการเวลาการบำรุงรักษาเชิงรุกที่น้อยกว่าเดิมถึง 38.28% รวมถึงผลกระทบจากการปรับปรุงระบบควบคุมแรงดันน้ำให้คงที่ในภารกิจการออกแบบใหม่ (Redesign) เป็นผลทำให้ประสิทธิภาพการเดินเครื่องจักรอุปกรณ์และประสิทธิภาพโดยรวมของระบบทำงานน้ำเย็นเพิ่มสูงขึ้น ซึ่งแสดงด้วยตัวชี้วัดประสิทธิภาพประกอบด้วย เวลาเฉลี่ยระหว่างความเสียหาย (Mean time between failure: MTBF) ของระบบผลิตน้ำเย็นเพิ่มขึ้น 141.87% ลดจำนวนครั้งการหยุดชะงักจากระยะที่อ่อนล้าเดิมได้ 100% จำนวนครั้งของปัญหาคุณภาพผลิตภัณฑ์ที่เกิดจากปัญหาของระบบทำงานน้ำเย็นลดลง 43.71% จำนวนครั้งของปัญหาระดับอุณหภูมิน้ำเย็นไม่เป็นไปตามที่กำหนดลดลง 70.37% และสามารถลดต้นทุนค่าใช้จ่ายด้านพลังงานของระบบสิ่งน้ำจาก 30,240 บาท เหลือเพียง 21,168 บาทต่อเดือน

คำหลัก: การบำรุงรักษาที่มุ่งเน้นความ naïve ที่อีกได้เป็นสำคัญ(RCM) เวลาเฉลี่ยระหว่างความเสียหาย

ประสิทธิภาพ ระบบผลิตน้ำเย็น

Abstract

The main objective of this study was to improve the chilled water production system for a factory. It was a case study of a plastic injection industry due to the fact that problems on the failure of chilled water production system could result in the shutdown of the entire factory's production process. This research adopted the concept emphasizing on Reliability Centered Maintenance. It was used to determine 59 necessary maintenance tasks for maintaining each part and component influencing the important functions


of the system. In regard to the conventional practices, there had been 16 tasks used for these maintenance functions. In fact, they had been designed out of the general expectations obtained from the engineers' common experiences. Although the new type of maintenance tasks appeared to be more numbers than the old ones, they only needed 38.28% less time for proactive maintenance tasks than the old ones. Regarding the new tasks, it enhanced water pressure control system in order to be regulated more constantly through use of 'redesign' task. As a consequence, it increased the overall efficiency of the chilled water production system up to 141.87%. This was shown through some important measurement indexes of the efficiency e.g. 'mean time between failure' (MTBF) of the system. Besides, it reduced the numbers of chilled water production failures owing to the broken pipe by 100%. At the same time, the 59 mentioned tasks also helped reduce the numbers of the quality problems caused by the chilled water production system failures 43.71% less than the convention practices; while, the numbers of the problems for the chilled water temperature not meeting the set level decreased 70.37% less than before. They lowered cost expense for chilled water production system energy from 30,240 Baht 21,168 Baht per month, as well.

Keywords: Reliability Centered Maintenance (RCM), Mean Time Between Failure (MTBF),

Efficiency, Chilled water system

1. บทนำ

โรงงานกรณีศึกษานี้อยู่ในส่วนของอุตสาหกรรมการขึ้นรูปพลาสติกด้วยกระบวนการเป่าและฉีดเพื่อผลิตผลิตภัณฑ์พลาสติกที่เป็นชิ้นส่วนในอุตสาหกรรมยานยนต์และบรรจุภัณฑ์ต่างๆ ซึ่งในกระบวนการขึ้นรูปดังกล่าว สามารถอธิบายได้พอสังเขปดังรูปที่ 1 กรณีที่ระบบสาธารณูปโภค(Utility) เกิดความล้มเหลวจะส่งผลไปยังกระบวนการผลิตทั้งหมดด้วยเหตุการทํางานลงทันที ดังนั้นการนำแนวทางการบำรุงรักษาที่มุ่งเน้นความเชื่อถือได้เป็นสำคัญ (RCM) มาประยุกต์ใช้ในส่วนระบบสาธารณูปโภค ซึ่งเป็นเทคโนโลยีการบำรุงรักษาเชิงรุกตามกระบวนการทางengineering ที่มีความสำคัญมากวิธีหนึ่ง ที่จะช่วยให้กระบวนการผลิตของทั้งโรงงานยังคงมีความเชื่อถือได้ตามองค์ของความมุ่งมั่นและหวังผลลัพธ์ขององค์กร ซึ่งจะช่วยปรับปรุงให้กระบวนการผลิตมีความสามารถที่จะผลิตสินค้าได้อย่างต่อเนื่องถึงแม้ว่าเครื่องจักรบางส่วนในสายการผลิตจะเกิดความขัดข้องล้มเหลว ก็ตาม ในเบื้องต้นกรณีศึกษานี้ได้มุ่งนั้นไปในส่วนของระบบผลิตและส่งน้ำเย็นเข้าสู่เครื่องจักรในสายการผลิตเนื่องจากระบบผลิตน้ำเย็นเป็นระบบที่มีผลกระทบสูงต่อระบบสืบเนื่องต่อกระบวนการผลิตโดยรวมสูงกว่าระบบอื่นๆ ในขณะที่ระบบผลิตน้ำเย็นมีความเชื่อถือได้ต่ำ มีปัญหาความขัดข้องล้มเหลวที่เกิดจากหลากหลายลักษณะความขัดข้องของชิ้นส่วนองค์ประกอบอย่างรุนแรงที่มีปัญหาการออกแบบระบบที่ยังไม่ดีพอ

รูปที่ 1 ขั้นตอนการทำงานของกระบวนการขึ้นรูปพลาสติก

1.1 วัตถุประสงค์

- 1) เพื่อเพิ่มประสิทธิภาพของระบบผลิตและจ่ายน้ำเย็นของโรงงาน A
- 2) เพื่อลดจำนวนครั้งการหยุดชะงัก (Breakdown) ของระบบผลิตน้ำเย็นโรงงาน A
- 3) เพื่อเพิ่มเวลาเฉลี่ยระหว่างความเสียหาย

(MTBF) ของระบบผลิตน้ำเย็นในโรงงาน A

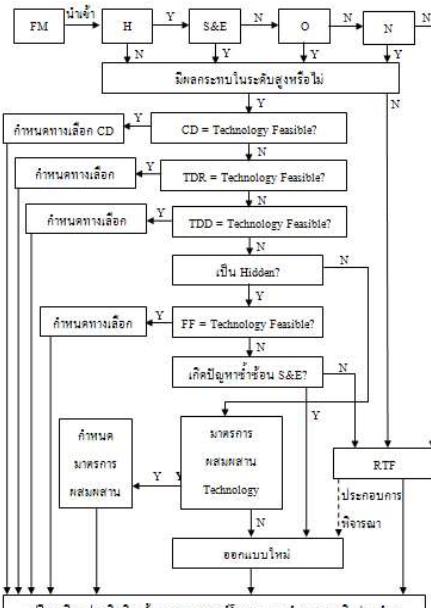
1.2 ขอบเขตของการวิจัย

การศึกษาวิจัยนี้ใช้ข้อมูลของโรงงานกรณีศึกษา โดยทำการศึกษาข้อมูลเฉพาะในส่วนของระบบการผลิตน้ำเย็นของโรงงาน A เท่านั้น

2. งานวิจัยและทฤษฎีที่เกี่ยวข้อง

2.1 กระบวนการดำเนินงานตามแนวทางการบำรุงรักษาที่มุ่งเน้นความเชื่อถือได้เป็นสำคัญ (Framework of RCM) [1],[2]

เทคนิคการวิเคราะห์ตามกระบวนการประกอบด้วย 7 ขั้นตอน ได้แก่


- 1) การเลือกระบบและรวบรวมข้อมูลของระบบที่เลือก
- 2) การกำหนดขอบเขตของระบบที่เลือก
- 3) การกำหนดรายละเอียดของระบบที่เลือกไว้
- 4) การกำหนดหน้าที่และความขัดข้องทางหน้าที่
- 5) การวิเคราะห์ลักษณะความขัดข้องล้มเหลว และผลกระทบของแต่ละรูปแบบความขัดข้องล้มเหลว (Failure Mode and Effect Analysis, FMEA)
- 6) การวิเคราะห์แผนผังต้นไม้ตระกูล (Logic tree analysis: LTA)
- 7) กำหนดการกิจบำรุงรักษา

2.2 กระบวนการวิเคราะห์ลักษณะความขัดข้องล้มเหลวและผลกระทบ (FMEA) [3],[4]

การวิเคราะห์ FMEA ในกระบวนการของ RCM มีวัตถุประสงค์เพื่อคัดเลือกรูปแบบการขัดข้องล้มเหลวที่เกิดขึ้นกับชิ้นส่วนหรือระบบที่ส่งผลให้ระบบการผลิตมีความสามารถลดลง อย่างมีนัยสำคัญเพื่อนำไปวิเคราะห์ในแผนผังต้นไม้ตระกูล

2.3 การวิเคราะห์แผนผังต้นไม้ตระกูล (LTA)

การพิจารณาเกี่ยวกับการวิเคราะห์ต้นไม้ตระกูล ตามรูปที่ 2 โดยมีจุดมุ่งหมาย คือ การประเมินความเป็นไปได้ทางเทคนิคและความเหมาะสมทางเศรษฐศาสตร์ของแต่ละทางเลือกการกิจบำรุงรักษา สำหรับแต่ละลักษณะความขัดข้องล้มเหลว

รูปที่ 2 โครงสร้างการวิเคราะห์แผนผังต้นไม้ตระกูล (LTA)

[2],[3]

ความหมายของสัญลักษณ์ค่าย่อต่างๆ ที่อยู่ภายใต้โครงสร้างการวิเคราะห์แผนผังต้นไม้ตระกูล แสดงในตารางที่ 1

ตารางที่ 1 ความหมายอักษรย่อที่อยู่ในโครงสร้างการวิเคราะห์แผนผังต้นไม้ตระกูล

อักษรย่อ	สัญลักษณ์	ความหมาย
1	FM	Failure Mode
2	H	เป็นความลับซึ่งไม่พบ (Hidden failure: H)
3	S&E	สัมภาระกับความปลอดภัยหรือสิ่งแวดล้อม (Safety and Environment)
4	O	สัมภาระกับผลกระทบจากการปฏิบัติการ (Operational: O)
5	N	สัมภาระกับผลกระทบทางการค้าหรือบุรุษ (Non-operational consequence)
6	CD	ปัจจัยทางเทคนิค
7	TDR	พื้นที่สภาพภูมิประเทศ
8	TDD	เมืองหรือภูมิภาค
9	FF	การหันความจัดที่อยู่ (Failure-Finding)
10	RIF	เดินเครื่องจักรขณะที่มีข้อขัดข้อง (run-to-failure)
11	Redesign	ออกแบบใหม่

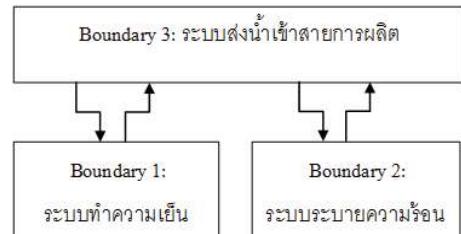
ข้อมูลที่ได้จากการวิเคราะห์แผนผังต้นไม้ตระกูล จะนำมาวางแผนการบำรุงรักษา โดยพิจารณาภารกิจบำรุงรักษาที่เป็นทางเลือกที่ดีที่สุดสำหรับแต่ละลักษณะความขัดข้องล้มเหลว โดยเริ่มที่การจัดทำรายการภารกิจบำรุงรักษาทางเลือกที่เป็นไปได้ทาง

เทคนิคแล้วจึงเลือกทางเลือกที่มีประสิทธิผลทางเศรษฐศาสตร์ที่สุด

3. วิธีการดำเนินงาน

งานวิจัยได้ประยุกต์แนวคิดการบำรุงรักษาเชิงรุกตามกรอบการดำเนินงานตามแนวทางการบำรุงรักษาที่มุ่งนั่นความเชื่อถือได้เป็นสำคัญ (RCM) เป็นหลัก ซึ่งมีรายละเอียดในการดำเนินการ ดังนี้

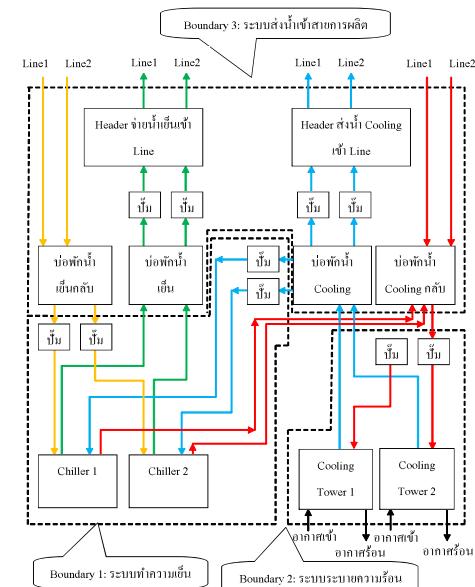
3.1 เลือกระบบที่จะพิจารณาและเก็บรวบรวมข้อมูล


ระบบผลิตน้ำเย็นของโรงงาน A ถูกคัดเลือกมาเป็นกรณีศึกษา เนื่องจากมีคุณสมบัติเหมาะสมที่จะถูกคัดเลือกก่อนตามข้อแนะนำของกรอบงาน RCM นั่นคือเป็นระบบที่ส่งผลกระทบต่อ กิจกรรมหลักขององค์กรสูง [2] โดยผู้บริหารของโรงงานกรณีศึกษา กำหนดให้เลือกระบบที่มีผลกระทบต่อความสามารถของกระบวนการผลิตที่ลดต่ำลงมากกว่า 50% และมีปัญหามากกว่าระบบอื่นๆ จึงถูกคัดเลือกมาทบทวนโปรแกรมการบำรุงรักษา โดยข้อมูลปัญหาเบื้องต้นของระบบที่ถูกใช้เป็นตัวชี้วัดประสิทธิภาพโดยรวมของระบบทำน้ำเย็นสามารถสรุปได้ดังตารางที่ 2

ตารางที่ 2 ค่าดัชนีวัดประสิทธิภาพของระบบผลิตน้ำเย็น

ดัชนี	ความถี่	หน่วย
จำนวนครั้งที่เกิดปัญหาคุณภาพเนื่องจากปัญหาของระบบทำน้ำเย็น	5.33	ครั้ง/เดือน
เวลาเฉลี่ยระหว่างความล้มเหลว MTBF/MTTF	2.77	วัน
จำนวนครั้งที่อุณหภูมิของน้ำเย็นมีปัญหาคุณภาพ	6.75	ครั้ง/เดือน
จำนวนครั้งที่แรงดันของน้ำเย็นมีปัญหาคุณภาพ	4.58	ครั้ง/เดือน
จำนวนครั้งที่ห้องน้ำเย็นแตกเสียหาย	3.67	ครั้ง/เดือน

3.2 กำหนดเส้นแบ่งระบบ


ในระบบผลิตน้ำเย็นสามารถกำหนดเส้นแบ่งระบบได้เป็น 3 ขอบเขต (boundary) ระบบย่อยประกอบด้วย 1) ระบบทำความเย็น 2) ระบบระบายความร้อน และ 3) ระบบส่งน้ำเข้าส่ายการผลิต แสดงดังรูปที่ 3

รูปที่ 3 การกำหนดเส้นแบ่งระบบเป็น 3 ระบบย่อย

3.3 จัดทำรายละเอียดของระบบและแผนผังหน้าที่ของระบบ

การกำหนดรายละเอียดของระบบและแผนผังหน้าที่ของระบบเป็นขั้นตอนการค้นหาและอธิบายรายละเอียดความเชื่อมโยงของการทำงานขององค์ประกอบบ่อยที่สำคัญของระบบ [4] ดังรูปที่ 4 แสดงรายละเอียดการไหลของน้ำเข้าออกในแต่ละระบบบ่อย

รูปที่ 4 รายละเอียดของน้ำที่เหลือข้าวอกในแต่ละระบบ ย่อย

โดยรายละเอียดข้อมูลที่สำคัญที่ได้จากการวิเคราะห์ในขั้นตอนนี้แบ่งออกเป็น 5 กลุ่มข้อมูล ดังนี้

- 1) รายละเอียดของระบบ
- 2) แผนผังหน้าที่ของระบบ (Function block diagram)
- 3) จัดเชื่อมเข้า/ออก (IN/OUT interface)

4) โครงสร้างส่วนย่อยของระบบ (System work breakdown: SWBS)

5) บันทึกประวัติของอุปกรณ์

3.4 อธิบายหัวที่ของระบบและข้อขัดข้องล้มเหลว 箕ิราณาระบบทั้งจากนั้นดำเนินการระบุหน้าที่และข้อขัดข้องในการทำงานแต่ละระบบย่อยโดยแบ่งเป็นหน้าที่หลักและหน้าที่รอง ซึ่งแสดงตัวอย่างไว้ดังตารางที่ 3 รายละเอียดของหน้าที่หลักและหน้าที่รองของระบบทำความเย็น รวมถึงแสดงรายละเอียดของความขัดข้องล้มเหลวการปฏิบัติการตามหน้าที่หลักและหน้าที่รองของระบบ[3],[4] การแสดงรายละเอียดหน้าที่อย่างถูกต้องและครบถ้วนมีความสำคัญอย่างมากในการกำหนดภารกิจบำรุงรักษาเพื่อรักษาหน้าที่ของระบบตามแนวคิดหลักตามกรอบงาน RCM [5]

ตารางที่ 3 ตัวอย่างรายละเอียดหน้าที่และความขัดข้องล้มเหลวการปฏิบัติงานของระบบทำความเย็น

หน้าที่ปฐมภูมิ	1. ส่งถ่ายน้ำเย็นที่อุณหภูมิ 8-12°C แรงดัน 1-2 บาร์ อัตราflow 400-600 ลิตรต่อนาที มีความกระต่ายไม่เกิน 500 ppm
หน้าที่ที่ดิจิทัล	1. ใช้พลังงานไฟฟ้าไม่เกิน 75 หน่วยต่อชั่วโมง 2. น้ำเย็นไม่ร้อนให้หลอกภาระบัน 3. ปลดล็อกไฟฟ้ารั่วไหล
ความล้มเหลว ทางหน้าที่	1. อุณหภูมิเย็นต่ำกว่า 8°C 2. อุณหภูมิเย็นสูงกว่า 12°C 3. แรงดันน้ำเย็นต่ำกว่า 1 บาร์ 4. แรงดันน้ำเย็นสูงกว่า 2 บาร์ 5. อัตราflow ไฟล์ต่ำกว่า 480 ลิตรต่อชั่วโมง 6. อัตราflow ไฟล์สูงกว่า 600 ลิตรต่อชั่วโมง 7. น้ำเย็นมีความกระต่ายสูงกว่า 500 ppm

การจัดทำตารางแมตทริกซ์แสดงความเชื่อมโยงของแต่ละองค์ประกอบอยู่ที่เกี่ยวข้องกับแต่ละหน้าที่ที่สำคัญและความขัดข้องล้มเหลวการทําหน้าที่ ซึ่งแสดงตัวอย่างในตารางที่ 4

ตารางที่ 4 ตัวอย่างตารางแมตทริกซ์แสดงความเชื่อมโยงหน้าที่ขัดข้องล้มเหลวทั่วไป

System	Component Name	Functional Failure (FF)					
		1.01 อุณหภูมิเย็น < 8°C	1.01 อุณหภูมิเย็น > 12°C	1.02 แรงดันน้ำ < 1 bar	1.03 แรงดันน้ำ > 2 bar	1.04 Flow ไฟล์ < 480 l/min	1.05 Flow ไฟล์ > 600 l/min
Chiller System	Compressor	x	x				
	Condenser		x				
	Drier		x				
	Sight glass						
	Expansion valve	x					
	Evaporator	x	x	x		x	
	Low pressure gage & Sensor		x				
	High Pressure gage & Sensor		x				
	Water Inlet	x	x				
	Temperature sensor						

3.5 การวิเคราะห์ลักษณะความขัดข้องล้มเหลว

และผลกระทบ

การดำเนินการวิเคราะห์ลักษณะความ

ขัดข้องล้มเหลวและผลกระทบ (FMEA) ซึ่งมีขั้นตอน

การดำเนินงาน ดังต่อไปนี้

1) กำหนดขอบเขตในการวิเคราะห์ของแต่ละ

ระบบ

2) รวบรวมข้อมูลจำแนกเครื่องจักรหรือระบบ
อุปกรณ์ระบบอย่างๆ หรือพังก์ชันอย่างๆ

3) กำหนดลักษณะความขัดข้องล้มเหลว

4) ชี้ปัจจัยเด่นของความขัดข้องล้มเหลว

5) ชี้ปัจจัยเด่นของความขัดข้องล้มเหลวที่มีต่อระบบอย่างมีนัยสำคัญ

6) แสดงมาตรการตรวจสอบหรือควบคุมความ
ขัดข้องล้มเหลวหรือความผิดปกติต่างๆ ที่เกิดขึ้นจาก
สาเหตุของความขัดข้องล้มเหลวที่มีอยู่

7) ประเมินระดับนัยสำคัญของผลกระทบ
สูงเนื่องต่อระบบ โดยผู้บริหารกำหนดเกณฑ์
ผลกระทบสูงเนื่องจากความขัดข้องล้มเหลวที่มีผลต่อ
ความสามารถของกระบวนการผลิตให้ลดต่ำลง
มากกว่า 50%

ตารางที่ 5 แสดงตัวอย่างการวิเคราะห์ลักษณะความขัดข้องล้มเหลวและผลกระทบของแต่ละรูปแบบ ความขัดข้องล้มเหลวของระบบอัดน้ำยาทำความเย็นในระบบผลิตน้ำเย็น

3.6 การวิเคราะห์ทางเลือกแผนผังตันไม้ตระก

สำหรับความขัดข้องล้มเหลวที่มีผลกระทบต่อการทำงานของระบบอย่างมีนัยสำคัญจะถูกพิจารณาทางเลือกการกิจกรรมรักษา ด้วยการวิเคราะห์ทางเลือกแผนผังตันไม้ตระก ตามกระบวนการทางตระกที่แสดงในรูปที่ 2 ผลการวิเคราะห์ทางเลือก ด้วยแผนผังตันไม้ตระกสำหรับเครื่องอัดน้ำยาทำความเย็นของระบบผลิตน้ำเย็น แสดงตัวอย่างตาราง

การวิเคราะห์ไว้ในตารางที่ 6

3.7 การกำหนดการกิจกรรมรักษาสำหรับลักษณะความขัดข้องล้มเหลวแต่ละรูปแบบ

การวิเคราะห์ทางเลือกแผนผังตันไม้ตระกสามารถแบ่งการกิจกรรมรักษาของแต่ละลักษณะความขัดข้องล้มเหลวของระบบได้ 6 รูปแบบ คือ การปฏิบัติการเชิงรุก (Proactive Tasks) จำนวน 3 รูปแบบ (การกิจ CD, TDR, TDD) และกำหนดการปฏิบัติการเชิงรับ (Default Actions) จำนวน 3 รูปแบบ (การกิจ FF, RTF, Redesign) [3],[4] ความหมายของตัวย่อแสดงไว้ในตารางที่ 7

ตารางที่ 5 ตัวอย่างการวิเคราะห์ FMEA ของ Compressor

รายการ	หน้าที่	รูปแบบความเสี่ยง	Failure Mode Coding	สาเหตุของความเสี่ยง	Failure Cause Coding	ผลกระทบของความเสี่ยงต่อระบบ	ผลกระทบของความเสี่ยงต่อ Plant	การต้องส่งหน้า	วิเคราะห์ LTA หรือไม่
Compressor	ตัดและอัตโนมัติความเย็น ทำงานต่ำสุด < 68 PSI	แรงตันต่ำทำงานต่ำความเย็น	FM-08	- เกิดรอยร้าวในระบบทำให้ตัวรักษาความเย็นไม่สามารถต่อตัวได้ - เสื่อมเสียในระบบไม่เพียงพอ	FM-08-05 FM-08-20	- น้ำไม่เย็น	- หยุด 50%	- เกจวัดแรงตัน - Pressure Sensor	✓
		แรงตันต่ำทำงานต่ำความเย็น ^{ทำงานต่ำสุด > 75 PSI}	FM-09	- คอมเพรสเซอร์ร้าว - สารท้าความเย็นมีสีเจือปน - ทำงานเกินกำลัง Overload Trip - ไฟฟ้าตับ /Breaker Trip	FM-09-24 FM-09-27 FM-09-12 FM-09-14	- น้ำไม่เย็น - น้ำไม่เย็น - น้ำไม่เย็น - น้ำไม่เย็น	- หยุด 50% - หยุด 100% - หยุด 50% - หยุด 100%	- กระแสสูง - ไม่มี - กระแสสูง - ไม่มี	✓ ✓ ✓ ✓

ตารางที่ 6 ตัวอย่างการวิเคราะห์ LTA สำหรับเครื่องอัดน้ำยาทำความเย็นในระบบผลิตน้ำเย็น

Failure Mode	Failure Mode Coding	Hidden failure (H)	Safety and Environment (S&E)	Operational (O)	Non-operational consequence (N)	Candidate tasks	Tech Feasible	Effectiveness
ตัวควบคุมการทำงานของคอมเพรสเซอร์ไม่ตัดการทำงานของ Compressor หรือไม่ส่งได้	FM-01-03 FM-02-03 FM-09-03 FM-12-03 FM-13-03	—	—	✓	—	CD : ตรวจสอบอุณหภูมิน้ำเย็นตามแผน TDD : เปลี่ยนอะไหล่ตามแผน FF : ทดสอบการทำงานของตัวควบคุมโดยการปรับตั้งอุณหภูมิทดสอบการตัดต่อของ Compressor RTF : ใช้งานจนกระทั่งเกิดการขัดข้อง Redesign : ออกแบบใหม่	✓ ✓ ✓ ✓ ✓	X X ✓ X X

ตารางที่ 7 ความหมายของรูปแบบการกิจกรรมรักษาทั้ง 6 รูปแบบ

ลำดับที่	สัญลักษณ์	ความหมาย
1	CD	การบำรุงรักษาตามสภาพโดยใช้การตรวจสอบความเสื่อม
2	TDR	การบำรุงรักษาแบบทันทีทันใดตามแผน
3	TDD	การบำรุงรักษาโดยประเมินความเสื่อม
4	FF	การค้นหาความผิดข้อผิดพลาด (Failure-Finding)
5	RTF	เดินทางร่องรอยจนกว่าจะพบ ("run-to-failure")
6	Redesign	ออกแบบระบบหรือเปลี่ยนวิธีปฏิบัติใหม่

การประยุกต์ขั้นตอนกារกิจกรรมรักษาอีกหนึ่งรูปแบบด้วยการวิเคราะห์แผนผังต้นไม้ตระกูล ตามแนวทาง RCM ของระบบผลิตน้ำเย็น สามารถปูจานวนการกิจกรรมรักษาตามรูปแบบต่างๆ ที่ได้จากการศึกษา ดังแสดงในตารางที่ 8

ตารางที่ 8 จำนวนการกิจกรรมรักษาที่ได้จากการศึกษาตามแนวทาง RCM

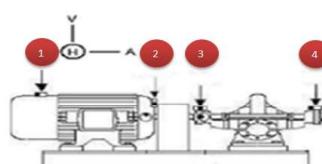
การกิจ	จำนวน (รายก่อ)
CD	25
TDD	12
TDR	10
FF	12
RTF	13
Redesign	1

เนื่องจากโรงงานกรณีศึกษาอย่างไม่มีข้อมูลอย่างการใช้งานก่อนข้อของ (Time To Failure: TTF) ดังนั้นในเบื้องต้นการศึกษาเพื่อกำหนดควรเวลาที่เกิดขึ้น จึงจากข้อมูลอย่างการใช้งานก่อนข้อของอุปกรณ์เพื่อกำหนดแผนการบำรุงรักษาแบบ TDR, TDD และ CD ยังไม่สามารถทำได้ ดังนั้นการพิจารณา กำหนดการซ่อมบำรุงจึงขึ้นอยู่กับแผนผังต้นไม้ตระกูล ที่มีเครื่องจักรซึ่งแสดงไว้ในคุณมีเครื่องจักร เนื่องจากโรงงานกรณีตัวอย่างเป็นโรงงานใหม่ประกอบกับยังขาดการจัดการระบบซ่อมบำรุงที่ดี จึงทำให้มีข้อมูลไม่เพียงพอสำหรับวิเคราะห์อย่างการใช้งานของแต่ละชิ้นส่วนองค์ประกอบอย่าง ให้รายยาจำเป็นต้องมีการทบทวนวงรอบการซ่อมบำรุงแต่ละชิ้นส่วนอุปกรณ์ ย่อ而言ได้รับทั้งแนวล้อมการปฏิบัติงานที่เป็นอยู่

4. ผลการดำเนินการศึกษา

การทบทวนความต้องการสมรรถนะพื้นฐานของระบบตามความต้องการของผู้ใช้เครื่องจักรและอุปกรณ์ทำให้สามารถกำหนดได้ว่าหน่วยงานซ่อม

บำรุงจะต้องเจาะไส้คุณลักษณะใดบ้างของเครื่องจักร และอุปกรณ์ที่ผู้ใช้เครื่องจักรอุปกรณ์คาดหวังและจำแนกลักษณะความขัดข้องล้มเหลวในระดับองค์ประกอบและระดับอุปกรณ์ที่สำคัญเพื่อใช้ประกอบการพิจารณาการกิจกรรมรักษาทั้ง 6 รูปแบบ ตัวอย่างการปรับปรุงการบำรุงรักษาตามการกิจกรรมรักษาของระบบผลิตน้ำเย็น แสดงดังต่อไปนี้ 4.1 การกิจ CD สำหรับปั๊มส่งน้ำเข้าส่ายการผลิตโดยกำหนดให้มีการวัดค่าการสั่นสะเทือนของปั๊มส่งน้ำเย็น ทุกๆ 6 เดือน


แผนการบำรุงรักษาเดิมของหน่วยงานซ่อมบำรุงไม่มีหัวข้อการวัดค่าการสั่นสะเทือน เพื่อตรวจสอบสภาพของเบร์ริงบีมน้ำ มีเพียงแต่การตรวจสอบสภาพทางกายภาพและการประเมินสภาพการรีกีหรือจากการสัมผัส พังเสียงการทำงานของตัวปั๊มน้ำที่ดังผิดปกติเท่านั้น การศึกษาโดย RCM มีข้อแนะนำแผนการบำรุงรักษาเชิงรุก CD สำหรับปั๊มส่งน้ำเย็นเข้าส่ายการผลิต ต้องกำหนดมาตรการให้มีการวัดค่าการสั่นสะเทือนของปั๊มน้ำส่งน้ำเย็น ทุกๆ 6 เดือน ก่อนที่จะเกิดความเสียหาย โดยกำหนดมาตรฐานการตรวจสอบอ้างอิงจากมาตรฐานสากล ISO2372 Machine vibration grades (NEMA MG1-12.05) ดังตารางที่ 9 ซึ่งวิธีการตรวจวัดค่าการสั่นสะเทือนแสดงในรูปที่ 6 และตัวอย่างการตรวจวัดค่าการสั่นสะเทือนของปั๊มน้ำส่งน้ำเย็นเข้าส่าย การผลิตประจ้าเดือนธันวาคม 2556 โดยปั๊มน้ำส่งน้ำเย็นเข้าส่ายการผลิตนั้นจัดอยู่ใน Class II เนื่องจากมีพิกัดขนาดมอเตอร์มากกว่า 15 kw. ซึ่งกำหนดค่าการสั่นสะเทือนที่ต้องให้ต้องผ่านระดับในช่วงระหว่าง 4.5 mm/s และ 7.1 mm/s ต้องได้รับการเปลี่ยนอะไหล่ใหม่ มีฉนัชจะเกิดความขัดข้องล้มเหลวใช้งานไม่ได้ จากการตรวจวัดปั๊มน้ำเย็นนี้ มีการวัดหั้งหมุด 4 จุด ดังรูปที่ 7 ซึ่งแต่ละจุดพบว่ามีค่าความสั่นสะเทือนไม่เกิน 4.5 mm/s ถือว่าบังใช้งานได้ปกติ การตรวจจะทำให้ทราบถึงสภาพของเบร์ริงของปั๊มน้ำว่าอยู่ในสภาพพร้อมใช้งานและเตรียมการแก้ไขหากพบสิ่งผิดปกติได้ทันเวลา ก่อนที่จะเกิดการขัดข้องล้มเหลว

ตารางที่ 9 มาตรฐานการวัดค่าการสั่นสะเทือนตาม ISO2372 จากค่าเมื่อ TV260A

Velocity (RMS) mm/s	I	II	III	IV
0.28				
0.45	excellent	excellent	excellent	excellent
0.71				
1.12	good	good	good	good
1.8				
2.8	bad	bad	good	good
4.5				
7.1			bad	bad
11.2	forbidden	forbidden	forbidden	forbidden
18				
28				
45				

รูปที่ 6 การวัดค่าการสั่นสะเทือน

ทุกคราวร็อก	มาตรฐาน	ท.ศ.-56				ม.ศ.-57			
		W1	W2	W3	W4	W1	W2	W3	W4
วัสดุที่ 1	< 7.1 mm/s	0.75	0.77	0.78	0.77	0.78	0.76		
วัสดุที่ 2	< 7.1 mm/s	0.44	0.63	0.66	0.65	0.70	0.71		
วัสดุที่ 3	< 7.1 mm/s	0.55	0.58	0.6	0.59	0.6	0.58		
วัสดุที่ 4	< 7.1 mm/s	0.14	0.55	0.58	0.6	0.62	0.61		

รูปที่ 7 ผลการวัดค่าการสั่นสะเทือนของปั๊มส่งน้ำเย็นเข้า
สายการผลิต

4.2 การกิจ TDD สำหรับปั๊มส่งน้ำเข้าสายการผลิต คือ การเปลี่ยน Mechanical Seal ปั๊มส่งน้ำเย็นทุกๆ 1 ปี

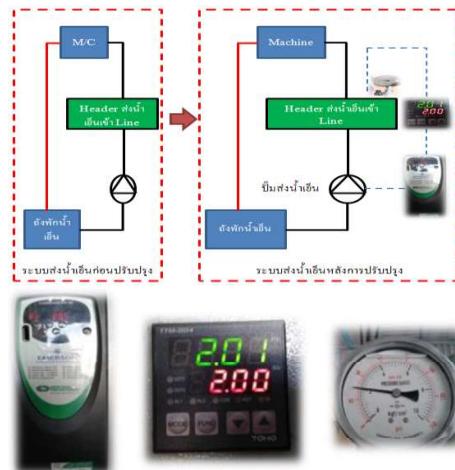
สืบเนื่องจากไม่ทราบระยะเวลาการเปลี่ยน Mechanical Seal ที่แน่นอน ผู้ทำการศึกษาจึงพิจารณาจากค่ามือผู้ผลิตระบุให้มีการเปลี่ยนทุกๆ 1 ปี แทนการใช้ข้อมูลจาก MTTF ซึ่งแผนการบำรุงรักษาเดิมของหน่วยงานซ่อมบำรุง คือ การบำรุงรักษาเมื่อ

เกิดการขัดข้องทำให้ระบบต้องหยุดการทำงานอย่างน้อย 4 ชั่วโมงต่อครั้ง เมื่อมีการปรับปรุงให้มีการเตือนเมื่อแผนการ

เปลี่ยน Mechanical Seal ล่วงหน้าจะสามารถลดเวลาในการหยุดระบบเพื่อทำการบำรุงรักษา และไม่เกิดความล้มเหลวของ Mechanical Seal ลูกเนินในระหว่างการผลิตที่ทำให้กระบวนการผลิตต้องหยุดชะงัก

4.3 การกิจ TDR สำหรับ Chiller คือ การແยงท่อระบบความแน่น้ำยาทำความเย็นทุกๆ 6 เดือน

แผนการบำรุงรักษาเดิมของหน่วยงานซ่อมบำรุง คือ ตรวจสอบค่าดัชนีชี้บ่งคุณลักษณะของน้ำเย็น และการແยงท่อระบบความแน่น้ำยาทำความเย็นระบบผลิตน้ำเย็นเป็นประจำ โดยบริษัทผู้รับเหมาภายนอกโดยกำหนดโปรแกรมการແยงท่อระบบความแน่น้ำยาทำความเย็นทุกๆ 1 ปี จากความรู้สึกและไม่มีข้อมูลสนับสนุนการกำหนดตรวจสอบบำรุงรักษา พนักงานมีภาระที่ต้องรับภาระการนี้ จึงจำเป็นต้องปรับง่วงรอบการทำงานทำความสะอาดท่อเหลือ 6 เดือนต่อครั้ง และกำหนดให้มีการตรวจสอบสภาพท่อว่า มีความผิดปกติและร้าวหรือไม่ หลังจากนั้นพบว่าครรภะภัยและสิ่งสกปรกในท่อลดน้อยลงซึ่งไม่ก่อปัญหาท่อร้าวอีกเลย


4.4 การกิจ FF สำหรับ Chiller โดยการตรวจสอบหารอยร้าวของ Chiller ทุกๆ 6 เดือน

แผนการบำรุงรักษาเดิมของหน่วยงานซ่อมบำรุง คือ ตรวจสอบเพียงแรงดันของสารทำความเย็นในระบบเท่านั้นและจะซ่อมแซมก็ต่อเมื่อหน้าการทำความเย็นร้าวหายจากระบบจนกระทั่งระบบทำความเย็นล้มเหลวไม่สามารถผลิตน้ำเย็นได้ต่อไป ทำให้ต้องหยุดระบบหลังจากเกิดปัญหา การวิเคราะห์ RCM กำหนดการกิจบำรุงรักษาให้มีการตรวจสอบหารอยร้าวเป็นระยะๆ ทำให้พบปัญหาเมื่อเกิดการร้าวซึ่งเพียงเล็กน้อยและวางแผนการแก้ไขก่อนที่จะเกิดการขัดข้องของท่อระบบ ผลคือพบการร้าวซึ่งที่ Expansion valve ได้วางแผนแก้ไขในวันหยุดก่อนเกิดการขัดข้อง

4.5 การกิจ Redesign สำหรับระบบส่งน้ำเข้า สายการผลิต โดยการปรับปรุงให้มีระบบควบคุม แรงดันน้ำป้อนเข้า (Pressure Control)

เป็นการกิจสืบเนื่องจากการบำรุงรักษาตามสภาพ (CD) โดยการวัดค่าแรงดันน้ำออกจากปั๊มส่งน้ำ

เบียนเข้าสายการผลิต จากระบบเดิมที่ไม่มีการควบคุม แรงดันน้ำให้คงที่ เมื่อมีการเปลี่ยนแปลงของภาระหรือ โหลด ซึ่งกรณีที่ภาระสูงกว่าความสามารถของระบบ จะทำให้เกิดปัญหาคุณภาพ ดังนั้นจึงได้ออกแบบระบบ การควบคุมแรงดันใหม่เพื่อรักษาระดับแรงดันน้ำ ป้อนเข้าให้คงที่ตลอดเวลา ดังรูปที่ 8

ผลการปรับปรุงแรงดันน้ำเข้าสายการผลิตคงที่ ตลอดเวลาทำให้สามารถลดปัญหาคุณภาพผลิตภัณฑ์ นอกจากนี้ยังสามารถช่วยลดการใช้พลังงานไฟฟ้าได้ คือ เดิมบ้มส่งน้ำเข้าสายการผลิต มีขนาด 15 kw. ที่ โหลด 100% ต้องเดินเต็มกำลังตลอด 24 ชั่วโมง ตลอดเวลาที่เครื่องจักรทำงาน ดังนั้นการสูญเสีย พลังงานไฟฟ้าต่อวันคิดเป็นหน่วยการใช้พลังงานไฟฟ้าเท่ากับ 360 kwh. ต่อวัน โรงงานกรณีศึกษาเสีย ค่าใช้จ่ายพลังงานไฟฟ้าโดยเฉลี่ยหน่วยละ 3.5 บาท ในหนึ่งวันต้องจ่ายค่าไฟฟ้า 1,260 บาท และใน 1 เดือนบริษัททำงาน 24 วัน คิดเป็นเงินค่าพลังงานไฟฟ้า 30,240 บาท หลังจากทำการปรับปรุงการควบคุมแรงดันให้คงที่ พบว่าอินเวอร์เตอร์ขับโหลด สามารถอุปถัมภ์ที่ 70% นั่นหมายความว่า การใช้พลังงานไฟฟ้าจาก 15 kw. ลดลงเหลือ 10.5 kw. ส่งผลให้การสูญเสียพลังงานไฟฟ้าต่อวันลดลงเหลือเท่ากับ 252 kwh. ในหนึ่งวันต้องจ่ายค่าไฟฟ้า 882 บาท ใน 1 เดือนบริษัททำงาน 24 วัน คิดเป็นเงิน 21,168 บาท นั่นหมายถึงการปรับปรุงสามารถลดค่าใช้จ่ายเรื่องของ

พลังงานไฟฟ้าได้เดือนละ 9,072 บาท

4.6 การเปรียบเทียบโปรแกรมการบำรุงรักษา

การทบทวนโปรแกรมการบำรุงรักษาด้วยกระบวนการทางตรรกอย่างครอบคลุมทั้งระบบของ RCM ทำให้สามารถกำหนดภารกิจบำรุงรักษาที่จำเป็นที่ถูกละเอียดไปขั้นใหม่ และช่วยพิจารณาผลภารกิจบำรุงรักษาที่ไม่ก่อผลสัมฤทธิ์ออกไปจากโปรแกรมบำรุงรักษา ทำให้ระบบได้รับการรักษาหน้าที่ปฏิบัติงานหลักด้วยภารกิจบำรุงรักษาที่จำเป็นอย่างแท้จริง ตารางที่ 10 แสดงตัวอย่างการเปรียบเทียบให้เห็นความแตกต่างของรายการบำรุงรักษาเดิมกับรายการบำรุงรักษาใหม่ที่ได้จากการบันทุกการวิเคราะห์ภารกิจบำรุงรักษาตามกระบวนการ RCM

ตารางที่ 10 ตัวอย่างการเปรียบเทียบรายการบำรุงรักษา ก่อนปรับปรุงกับรายการบำรุงรักษาหลังปรับปรุง

รายการบำรุงรักษา	ก่อนปรับปรุง		หลังปรับปรุง	
	มี/ไม่มี รายการ	ความต้องรับ ต่อปี	มี/ไม่มี รายการ	ความต้องรับ ต่อปี
วัดค่าแรงดันของสารทำความเย็นค่าต่ำ High-low (Chiller; ระบบทำความเย็น)	✓	288	✓	288
วัดค่ากระแสและความร้อนมอเตอร์ Compressor (Chiller; ระบบทำความเย็น)	✓	288	✓	2
วัดค่าการสั่นสะเทือนของปั๊มส่งน้ำเข้า Evaporator (Evaporator Pump; ระบบทำความเย็น)	-	0	✓	2

ผลการปรับปรุงภารกิจและแผนบำรุงรักษา พบว่ามีข้อแตกต่างระหว่างแผนบำรุงรักษาเดิมกับแผนบำรุงรักษาที่กำหนดใหม่ คือ

1) แผนบำรุงรักษาเดิมมีรายการบำรุงรักษาจำนวน 16 รายการ ส่วนแผนบำรุงรักษาใหม่ มีรายการภารกิจบำรุงรักษาจำนวน 59 รายการ นั่นคือ มีรายการบำรุงรักษาที่ถูกละเอียดไปจำนวน 43 รายการ

2) การทำการกิจบำรุงรักษาตามแผนใหม่พบว่าใช้เวลาอย่างกว้างแผนซ่อมบำรุงรักษาเดิม เนื่องจาก

แผนบารุงรักษาใหม่มีความตื้นของการบารุงรักษาในรายการที่ส่งผลกระทบต่อระบบน้อยลดลงจากแผนเดิม แต่เพิ่มความถี่ในรายการบารุงรักษาที่ขาดหายไปจากแผนบารุงรักษาเดิม 43 รายการ ทำให้สามารถบารุงรักษาได้ครอบคลุมหน้าที่การทำงานของระบบได้มากกว่าแผนบารุงรักษาเดิม

3) การกิจบารุงรักษาแบบใหม่แบ่งเป็นหมวดหมู่ได้แก่ การกิจบารุงรักษาตามสภาพโดยมีการวัดตามแผนจำนวน 25 รายการ การกิจเปลี่ยนอะไหล่ตามแผนจำนวน 12 รายการ การกิจพื้นฟูสภาพตามแผน 10 รายการ การกิจค้นหาความขัดข้อง 12 รายการ และการกิจการบารุงรักษาโดยการใช้งาน จนกระทั่งเกิดความเสียหาย ซึ่งต่างจากแผนบารุงรักษาเดิมที่ซ้อมแซมหลังเกิดความขัดข้องล้มเหลว

5. สรุปผล

ผลการศึกษาพบว่ารายการบารุงรักษาเดิมที่กำหนดโดยหน่วยงานซ่อมบารุงมีเพียง 16 รายการ และรายการบารุงรักษาที่ได้จากการศึกษามีทั้งหมด 59 รายการ เปรียบเทียบให้เห็นว่ามีงานบารุงรักษาได้ถูกกละเหลี่ยม

จำนวน 43 รายการ ดังตารางที่ 11 ซึ่งอาจเป็นสาเหตุทำให้เครื่องจักรและอุปกรณ์ชำรุดเสียหายในอนาคต และ งานบารุงรักษาเดิมบางงานที่กำหนดขึ้นจากความเคยชินและประสบการณ์อาจไม่ได้เป็นต้องมีขึ้นหรือมีขึ้นก็ไม่จำเป็นต้องทำให้ถูกเกินไป ส่งผลให้เสียทรัพยากรและเวลาในการบารุงรักษามากเกินไป ที่น่าสนใจพบว่ามีภารกิจเชิงรุกทั้ง 59 รายการ ที่มีมากกว่าภารกิจซ่อมบารุงแบบเดิมถึง 268.75% แต่มีความต้องการเวลาการบารุงรักษาเชิงรุกที่น้อยกว่าเดิมถึง 12.95 ชั่วโมงต่อเดือนซึ่งคิดเป็นเวลาที่ลดลงถึง 38.28%

ภารกิจเชิงรุกที่ช่วยตรวจสอบความผิดปกติก่อนที่จะเกิดความเสียหาย ทำให้สามารถเตรียมการวางแผนบารุงรักษาได้ก่อนที่เครื่องจักรจะเกิดการขัดข้องล้มเหลวและจากการจัดทำระบบควบคุมแรงดันสั่งน้ำเย็นเข้าสาย

ตารางที่ 11 เปรียบเทียบงานบารุงรักษาเดิมและที่ศึกษาได้

	จำนวน (รายการ)	Man-Hour (ชั่วโมงเดือน)
งานบารุงรักษาที่ศึกษาได้	59	20.88
งานบารุงรักษาเดิม	16	33.83
งานบารุงรักษาที่เป็นที่ขาดหายไป	43	10.5

การผลิตให้คงที่ในภารกิจ Redesign สามารถลดค่าใช้จ่ายพลังงานไฟฟ้าภายในระบบได้เดือนละ 9,072 บาท ดังตารางที่ 12

ตารางที่ 12 ผลที่ได้จากการปรับปรุงในภารกิจ Redesign ควบคุมแรงดันน้ำให้คงที่

รายการ	ก่อนปรับปรุงระบบ	หลังปรับปรุงระบบ	ผลประหยัดต่อเดือน
1. ค่าไฟฟ้า (บ. ว.ท. / เดือน)	30,240	21,168	9,072 บาทต่อเดือน
2. แรงดันน้ำเปลี่ยนแปลงไปคงที่	เปลี่ยนแปลงไปคงที่	แรงดันคงที่ 2 bar	

ผลการปฏิบัติภารกิจเชิงรุกตามแผนบารุงรักษาใหม่และเก็บบันทึกข้อมูลในเดือนพฤษจิกายน ถึง ธันวาคม 2556 สามารถนำมาสรุปผลการบารุงรักษาระบบผลิตน้ำเย็นและส่องเป็นตัวชี้วัดที่เปรียบเทียบไว้ในตารางที่ 13 จากการปรับปรุงรายการบารุงรักษาและภารกิจ Redesign ของระบบควบคุมแรงดันสั่งน้ำเย็นเข้าสายการผลิตให้คงที่แล้ว ยังไม่พบปัญหาที่เกิดขึ้นแต่ก็แตกในระบบผลิตน้ำเย็นอีกเลย ในการเกิดห้องน้ำแตกจะใช้เวลาในการแก้ไขปัญหาประมาณ 4 ชั่วโมง ซึ่งจะต้องหยุดการผลิตตลอดระยะเวลาดังกล่าว รวมกับเวลาเริ่มเดินเครื่อใหม่อีก 1 ชั่วโมง คิดเป็น 5 ชั่วโมงต่อการหยุด 1 ครั้ง ทำให้ต้องสูญเสียโอกาสในการผลิตเป็นเงิน 1,250,000 บาทต่อครั้ง จากข้อมูลก่อนการปรับปรุงมีค่าเฉลี่ยในการเกิดห้องน้ำแตก 3.67 ครั้งต่อเดือน นั่นหมายความว่าในหนึ่งเดือนจะสูญเสียโอกาสการขาดรายได้ไป 4,587,500 บาทต่อเดือน หลังการปรับปรุงไม่เกิดปัญหาดังกล่าวขึ้นอีกเลยทำให้ลดความสูญเสียลงกล่าวไปได้

เนื่องจากโรงงานต้องย่างเก็บข้อมูลในอดีตไม่ครบถ้วน คือ การระบุความเสียหายที่เกิดขึ้นไม่ได้แยกเป็นอะไหล่หรืออุปกรณ์แต่ละตัว ทำให้มีข้อมูลไม่เพียงพอที่จะนำมาระยะเวลาเฉลี่ยก่อนขัดข้องของอะไหล่ (MTBF/MTTF) ซึ่งผู้วิจัยจำเป็นต้องใช้ข้อมูล

ในสู่มือเครื่องจักรมากำหนดครอบการบำรุงรักษาแทน ในเบื้องต้น ต่อไปหากมีการเก็บข้อมูลที่ครบถ้วนขึ้นก็ ควรนำมาใช้ในการกำหนดวงรอบการบำรุงรักษาใหม่ ซึ่งจะต้องมีการปรับปรุงระเบียบวิธีการวิเคราะห์ข้อมูล

ความขัดข้องล้มเหลวที่เหมาะสมยิ่งขึ้นต่อไป ก็จะทำ ให้ได้แผนการบำรุงรักษาที่มีประสิทธิภาพมากยิ่งขึ้น และควรปรับปรุงฐานข้อมูลอยู่เสมอเพื่อให้การ บำรุงรักษาเหมาะสมกับสภาพของโรงงานในขณะนั้นๆ

ตารางที่ 13 ค่าดัชนีเบรียบเทียบผลการปรับปรุงโดยใช้ข้อมูลเดียวกันเดือนพฤษภาคม ถึง ธันวาคม 2556

ดัชนี	ก่อน ปรับปรุง	หลัง ปรับปรุง	หน่วย	% ลดลง (-) หรือ % เพิ่มขึ้น (+)
1. จำนวนครั้งโดยเฉลี่ยในการเกิดปัญหาคุณภาพเนื่องจากปัญหาของระบบหน้าบ้าน	5.33	3	ครั้ง/เดือน	-43.71%
2. ค่าเวลาเฉลี่ยระหว่างความเสียหายของระบบผลิตและส่งหน้าบ้าน (MTBF/MTTF)	2.77	6.7	วัน	141.87%
3. จำนวนครั้งเฉลี่ยที่อุบัติภัยของหน้าบ้านส่งเข้า Line ไม้อยู่ในมาตรฐาน	6.75	2	ครั้ง/เดือน	-70.37%
4. จำนวนครั้งเฉลี่ยของ แรงดันน้ำบ้านและคุณภาพน้ำที่จ่ายเข้า Line ไม้อยู่ในช่วงมาตรฐาน	4.58	0	ครั้ง/เดือน	-100%
5. จำนวนครั้งเฉลี่ยที่เกิดท่อแตกในระบบผลิตและส่งหน้าบ้าน Line	3.67	0	ครั้ง/เดือน	-100%
ผลที่ได้จากการปรับปรุงท่าให้มีเวลาลดลงที่น้ำหนาเพิ่มขึ้นเมื่อมีค่าต่อเดือน				4,587,500 บาท

กิตติกรรมประกาศ

ขอขอบคุณผู้มีส่วนเกี่ยวข้องกับงานวิจัยนี้ทุกท่าน รวมถึงโรงงานกรณีศึกษาที่ให้ความร่วมมือในการศึกษาครั้งนี้

เอกสารอ้างอิง

- [1] Smith A.M., Reliability-Centered Maintenance, McGraw-Hill, Inc., U.S.A., 1993.
- [2] จันทร์ฯ นาควิชิตระกูล, เทคโนโลยีการจัดการบำรุงรักษาอุตสาหกรรม, กรุงเทพฯ: จัดสัมมนาทั่วไป, พิมพ์จักร, 2555.

[3] Moubray J., Reliability-centred Maintenance, Butterworth-Heinemann, UK, 2000.

[4] ประภาส ศุภศิริสัตยาภูมิ, การบำรุงรักษาความเชื่อถือได้เป็นสำคัญ(Reliability-Centred Maintenance: RCM), กรุงเทพฯ: จัดสัมมนาทั่วไปพิมพ์จักร, 2555.

[5] จันทร์ฯ นาควิชิตระกูล ณพพล รัตนศักดิ์ชัย ชาญ วุฒิชัย ว่องไว และ ชลิต ศิริวัฒน์พิริยะ, การพัฒนาระบบการบำรุงรักษาความเชื่อถือได้เป็นสำคัญในอุตสาหกรรมแปรรูปอาหาร, การประชุมชี่าชานวิศวกรรมอุตสาหการ ประจำปี 2549, โรงเรียนอินเตอร์คอนตinentัล กรุงเทพฯ.