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Abstract

The natural parameter space is known to be bounded in many real applications such as engineering, science and
social science. The standard confidence interval derived from the classical Neyman procedure is unsatisfactory
in the case of a bounded parameter space. New confidence intervals for the coefficient of variation in a normal
distribution with a known population mean and a bounded standard deviation are proposed in this paper.

A simulation study has been conducted to compare the performance of the proposed confidence intervals.
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1 Introduction

The coefficient of variation, introduced by Karl
Pearson [1] in 1896, has been one of the most widely
used statistical measures of relative dispersion.
Important properties of the coefficient of variation
are that it is a dimensionless (unit-free) measure of
variation and it also can be used to compare several
variables obtained by different units. The population
coefficient of variation is defined as a ratio of the
population standard deviation (o) to the population
mean (1) given by 0 =0/ u

The coefficient of variation has been widely
used in many areas of science, medicine, engineering,
economics and others. For example, the uncertainty
of fault trees has been analyzed by the coefficient
of variation [2]. The coefficient of variation has also
been applied to estimate the strength of ceramics [3].
Faber and Korn [4] used the coefficient of variation for
measuring the variation of the mean synaptic response
of the central nervous system. Hamer et al. [5] evaluated
the homogeneity of bone tests using the coefficient

of variation. The impact of socioeconomic status on
hospital use in New York City has also been studied
using the coefficient of variation [6]. Miller and Karson
[7] used the coefficient of variation as a measure of
relative risk and a test of the equality of the coefficients
of variation for two stocks. Worthington and Higgs [8]
measured the degree of risk in relation to the mean
return by the coefficient of variation. Furthermore, the
variability of the competitive performance of Olympic
swimmers has been studied using the coefficient
of variation [9]. Applications of the coefficient of
variation in business, climatology and other areas are
briefly reviewed in Nairy and Rao [10].

In most applications, the population coefficient
of variation is practically unknown. Thus, the sample
estimate of the coefficient of variation is required
in order to estimate an unknown value. Although the
point estimator can be a useful measure for statistical
inference, its confidence interval is more useful than the
point estimator. A confidence interval provides much
more information about the population characteristic
of interest than does a point estimate. Namely, the
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confidence interval provides an estimated range of
values, which is likely to include an unknown
population parameter. Several methods available
for constructing the confidence interval for 6 have
been proposed. For instance, McKay [11] presented
a confidence interval for 6 based on the chi-square
distribution, with this confidence interval demonstrating
a good performance when 8 is less than 0.33. In 1996,
Vangel [12] modified McKay’s confidence interval
based on an analysis of the distribution of a class of
approximate pivotal quantities for the normal coefficient
of variation. For normally distributed data, Vangel’s
confidence interval is usually more accurate and nearly
exact in comparison to McKay’s confidence interval.
Panichkitkosolkul [13] proposed a new confidence
interval for 6 of a normal distribution by modifying
McKay’s confidence interval. He estimated the
population coefficient of variation by the maximum
likelihood method. Later, the asymptotic distribution and
confidence interval of the reciprocal of the coefficient
of variation were proposed by Sharma and Krishna
[14]. This confidence interval does not require
any assumptions about the population distribution.
Miller [15] studied the approximate distribution for
the estimate of @ and constructed an approximate
confidence interval for @ in a normal distribution.
A comparison of confidence intervals for € obtained
by McKay’s, Miller’s and Sharma-Krishna’s methods
was undertaken under the same simulation conditions
by Ng [16].

An approximately unbiased estimator and two
approximate confidence intervals for € in a normal
distribution were introduced by Mahmoudvand and
Hassani [17]. Koopmans et al. [18] and Verrill [19]
presented the confidence intervals for 6 in normal and
lognormal distributions. Interval estimation for the
difference of the coefficient of variation for lognormal
and delta-lognormal distributions was constructed by
Buntao and Niwitpong [20]. Panichkitkosolkul [21]
proposed an asymptotic confidence interval for the
coefficient of variation of a Poisson distribution. Curto
and Pinto [22] introduced the confidence interval for the
coefficient of variation in the case of non-independently
and identically distributed random variables. Gulhar
et al. [23] compared many confidence intervals for
the coefficient of variation based on parametric,
nonparametric and modified methods. The recent
work of Panichkitkosolkul [24] has developed three

confidence intervals for the coefficient of variation in
a normal distribution with a known population mean.
These three proposed confidence intervals consist of
normal approximation, shortest-length and equal-tailed
confidence intervals.

Although statistical inference is studied in a natural
parameter space, the parameter space is bounded in
several real applications, such as engineering, sciences
and social sciences. For instance, the blood pressures
of patients or the weight of subjects are bounded.
However, Mandelkern [25] pointed out the importance
of statistical inference where the parameter space
is known to be restricted. In addition, he gave the
example that the classical Neyman procedure is
unsatisfactory in the case of a bounded parameter space.
The main reason is that the information regarding
the restriction is simply ignored. The other related
works are Feldman and Cousins [26] and Roe and
Woodroofe [27]. Although a great deal of work has
been done on confidence intervals for the coefficient
of variation, the confidence intervals for the coefficient
of variation with restricted parameter space have not
been the subject of much study. Therefore, it would
be of significant interest to develop confidence
intervals for the coefficient of variation that include
additional information on the standard deviation
being bounded in order to improve the accuracy of the
confidence interval. Motivated by the recent work of
Panichkitkosolkul [24], we propose confidence
intervals for the coefficient of variation in a normal
distribution with a known population mean and a
bounded standard deviation in this paper.

2 Confidence Intervals for the Coefficient of
Variation with a Known Population Mean

In this section, we review the confidence intervals for
the coefficient of variation in a normal distribution
with a known population mean proposed recently by
Panichkitkosolkul [24]. Three confidence intervals for
the coefficient of variation, i.e., normal approximation
confidence interval, shortest-length confidence interval
and equal-tailed confidence interval, are discussed.

The classical sample estimate of 6 is given in
Equation (1) as

6=51X (M
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where S is the sample standard deviation and X is the
sample mean. If the population mean is known to be
1, then the population coefficient of variation is given
by 6, = o/u,. The sample estimate of 6, is

b, =S,/ . o)

where S = n' Z (X, - 1,)". To find the normal
approximation confidence interval for 6,, we have to
use the following theorem.

Theorem 1. Let X,, X,..., X, be a random sample
from a normal distribution with a known population
mean p, and variance o°. The unbiased estimator of
0, is

Gozéo/c

n+l>

where ¢,,, = 2/n(F((n+l)/2)/F(n/2)), Ir'c) is
the gamma function and 6, is shown in Eguation (2).
The mean and variance of 6, are E(6,)=6, and

1 2
Var(¢9 )= ( Cue1 j@z
cn+1

Proof of Theorem 1. See Panichkitkosolkul [24].
2.1 Normal approximation confidence interval

Using Theorem 1, we have

630—90 _ éo/cnu_'go
Jaréy N8 1el,

z =

) 6
— 00 Cn+1 0 N N(O 1)
O,\J1-c2,

where — denotes the convergence in distribution.
Therefore, the 100(1-a)% normal approximate
confidence interval for 6, is given in Equation (3)
as

>

% <6, < 0 , (3)

n+1 +Zl al2 \/1 cn+1 cn+1 _Zl—a 2

T Cun

2.2 Shortest-length confidence interval

Panichkitkosolkul [24] introduced the shortest-length

confidence interval for 6, based on the pivotal quantity
S2

Q =

~ %2 Thus, the 100(1—a)% shortest-length

confidence interval for 6, is given by

A (N AR
Oy |~ <0, <6, ",
No ™" Na 4)

where a and b are constant, a, b > 0 and a < b. The
values of @ and b in Equation (4) are shown in Table 1
of Panichkitkosolkul [24].

2.3 Equal-tailed confidence interval

The 100(1-a)% equal-tailed confidence interval for 6,
based on the pivotal quantity Q is given in Equation (5) as

A n A
7 <6 <86, ,

! Z;i]—a 2 ’ ’ lj,a/Z (5)
where ;( and }( » are the 100(a/2) and 100(a/2)

percentlles of the central chi- squared distribution with
n degrees of freedom.

3 Confidence Intervals for the Coefficient of
Variation with a Known Population Mean and a
Bounded Standard Deviation

In 2008, Wang [28] derived confidence intervals for
the mean of a normal distribution when the parameter
space is restricted. Following the method proposed
by Wang [28], we present confidence intervals for the
coefficient of variation of a normal distribution with
aknown population mean when the population standard
deviation is bounded.

The true value of a parameter of interest is usually
unknown. However, parameter space is often known
to be restricted and the bounds of parameter space
are known. We denote m, and m, as the lower bound
and the upper bound of the parameter space. When
the parameter space is known to be restricted to the
interval (m,, m,), it is widely accepted that a confidence
interval for a parameter £ is the confidence interval
of the intersection between the interval (m,, m,) and
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[Ly, Uy, where L, and Uy are the lower and upper
limits of the confidence interval for . Therefore, the
confidence interval for f when the parameter space is
bounded, denoted as CI;, is defined as

Cl, = [max(ml,Lﬂ), min(m2,Uﬂ)]. (6)

Four possible confidence intervals in Equation (6)

are as follows:
1) if m, > L, and m, > U, then Cly is reduced to

Cly=[m,, Uﬁ]-
2) if m, > L, and m, < Uy then CIy is reduced to

Iy =[m,, Uﬁ]-
3)if m, < L, and m, > U, then CIy is reduced to

1= [Lﬁa Uﬁ]'
4) if m, < Ly and m, < U, then Cl; is reduced to

Cly = [Ly, my].

When the parameter space of the standard
deviation is (m,, m,) and the population mean is known,
straightforward calculation can show that the population
coefficient of variation is also bounded as follows:

m, <o <m,
m,_ o m,

=>-—l<—<—2
Hy Hy Hy

3—<9 <m—
Hy Hy

According to Wang [28] and Niwitpong [29], the
proposed confidence intervals for 6, with a bounded
standard deviation are given by

CI(,0 = max(ﬁ,LgJ, min(&,UaJ ,
Hy Hy (7)

where L, and U, are the lower and upper limits of the
conﬁdence intervals for 0, respectively. In addition,
the existing confidence intervals for 6, reviewed in the
previous section are used in order to obtain confidence
intervals for 6, when the standard deviation is bounded.

4 Simulation Studies

The performances of the confidence intervals of the
coefficient of variation derived in the previous section
are investigated through simulation studies in this
section. The estimated coverage probabilities and

expected lengths of three confidence intervals for some
bounded parameter space are summarized in Tables 1-4.
The data are generated from a normal distribution with
a known population mean y, = 10 and §,= 0.1, 0.15,
0.2, 0.25, 0.3, 0.35, 0.4, 0.45 and 0.5, sample sizes;
n=75,10, 25, 50 and 100. The parameter space of the
standard deviation is set to the interval (1, 5). The 90%
and 95% confidence intervals are constructed based
on the existing methods with unbounded and bounded
standard deviations. Each simulation study is based on
50,000 replicates using the R statistical software [30]
version 3.0.2.

In the simulation study, the estimated coverage
probabilities of the confidence intervals with a
bounded standard deviation are the same as those of
the confidence intervals with an unbounded standard
deviation. Additionally, all confidence intervals have
estimated coverage probabilities close to the nominal
confidence level in all situations. The estimated
coverage probabilities of all confidence intervals
do not increase or decrease according to the values of
0,. The confidence intervals with a bounded standard
deviation have shorter expected lengths than the
expected lengths of the confidence intervals with an
unbounded standard deviation in all cases. In addition,
the expected lengths of all confidence intervals become
shorter when the sample sizes increase.

5 Conclusions

This paper proposes the confidence intervals of
the coefficient of variation in a normal distribution
with a known population mean when the parameter
space of the standard deviation is bounded. The new
proposed confidence intervals are based on three
existing confidence intervals: normal approximation
confidence interval, shortest-length confidence interval
and equal-tailed confidence interval. Estimated coverage
probabilities and the expected lengths of confidence
intervals are considered as the criteria of a good
confidence interval. Simulation results indicate that
the performances of improved confidence intervals
with a bounded standard deviation are the same as
the performances of the confidence intervals with an
unbounded standard deviation in terms of coverage
probability. The confidence intervals with a bounded
standard deviation have the advantage of a shorter
expected length in all cases.
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Table 1: The estimated coverage probabilities of 90% confidence intervals for the coefficient of variation with
a known population mean and unbounded and bounded standard deviation

Coverage Probabilities
n 0, Unbounded Standard Deviation Bounded Standard Deviation
Approx. Shortest Equal-tailed Approx. Shortest Equal-tailed

0.10 0.9020 0.8998 0.8992 0.9020 0.8998 0.8992

0.15 0.9013 0.8984 0.8977 0.9013 0.8984 0.8977

0.20 0.9045 0.8991 0.8993 0.9045 0.8991 0.8993

0.25 0.9055 0.9000 0.9021 0.9055 0.9000 0.9021

5 0.30 0.9034 0.9009 0.9014 0.9034 0.9009 0.9014
0.35 0.9035 0.9009 0.8999 0.9035 0.9009 0.8999

0.40 0.9024 0.8995 0.8989 0.9024 0.8995 0.8989

0.45 0.9053 0.9019 0.9011 0.9053 0.9019 0.9011

0.50 0.9030 0.9018 0.8995 0.9030 0.9018 0.8995

0.10 0.9003 0.8990 0.8994 0.9003 0.8990 0.8994

0.15 0.9018 0.9018 0.9003 0.9018 0.9018 0.9003

0.20 0.8998 0.9005 0.8997 0.8998 0.9005 0.8997

0.25 0.9012 0.8998 0.8998 0.9012 0.8998 0.8998

10 0.30 0.9035 0.9027 0.9021 0.9035 0.9027 0.9021
0.35 0.8978 0.8970 0.8963 0.8978 0.8970 0.8963

0.40 0.9016 0.8996 0.8997 0.9016 0.8996 0.8997

0.45 0.8978 0.8999 0.8975 0.8978 0.8999 0.8975

0.50 0.9008 0.9012 0.8996 0.9008 0.9012 0.8996

0.10 0.8988 0.8999 0.8985 0.8988 0.8999 0.8985

0.15 0.9004 0.8988 0.8998 0.9004 0.8988 0.8998

0.20 0.9005 0.8997 0.9000 0.9005 0.8997 0.9000

0.25 0.9002 0.9010 0.9007 0.9002 0.9010 0.9007

25 0.30 0.9026 0.9020 0.9018 0.9026 0.9020 0.9018
0.35 0.9003 0.9008 0.8990 0.9003 0.9008 0.8990

0.40 0.9034 0.9016 0.9025 0.9034 0.9016 0.9025

0.45 0.9012 0.9012 0.9004 0.9012 0.9012 0.9004

0.50 0.8988 0.8982 0.8984 0.8988 0.8982 0.8984

0.10 0.8996 0.8986 0.8996 0.8996 0.8986 0.8996

0.15 0.8995 0.9006 0.8995 0.8995 0.9006 0.8995

0.20 0.8994 0.9001 0.8996 0.8994 0.9001 0.8996

0.25 0.9016 0.9024 0.9012 0.9016 0.9024 0.9012

50 0.30 0.8990 0.8980 0.8988 0.8990 0.8980 0.8988
0.35 0.8980 0.8974 0.8981 0.8980 0.8974 0.8981

0.40 0.9011 0.8992 0.9005 0.9011 0.8992 0.9005

0.45 0.8996 0.8993 0.8992 0.8996 0.8993 0.8992

0.50 0.9005 0.8998 0.9004 0.9005 0.8998 0.9004

0.10 0.9013 0.8897 0.9010 0.9013 0.8897 0.9010

0.15 0.9008 0.8881 0.9002 0.9008 0.8881 0.9002

0.20 0.8990 0.8878 0.8990 0.8990 0.8878 0.8990

0.25 0.9008 0.8888 0.9009 0.9008 0.8888 0.9009

100 0.30 0.9020 0.8897 0.9019 0.9020 0.8897 0.9019
0.35 0.8992 0.8874 0.8990 0.8992 0.8874 0.8990

0.40 0.8988 0.8876 0.8985 0.8988 0.8876 0.8985

0.45 0.9027 0.8911 0.9026 0.9027 0.8911 0.9026

0.50 0.9027 0.8903 0.9023 0.9027 0.8903 0.9023
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Table 2: The expected lengths of 90% confidence intervals for the coefficient of variation with a known population
mean and unbounded and bounded standard deviation

Expected Lengths
n 0, Unbounded Standard Deviation Bounded Standard Deviation
Approx. Shortest Equal-tailed Approx. Shortest Equal-tailed

0.10 0.1487 0.1178 0.1352 0.1185 0.0813 0.1050

0.15 0.2221 0.1759 0.2020 0.2069 0.1561 0.1878

0.20 0.2960 0.2345 0.2693 0.2639 0.2203 0.2472

0.25 0.3703 0.2933 0.3369 0.2822 0.2609 0.2721

5 0.30 0.4441 0.3518 0.4041 0.2754 0.2760 0.2710
0.35 0.5192 0.4113 0.4724 0.2557 0.2736 0.2553

0.40 0.5928 0.4696 0.5393 0.2309 0.2606 0.2328

0.45 0.6664 0.5279 0.6063 0.2065 0.2428 0.2095

0.50 0.7437 0.5891 0.6766 0.1836 0.2213 0.1869

0.10 0.0864 0.0777 0.0833 0.0619 0.0490 0.0585

0.15 0.1296 0.1166 0.1249 0.1241 0.1078 0.1192

0.20 0.1729 0.1556 0.1667 0.1718 0.1538 0.1656

0.25 0.2161 0.1944 0.2084 0.2092 0.1922 0.2031

10 0.30 0.2597 0.2336 0.2504 0.2260 0.2185 0.2222
0.35 0.3027 0.2723 0.2919 0.2184 0.2241 0.2175

0.40 0.3450 0.3104 0.3327 0.1975 0.2134 0.1986

0.45 0.3887 0.3497 0.3747 0.1696 0.1918 0.1718

0.50 0.4326 0.3892 0.4171 0.1431 0.1663 0.1454

0.10 0.0495 0.0475 0.0489 0.0321 0.0280 0.0312

0.15 0.0741 0.0712 0.0732 0.0733 0.0699 0.0723

0.20 0.0989 0.0950 0.0977 0.0989 0.0950 0.0977

0.25 0.1238 0.1189 0.1222 0.1238 0.1189 0.1222

25 0.30 0.1484 0.1425 0.1465 0.1477 0.1423 0.1460
0.35 0.1731 0.1662 0.1709 0.1630 0.1605 0.1618

0.40 0.1978 0.1900 0.1953 0.1562 0.1607 0.1563

0.45 0.2226 0.2138 0.2198 0.1302 0.1403 0.1313

0.50 0.2472 0.2375 0.2441 0.1001 0.1113 0.1014

0.10 0.0339 0.0332 0.0337 0.0207 0.0189 0.0204

0.15 0.0508 0.0498 0.0505 0.0508 0.0498 0.0505

0.20 0.0678 0.0665 0.0674 0.0678 0.0665 0.0674

0.25 0.0848 0.0831 0.0843 0.0848 0.0831 0.0843

50 0.30 0.1017 0.0997 0.1011 0.1017 0.0997 0.1011
0.35 0.1186 0.1162 0.1179 0.1180 0.1159 0.1174

0.40 0.1355 0.1329 0.1347 0.1251 0.1254 0.1249

0.45 0.1526 0.1496 0.1517 0.1065 0.1114 0.1071

0.50 0.1695 0.1661 0.1684 0.0747 0.0808 0.0754

0.10 0.0236 0.0227 0.0236 0.0139 0.0130 0.0137

0.15 0.0354 0.0340 0.0353 0.0354 0.0340 0.0353

0.20 0.0472 0.0453 0.0471 0.0472 0.0453 0.0471

0.25 0.0590 0.0567 0.0589 0.0590 0.0567 0.0589

100 0.30 0.0708 0.0680 0.0706 0.0708 0.0680 0.0706
0.35 0.0826 0.0793 0.0823 0.0826 0.0793 0.0823

0.40 0.0945 0.0907 0.0942 0.0934 0.0899 0.0931

0.45 0.1062 0.1020 0.1059 0.0869 0.0856 0.0871

0.50 0.1180 0.1133 0.1176 0.0551 0.0554 0.0555
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Table 3: The estimated coverage probabilities of 95% confidence intervals for the coefficient of variation with
a known population mean and unbounded and bounded standard deviation

Coverage Probabilities
n 0, Unbounded Standard Deviation Bounded Standard Deviation
Approx. Shortest Equal-tailed Approx. Shortest Equal-tailed

0.10 0.9524 0.9504 0.9488 0.9524 0.9504 0.9488

0.15 0.9539 0.9518 0.9504 0.9539 0.9518 0.9504

0.20 0.9550 0.9510 0.9517 0.9550 0.9510 0.9517

0.25 0.9543 0.9493 0.9510 0.9543 0.9493 0.9510

5 0.30 0.9543 0.9493 0.9503 0.9543 0.9493 0.9503
0.35 0.9532 0.9501 0.9499 0.9532 0.9501 0.9499

0.40 0.9554 0.9493 0.9500 0.9554 0.9493 0.9500

0.45 0.9534 0.9500 0.9493 0.9534 0.9500 0.9493

0.50 0.9539 0.9506 0.9494 0.9539 0.9506 0.9494

0.10 0.9502 0.9487 0.9486 0.9502 0.9487 0.9486

0.15 0.9483 0.9493 0.9480 0.9483 0.9493 0.9480

0.20 0.9524 0.9477 0.9503 0.9524 0.9477 0.9503

0.25 0.9511 0.9511 0.9491 0.9511 0.9511 0.9491

10 0.30 0.9517 0.9496 0.9500 0.9517 0.9496 0.9500
0.35 0.9521 0.9501 0.9503 0.9521 0.9501 0.9503

0.40 0.9527 0.9502 0.9505 0.9527 0.9502 0.9505

0.45 0.9524 0.9506 0.9507 0.9524 0.9506 0.9507

0.50 0.9519 0.9515 0.9500 0.9519 0.9515 0.9500

0.10 0.9500 0.9487 0.9496 0.9500 0.9487 0.9496

0.15 0.9509 0.9513 0.9500 0.9509 0.9513 0.9500

0.20 0.9506 0.9498 0.9491 0.9506 0.9498 0.9491

0.25 0.9521 0.9498 0.9503 0.9521 0.9498 0.9503

25 0.30 0.9518 0.9511 0.9510 0.9518 0.9511 0.9510
0.35 0.9524 0.9502 0.9509 0.9524 0.9502 0.9509

0.40 0.9506 0.9500 0.9505 0.9506 0.9500 0.9505

0.45 0.9496 0.9496 0.9485 0.9496 0.9496 0.9485

0.50 0.9501 0.9486 0.9489 0.9501 0.9486 0.9489

0.10 0.9488 0.9493 0.9481 0.9488 0.9493 0.9481

0.15 0.9501 0.9500 0.9499 0.9501 0.9500 0.9499

0.20 0.9517 0.9500 0.9505 0.9517 0.9500 0.9505

0.25 0.9498 0.9496 0.9499 0.9498 0.9496 0.9499

50 0.30 0.9511 0.9515 0.9512 0.9511 0.9515 0.9512
0.35 0.9497 0.9504 0.9495 0.9497 0.9504 0.9495

0.40 0.9513 0.9498 0.9504 0.9513 0.9498 0.9504

0.45 0.9492 0.9482 0.9489 0.9492 0.9482 0.9489

0.50 0.9488 0.9485 0.9485 0.9488 0.9485 0.9485

0.10 0.9500 0.9498 0.9498 0.9500 0.9498 0.9498

0.15 0.9503 0.9495 0.9501 0.9503 0.9495 0.9501

0.20 0.9497 0.9500 0.9498 0.9497 0.9500 0.9498

0.25 0.9511 0.9508 0.9507 0.9511 0.9508 0.9507

100 0.30 0.9502 0.9497 0.9497 0.9502 0.9497 0.9497
0.35 0.9510 0.9511 0.9511 0.9510 0.9511 0.9511

0.40 0.9519 0.9513 0.9518 0.9519 0.9513 0.9518

0.45 0.9518 0.9522 0.9515 0.9518 0.9522 0.9515

0.50 0.9526 0.9524 0.9523 0.9526 0.9524 0.9523
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Table 4: The expected lengths of 95% confidence intervals for the coefficient of variation with a known
population mean and unbounded and bounded standard deviation

Expected Lengths
n 0, Unbounded Standard Deviation Bounded Standard Deviation
Approx. Shortest Equal-tailed Approx. Shortest Equal-tailed

0.10 0.2120 0.1518 0.1743 0.1752 0.1083 0.1376

0.15 0.3177 0.2275 0.2612 0.2804 0.2010 0.2378

0.20 0.4236 0.3032 0.3482 0.3224 0.2723 0.2954

0.25 0.5289 0.3786 0.4348 0.3219 0.3051 0.3091

5 0.30 0.6344 0.4542 0.5216 0.3046 0.3114 0.3004
0.35 0.7413 0.5307 0.6094 0.2795 0.3026 0.2806

0.40 0.8449 0.6049 0.6946 0.2526 0.2861 0.2565

0.45 0.9527 0.6821 0.7833 0.2254 0.2654 0.2308

0.50 1.0583 0.7577 0.8701 0.2009 0.2436 0.2069

0.10 0.1103 0.0960 0.1029 0.0810 0.0618 0.0730

0.15 0.1657 0.1443 0.1546 0.1583 0.1326 0.1466

0.20 0.2203 0.1919 0.2056 0.2171 0.1890 0.2032

0.25 0.2765 0.2408 0.2581 0.2550 0.2336 0.2437

10 0.30 0.3306 0.2879 0.3085 0.2610 0.2555 0.2557
0.35 0.3868 0.3369 0.3610 0.2447 0.2543 0.2442

0.40 0.4415 0.3845 0.4120 0.2179 0.2375 0.2203

0.45 0.4966 0.4324 0.4634 0.1874 0.2128 0.1912

0.50 0.5526 0.4812 0.5157 0.1582 0.1853 0.1624

0.10 0.0829 0.0760 0.0795 0.0575 0.0469 0.0536

0.15 0.1244 0.1139 0.1193 0.1206 0.1079 0.1152

0.20 0.1657 0.1518 0.1590 0.1654 0.1512 0.1586

0.25 0.2073 0.1899 0.1989 0.2049 0.1892 0.1973

25 0.30 0.2486 0.2277 0.2385 0.2271 0.2181 0.2219
0.35 0.2904 0.2660 0.2786 0.2226 0.2258 0.2214

0.40 0.3319 0.3040 0.3184 0.1989 0.2118 0.2004

0.45 0.3735 0.3422 0.3583 0.1674 0.1859 0.1703

0.50 0.4145 0.3797 0.3977 0.1369 0.1565 0.1400

0.10 0.0409 0.0399 0.0404 0.0250 0.0226 0.0243

0.15 0.0613 0.0598 0.0606 0.0612 0.0597 0.0606

0.20 0.0818 0.0798 0.0809 0.0818 0.0798 0.0809

0.25 0.1022 0.0997 0.1011 0.1022 0.0997 0.1011

50 0.30 0.1228 0.1198 0.1214 0.1227 0.1198 0.1214
0.35 0.1431 0.1396 0.1416 0.1416 0.1388 0.1403

0.40 0.1634 0.1594 0.1617 0.1447 0.1459 0.1445

0.45 0.1839 0.1794 0.1819 0.1201 0.1261 0.1211

0.50 0.2044 0.1994 0.2022 0.0846 0.0918 0.0859

0.10 0.0283 0.0280 0.0282 0.0165 0.0154 0.0162

0.15 0.0424 0.0419 0.0422 0.0424 0.0419 0.0422

0.20 0.0566 0.0559 0.0563 0.0566 0.0559 0.0563

0.25 0.0707 0.0699 0.0704 0.0707 0.0699 0.0704

100 0.30 0.0849 0.0838 0.0844 0.0849 0.0838 0.0844
0.35 0.0991 0.0979 0.0985 0.0991 0.0979 0.0985

0.40 0.1132 0.1118 0.1126 0.1107 0.1101 0.1103

0.45 0.1273 0.1258 0.1267 0.0989 0.1014 0.0993

0.50 0.1416 0.1398 0.1408 0.0624 0.0662 0.0631
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